ILLINOIS JOURNAL OF MATHEMATICS
Volume 41, Number 1, Spring 1997

p-BOREL PRINCIPAL IDEALS

ANNETTA ARAMOVA AND JURGEN HERZOG

Introduction

This paper is an attempt to better understand the homological structure of p-Borel
ideals.

Let K be an infinite field, and / a homogeneous ideal in the polynomial ring
R = K[xj,...,x,]. By a theorem of Galligo [9] (see also [5]) the generic initial
ideal of I is fixed under the action of the upper triangular matrices in G L(n). This is
the reason why one calls a monomial ideal Borel-fixed if it is a generic initial ideal.

There is a combinatorial description of Borel-fixed ideals. Provided the character-
istic of the field X is zero, a monomial ideal / is Borel-fixed if and only if it is strongly
stable, that is, whenever u € I is a monomial, and x; divides u, then (x;/x;)u € I for
all j <i.

Strongly stable ideals have been studied extensively. Actually these ideals share
most of their nice properties with the larger class of stable ideals. Recall that a
monomial ideal I is said to be stable if for all monomials u € I and all j < m(u) one
has that (x; /xn))u € I. Here m(u) is the maximal integer i for which x; divides u.

Stable ideals were introduced by Eliahou and Kervaire [8]. In their paper they
describe explicitly the minimal free resolution of these ideals. In [2] we, and inde-
pendently Peeva [13], compute the Koszul homology of stable ideals. This result is
used in [2] to give an alternative description of the Eliahou-Kervaire resolution, and
in [13] it is shown that this resolution admits a multiplicative structure. The Eliahou-
Kervaire resolution also plays a crucial role in a theorem by Bigatti [3] and Hulett
[10] which asserts that among all ideals with a given Hilbert function the lexsegment
ideals have maximal Betti-numbers.

It is worth mentioning that a similar theory has been developed [1] for squarefree
ideals. In particular the resolution of the so-called squarefree stable ideals is known;
see [1] and [6].

If the field K is of characteristic p > 0, Borel-fixed ideals can also be nicely
described in combinatorial terms as shown by Pardue in his thesis [12]: write xf || u
to express that xf divides u but xf“ does not, and for non-negative integers k and /
with p-adic expansion k = Y, k;p' and | = Y, l;p', set k <, l if k; < I; for all
i. Then a monomial ideal I is Borel-fixed if and only if it satisfies the following
condition: if u is a monomial in I and xJ’. | u, then (x;/x;)*u € I foralli < j, and
allk <, 1.
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104 ANNETTA ARAMOVA AND JURGEN HERZOG

Pardue calls a monomial ideal satisfying this combinatorial condition p-Borel re-
gardless of the characteristic of K. Itis pretty obvious that p-Borel ideals have a much
richer structure than the corresponding stable ideals, and of course are considerably
more difficult to treat. At present not too much is known about their structure. For
example one does not know the regularity of these ideals, let alone their resolution.

Among the p-Borel ideals the principal ones are the most simple. Let u be a
monomial; then (1) denotes the smallest p-Borel ideal which contains u#. The ideal
(u) is called p-Borel principal with Borel generator . In his thesis Pardue conjectures
a formula for the regularity of a p-Borel principal ideal, and proves his conjecture in
the case that at most two variables (in successive order) divide . As one of our main
results in this paper we show in Section 3 that Pardue’s formula is indeed a lower
bound for the regularity of a p-Borel principal ideal. We prove this by exhibiting
certain Koszul cycles which we discover in Section 1 of this paper where we succeed
in computing the Koszul homology of a p-Borel principal Coheén-Macaulay ideal. It
is noted by Pardue [12] that a p-Borel principal ideal (1) is Cohen-Macaulay if and
only if the Borel generator is of the form u = x{. In Section 2 we give the explicit
minimal free resolution of p-Borel principal Cohen-Macaulay ideals.

Pardue’s and our results can only be the begin in the study of p-Borel ideals. From
our point of view the most challenging tasks to be accomplished in this theory are
the following: (i) prove Pardue’s conjecture concerning the regularity of p-Borel
principal ideals, (ii) compute the Koszul homology of these ideals, or even better
their resolution, and (iii) give bounds for the regularity of general p-Borel ideals.

1. The Koszul homology of Cohen-Macaulay p-Borel principal ideals

In this section we describe a basis for the cycles of the simplest possible nonstan-
dard Borel principal ideals. Before describing the details we recall some basic facts
from Pardue’s thesis [12].

As already mentioned in the introduction one has the following combinatorial
description of Borel-fixed ideals in positive characterics.

PROPOSITION 1.1 (Pardue). Let K be afield of characteristic p,1 C K[xy, ..., X4]
a monomial ideal. Then I is Borel-fixed if and only if the following holds: if u is a
monomial in I and le- || u, then (xi/xj)ku €lforalli < j,andallk <, 1.

Any monomial ideal satisfying the conditions of 1.1 is called p-Borel, no matter
what the characteristic of X is.

Letu € K[xy,...,x,] be a monomial. The smallest p-Borel ideal containing u
will be called a p-Borel principal ideal, and denoted (u).

Let I be a monomial ideal. We denote by G (/) the uniquely determined minimal
set of monomial generators of /. The above combinatorial condition which describes
Borel-fixed ideals needs to be checked only for the generators of /. Indeed one has:
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LEMMA 1.2. Let I C Kl[xy,...,xn) be a monomial ideal. Then the following
conditions are equivalent:

(a) I is Borel-fixed,
) ifue GU) andx]’. || u, then (xi/xj)"u €lforalli < jandallk <, 1.

Proof. 'We only need to prove the implication (b) = (a): our hypothesis implies
that (1) C I for all u € G(I), and we want to show that (w) C I for all monomials
wel.

Thus we pick a monomial w € I. Then there exist u € G(I) and a monomial v
such that w = vu. It suffices to show that (w) C (u) since by assumption (u) C I.

Suppose that for any monomial u and any x; we can show that (x;u) C (u). Then
by induction on the degree of v one concludes that (w) C (u).

So let us choose a monomial z € (x;u) Then z = (x; /xs)"x,-u for some k, s and ¢
witht < s and k <, [ where x! || x;u.

If s # j, then x! || u. Hence (x;/x;)*u € (u), and this implies that z € (u).

If s = j, then xj;."l |l w. Thusifk <, ! — 1, then (x,/x,-)"u € (u), and so z € (u).
Otherwise k £, [ — 1, butstill k <, I. Letl = ZLa Iip', 1, # 0, be the p-adic
expansion of /. Then [/ — 1 has the p-adic expansion

b
I-1=(p-D+@-Dp+-+(@-Dp" ' +U—-Dp*+ Y Lp'.

i=a+1

Therefore, since k <, [, we have k; = O fori < a, and k; < [; fori > a. Since
k Zp 1 —1, we must have thatk; = Ofori < a,k, =l;,and k; < [; fori > a. It
follows that k — 1 has the p-adic expansion

b
k=1=(@-D+@-Dp+-+@=-Dp " +U—Dp*+ Y kip'.
i=a+1

This implies that k — 1 <, [ — 1, and hence we have
z = (o /x)%x; G /x)* M = (e /)

sothatz € (u). 0O

PROPOSITION 1.3 (Pardue). Let u = [i_, x/", and let pu; = Y-, wijp’ fori =
1, ..., n be the p-adic expansion of the exponents of u. Then

(u) = ﬁ l—.[((xlv ey xi)uij)[pj]'
i=1 j

In particular, (u) = [];_; (x!).



106 ANNETTA ARAMOVA AND JURGEN HERZOG

The goal of this section is to describe the Koszul homology of a p-Borel principal
ideal () when u = x!" which is the case exactly when (1) is Cohen-Macaulay; see
[12].

Without loss of generality we may assume that i = n, and we set 4 = u,. Then

(x'[:,) — I_[(mai)[P"]
i=0

where m = (x1,...,x,), and the a; are the coefficients in the p-adic expansion
w=73gap of u.

If A and B are subsets of the polynomial ring we set AB = {ab: a € A, b € B},
and A* = {a*: a € A)foranyintegerk > 0. With this notation we have the following
lemma whose simple proof we leave to the reader.

LEMMA 1.4, G([TIy(me)'1y = [T, G(m@)?'

Next we compare the Koszul cycles of a monomial ideal / and its Frobenius-power
I"P): foro C{l,...,n},0 = {ji,..., jiL ji<- < jiwesete, = ¢, A+ Aegj
where ey, ..., e, is a basis of K{(x; R/I). Letc = Zk,':i cses € Ki(x; R/I) be an
arbitrary element. Then we set

c? = Z cPxP7le,  wherexP7! = xﬁ_l ---x;‘,’—l.
lo|=i
Note that for any 7 € R one has (rc)? = rPcP. Furthermore it is easy to see that if
c is a cycle in K;(x; R/I), then c? is a cycle in K;(x; R/I'P'). More precisely we
have:

LEMMA 1.5. Letzy,...,z,becyclesin K;(x; R/I) whose homology classes form
a basis of H;(x; R/I). Then the homology classes of the cycles z¥, ..., zl form a
basis of H;(x; R/1'P)).

Proof. We may assume that K = Z/pZ. Then the Frobenius homomorphism
acts trivially on K, and the map

@: Hi(x; R/I) — H;(x; R/I'),  [z2]+ [2P]

is K-linear. Since the Frobenius is a flat endomorphism of R (see [11]), R/I and
R/1'P have the same Betti-numbers, and so

dimg H;(x; R/I) = B:(R/I) = B;(R/IP)) = dimk H;(x; I'P).

Hence it suffices to show that ¢ is surjective. So let w € K;(x; R/I?)) be a cycle
whose homology class is not zero, and which is homogeneous in the Z"-grading. The
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Z"-degree of w corresponds to a Z"-shift in the resolution of R/I'P). Any Z"-shift
of R/I'P! is of the form pa, where a is a Z"-shift of R/I. We write

w= E Aolges

lo|=i

where for all o in the sum, u,, is a monomial and A, € K. Then for all ¢ with A, # 0
we have

degy, us + as = pa
for some a = (ay,...,a,),a; € Z,a; > 0. Here a, = (¢y,...,c,) wWith¢; = 1 for
i€o,andc; =0fori € o.
It follows from the equation that a¢; # 0 fori € o. Hence b, = a — a, € N*, and
we have

degy, us = pbs + (p — Da,.

Thus u, = vEx?~", where v, is a monomial of Z"-degree b,. This implies that

w = zP where 7 = Zla|=i AoVs€,. Hence it remains to show that z is a cycle in
K;(x; R/I).
By assumption we have

w=0z" = Y. ( > (—1)“<“'"\’>Aav5x£“xa\,) e
|t|=i—1 \oDr1,l|o|=i

= Z ( Z (_l)a(a'a\t))\a(xp(ba-‘-aa)/xr))er=0
jrl=i—1

oD1,|o|=i

in K;_1(x; R/I"P)), where for p C {1,...,n},and 1 <t <nweseta(p,t) =|{s €
p: s <t}
We want to show that

0z = Z ( Z (_l)a(a,a\r)xav(’xa\t)et
It|=i—1 \oDr1,|o|=i

= Y. ( Y (=)D (xbotee /x,)) e =0
It|=i—1 \oDrt,lo|=i

in K;_;(x; R/I).

This will follow once we can show the following: if x?°/x, € I'”) for some
c € N", then x/x, € I.

So suppose that x? /x, € I'P). Then there existamonomial u € I, and amonomial
v such that x?¢ = uPvx,. Therefore (x/u)? = vx,, and so u|x°. Hence x° = wu
for some monomial w. It follows that x?¢ = wPu? = uPvx,. Therefore w? = vx,,
which implies that x, divides w. So w = w’x, for some monomial w’, and this finally
implies that x°/x, = w'u e I. O
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Let u be a monomial, and o C {1, ..., n} a subset. We set m(u) = max{i: x;|u},
m(o) =max{i: i € o}, u =u/x,u),and f(o;u) = u'es A emu).
Now we are ready to formulate and to prove the main result of this section.

THEOREM 1.6. Let L = (x?) be a p-Borel principal ideal, and let ) ;@ p’ be
the p-adic expansion of a. Then for alli,0 < i < m, the elements

[T« fosu”

Jj>i

withuj € G(m%) for j > i,and|o| = k—1,m(c) < m(u;) arecyclesin Ky (x; R/L)
whose homology classes for k > 2 form a basis of Hy(X; R/L).

We call [] i u]’.’ ’ f(o; u)? a cycle of type i. Note that the homology classes of
the cycles of type zero with o = @ form a basis of H;(x; R/L).

The following simple example demonstrates the theorem: let R = K[xj, x2],
p=2a=25 Then5=1+0-2+1-4, sothat (x3) = (x1,x)x],x3) =
(x3, x}x2, x1x3, x3). By the theorem, H(x; R/(x3)) is generated by [x}x3e;es],
[x}erer] and [x5e;e,]. Here

x3xderer = f({1}; x2)* is of type 2,
while
xtejes = x} f({1}; x2) and xjeje; = x5 f ({1}; x2) are of type 0.
Proof of Theorem 1.6. Letl = min{i: a; # 0}, and set
b=a/p' =a+amp+--+anp"".
Then L = (x?)!?"). Applying Lemma 1.5 we may assume that / = 0, and so
a=ay+ap+---+a,p”, withag#0.

It follows that (x?) = JI'P! where J = m® and I = (x) withb = a; +a,p+---+
amp™ .

Associated with the exact sequence

0— I/ g1 — R/JIPY — R/IP! - 0

we have the long exact sequence of Koszul homology

coe > Hi(xg R/JI[p]) — Hi(x; R/I[p]) _81) H,'_l(I[p]/JI[p]) — ...

We claim that §; = O for i > 2. Indeed, let w € Z;(x; R/I'P)); then, by Lemma 1.5,
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w = z” + I'PK;(x; R) where z = Z|a|=i use, € K;(x; R), and where

0z = Z ( Z (_l)a(o'o\t)xa\tua) €r
lt|=i—~1 \oDr1,lo|=i
belongs to I K;_(x; R).
Since 27 = )\ U6 X5 ~le,, it follows that

= 3 (3 v s«
|t|=i—1 \oDr1,|o|=i

belongs to JI'P'K; _(x; R). Hence, since §;w = 3z7 + JI'P1K;_,(x; R), the homol-
ogy class of §;w is zero.
As a consequence, for k > 2 we have the exact sequences

0 — Hy(x; I'P1/J 1Py — Hi(x; R/JI'P)y - Hi(x; R/I'PY) — 0.

It follows that a basis of Hy(x; R/JI'P') is formed by a basis of Hy(x; R/I'?') and a
basis of Hy(x; IP1/J1P1),

Arguing by induction on m we may assume that we know a basis of Hx(x; R/I).
The induction begin is guaranteed since for m = 0, I is stable, and a basis is known
from [2] or [13]. Thus, by Lemma 1.5, we know a basis of H,(x; R/ [P1), and hence
we conclude that the homology classes of the elements ]_[j>i uf ! f(o; u;)”i, i>1,
withu; € G(m%) for j > i, and m(c') < m(u;) form a basis of Hy(x; R/I1'P"). Thus
it remains to show that the elements of a basis of H(x; I'?!/JI[p]) are mapped to

the homology classes of the elements [ | >0 uj’-’ ’ f(o; up) withu; € G(m%) for j > 0,
and m(o) < m(uyg).

By Lemma 1.4, these are exactly the elements [vf(o; u)],v € G(I), u € G(m%®).
We choose a minimal presentation

RY R SI150

Then

) [p)
RE— R - I" >0

is a minimal presentation of / [P, Therefore, since all “5 € m%, it follows that

17717 = & (R/1)b,

veG(I)

is a free R/J-module with basis, say, b,, v € G(I). Hence Hy(x; I'P1/JIP)) is
isomorphic to EBUGG(I) Hy(x; R/J)b,.
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Since J is a stable ideal, we know from [2] (or [13]) that [ f (o; u)] withu € G(J),
lo] = k — 1, m(o) < m(u) is a basis of Hy(x; R/J). Finally we see that the
homomorphism given by the composition

@ Hex; R/ Dby > He(x; 1P/ T1PY) — H(R/J TP
veG()

maps the element [ f (o; u)1b, to [vf (o; u)], as desired. I

2. The resolution of a p-Borel principal Cohen-Macaulay ideal

In this section we compute the resolution of the p-Borel ideals studied in the
previous section. Knowing the Koszul homology we use the technique developed in
[2] to compute the differentials in the resolution.

Let L = (xZ)bea p-Borel principal ideal in the polynomialring R = K[xi, ..., x,].
We set Gy, = R ®k Hi(x; R/L) for all k > 0. Then L has a free resolution of the
form

-—->G2-1§G1£1?G()—>0

It is clear that, according to 1.6, the elements 1 ® [vf (o} u)” 1, which for 51mp11c1ty

we simply denote by [vf (o; u)P ], form a basis of G;. Here v = ]—[ o f , U= U;,
uj € Gm%) for j > i,|o| =k —1,and m(o) < m(u). As in the previous section
we setu’ = u/xpy, m = m(u).

THEOREM 2.1.  The maps dy in the resolution of R /(x;,) are given by the following
formulas:

di([vf (@; w)]) = vu,
(@ w?']) = x” “Emter’ [v(xu)" ]_[x““’ f@; x,‘:,"):|

_-xt _Z _o%P? [ up l—'lxaqp (@ xtao)]

q_—
and

d(wf @’ = Y (=D [uf @\ 1))

teo
—xP [vf (@ \ £; X" ] = Xps )’ 0 \ 13 m))

—xm(a>S(vu”i; o\ m(o); m(o))
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J
where for p C o, w = ]_[jzi wj’.’ ,wj € G(m%),andr,1 <r < n,we set

pq
s(w; p3r) = szr“nx“”” ]_[ (]_I x"") Fos TT ="

tep g=p+1 \t€epUr tepUr

where the second sum is taken over all j,, > O such that Z,e our Jgt = aq for

u<q<l—1¢m—p =Y JarP® = PP fort € poYu = p' =30, Jarp® — 1,
and we set f(p; v) = 0if m(p) = m(v).

To prove the theorem we need the following lemma.

LEMMA 2.2. Let ¥ =[], v,fq where v; € G(m%), T Co,|t|=j,j>1,and
letr > m(t). Assume that the formula for dj | in 2.1 is true. Then

dip(s@Tir) = Y (=DM 5@ T\ 1 r)

tet

X7 sy s (@ T\ m(T); m(2)).

Proof. Setw,y = o[ a=u+1 | Liepur Xi x"?" andm’ = m(z). Since s(¥; 7; r) #
0 only if j,, > 1, we obtain, for0 < u <i — 1,

dj+l Z l—[x‘l’m |:w,,,+1f(1'; l_[ xtluf)pl‘]) =}~’M _ Z(_l)a(t,t)+jbm —_
jur>1 tetr tetUr ter

where

ter SET setUr

“ Jurt1 J, 1 Jus pH .
—xf [wu+1f<r\r e T e D)

set\t

= ) (=Dt Z '”"F[x“""<, [wuﬂf(r\t; ]‘[x!'“)"“]

L

pl
+1 +1
bm—z xr“ l—[x%“ w,hq("" X nx”“) st\r);
.]/Lr

SET ser\t

+1
= Z Vu w’”“ l—[ %“s(wu, t\m';m).
jur

set\m'
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Considering the summands in ¥, for a fixed ¢ € t, we see that they cancel two by
two, and only the summands for j,, = 0 or j,, = 0 are left. Butif t # m’, then

FaN\Nt; e x x[#)P* = 0; therefore 7 Ju = Yu + h, where

Z( l)a(t D)+ Z xp Z —}H—I‘j"'pq n x;ﬂxux;//ll
J/tr

tet seT\t

X |:wu+1f(1:\t; ]_I xsj‘”)”u];

set\tUr

Il

Yu

s

R o R Y
ho o= P Zq:u Jqm P? P Zq=[t+| Jarp?=1 Osu
u = Xy Xy X

Jum =1 set\m'

x [wuﬂf(r \m'; Hx’“s)p“] :

SET

Sety = }:f,;{, yvand h = 3"~ h,. Changing the summation indices, one obtains

by, = Z “""+” l—[ X9 s(wy; T\ 7).

jurzlyjur>0 seT\t

Fixt € 7,0 < 4 <i—1,0 < v < u, and consider an arbitrary summand of b;,,.
Computing the powers of x;, s € T Ur, one sees that each summand of b,, appears
in y, taking j,, =0forv+1<gqg < pu— 1and j, > 1. Therefore

i—1
y— Z Z(_l)a(m)ﬂ‘bm

n=0 ter

Z(_l)a(t,t)+jxtpi i Z xrwv l‘[ xfe

ter v=0 j,, >1 seT\t

i—1
x[f) 0 T " re\s T x_gvsw]

g=v+1ser\tUr ser\tUr

S (DO (@B T\ 15 7).

tet

On the other hand, from the definition of s(w,; T \ m’; m’) it follows that each
summand of cu appears in h, taking j,, =0forv+1<¢g < pu—1and j, > 1.

Hence h — Z u=0Cu = xl’ 1x,,,zs(f); 7 \ m’; m’), and this completes the proof of the
lemma. 0O
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Proof of Theorem 2.1.  According to [2] we have to find a sequence of elements
g € Ki—j(x; Gj),0 < j < k — 1, satistying do(go) = v(f(o;w)?, h-;(g) =
dj11(gj+1) for 0 < j < k — 2. Here 0 denotes the differential of the Koszul complex
K (x; G}), and for short we write d; for the map K (x; G;) — K(x; G;_1). With this

notation the desired differential is given by the formula d ([vf (o wP')) = o, (gk-1)-
Let

i~1

N pl i1
go=vW)P x} 7 xl Tes Nem,

I U
g = er:z Zq=0‘1qp Z(_l)a(a,t) pi=1 l:v(x’u )p I_[xan’ f(ﬂ, x;:lo):| eo\i A em

teo
. i—1
k=1 p’—z =anp"—l pi—1 i a, p? . .a
+(=D" X0y Xg\mio) | V47 I—[qu(a)f &5 X)) | €5
q=1

Note here that x,u’ € G(m®) foreacht € o. Itis easy to verify that 9 (go) = d1(g1);
therefore we obtain the formula for d,. For j > 2 let

g,-=(—1)%'( > DPPben, + (1T D (—D””c:eg\,Aem),

pCo,lpl=j—1 tCo,|t|=j

where g; =k + LL+1_)2LL':L_22, B(p) = 3 ¢, (o, 1) and

be = x2 0f (03 WP 1+ X2\ ey SOUP'5 o3 m(0));

e =x\; (Z( DO (B uf (o \ 15 %) 1+ s T\ 15 m)))

tet

Proceeding by induction on k, we can assume that the formulas are true for j +1 < k
and we will verify that d;_;(g;) = dj+1(gj+1). We have

o-j(g) = (—1)%‘( D (=@ (Z(—l)““v”x,b,\,—xmc,) €oe

tCo,lt|=j ter
HDE YT (=P (Z(—l)““*-‘)xscy\s) eo\y A em) :
ySo.lyl=j+1 s€y

Fixt Co,|t] = jandsetb = Y, (—1)*@Dxby, — XmCr. If m(a) € 7, then

s(uP'; T\1; m(0)) # Oonlyift = m(c); hence b = (—1)/x2\; ' di1 ([vf (z; w)?']).
So, assume r = m(o) ¢ 7. Then

b= (~1xl i (f (0P D) + (1 X0 s u?'s T\ m's m')
+ o SO st T\ 1)

tet
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where m’ = m(t). By 2.2 we have

dip1(s(uuP'5Tr)) = Z(—l)"(”’)"’jx,’"s(vu”'; \t; P)+xP s (ouP'; T\m'; m').
tet

Hence we obtain b = (—1)/d;(b;).
Now fix y € o, |y| = j + 1 and consider ¢ = Zsey(—l)"‘(}”s)xscy\s. We will
show that ¢ = (—1)/*'d;1(c,). For p € o and w € G(m%), set

A(p,w) ={t € p: m(p\ 1) < m(x,w")}.

Then ¢ = x(’,’;;l(hl + hy) where

b= Y (=)Ao y \ [, ) m);

SEY tey\s

ha=xf Ty D (DM OO T \ fr, s) )],

SEY teA(y\s,u)

p-1

On the other hand, ¢, = x;,,

(c1 + ¢) where

c=xE"0 Y DI\ 1 )P

teA(y,u)
€= Z(—l)“(”")s(v(x,u’)”'; y \ t;m).
tey

Then we have (—1)/*1d; 1 (c)) = X! (y + 51 + 52 + 53) where

y= ) D (DI ONIT [ (p \ {1, ) xad )P

teA(y,u) sey\t

si= ) D (DRI s (s )V sy \ it 8); mxu));

teA(y,u) sey\t

o= ) ) (SO uf (o \ (8 sh s G ))P);
teA(y,u) sEA(y\t,x;u’)

s3=(=1) D (=D "xpins@Ea)sy \ t \my \ 1); m@y \ 1))
teA(y,u)
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By Lemma 2.2 applied to each s((xu')?'; ¥ \ t; m), we obtain (=1)/*1d;1(c2)
= h + s3 where

h=Y" 3 (RO s )Py \ s} m);

tey sey\t

sy = (=1l Y (=D 00050 )P sy \ £\ my \ D; m(y \ D).

tey

i1 . i1
Now we have xj, ~ 3 + 55 = (—1)/*1x} 7 s4 where

sa= Y (=D x5y N\ my \ 0); m(y \ ).
tgA(y,u)
Since ae(y, s) +a(y \s, 1) = a(y,t) +a(y \t,5)+1 (mod 2), we obtain by = h.
Moreover, each summand of x,‘,’,'_ly appears in hj, because if t € A(y,u), then
m(y \ {t,s}) < m(y \'t) < m(x;u'), sothatt € A(y \ s,u). Therefore in h;
remain the summands for which ¢t € A(y,u) andt € A(y \ s, u). But then m(y) =
s,a(y,s) = j, hence we have to show that

xh b (=1 b (=D*"OLof (v \ {8, m(y)}; x)?']
teA(y\m(y),u),t¢A(y,u)

=x2 st + s+ (1) Hsy).

We now show that s; + (—1)/*!s; = 0. Lett € A(y,u) and s € y \ t. First assume
that s € A(y, u). Then we may assume ¢ < s. If m(x,u’) > s, thenl = m(x,u’) =
m(xsu'), which implies that the summand x;s (v((x;x,1') /)P ; ¥ \ {¢t, s}; 1) occurs
in s; with coefficients +1 and —1. If m(x;u") = s, then since m(y \ s) < s, we have
m(y) = s, sothat we obtain the contradictions = m(y\t) < m(x;u’) < m(x;u’) = s.

Now let s ¢ A(y,u). Assuming ¢ < s, one obtains a contradiction; therefore
s < t. If m(x,u’) > t, then we obtain again a contradiction; hence m(x,u’) = ¢ and
m(y) =t =m(y \ s). Since a(y, m(y)) = j, we get s; + (—=1)/*lsy = 0.

Consider s;, and fix t € A(y,u) and s € A(y \ t, x,u’). First assume that ¢ < s.
Then the case m(x;u’) = s is not possible, so that | = m(x,u’) = m(x;u’) > s.
Therefore t € A(y \ s, xsu’) and s € A(y,u). Hence the summand xl’" [vf(y \
{t,s}; (xexsu’)/x;)P'] occurs in s, with coefficients +1 and —1.

Finally, let ¢ > s. If m(x,u’) > ¢, then we show as above that the summands
cancel. Let m(x;u’) = t. Then m(y) = ¢ and since s € A(y \ ¢, x,u’), one obtains
s € A(y \ t,u). Moreover m(y \ s) = m(y) =t = m(x,u’) > m(x,;u’); hence
s & A(y, u), and this completes the proof of the theorem.

3. Bounds for the regularity

In this section we study the regularity of a Borel principal ideal (x*), where
x* = TTi=; x¢*. Recall that for a graded ideal I the regularity is defined as follows:
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for each i > 0 let g; be the largest integer for which H;(x; R/I), # 0. Then the
regularity reg(I) of I is max;{a; — i + 1}.
According to [12] one has reg(x*) = u; + reg(;'{,—); therefore we can assume
1

that x; does not divide x*.
Denote by |x] the greatest integer function. For 1 < k < n and j > 0 define

k i
dyw =) bJ .

i=1
For every k such that p; # 0, let s, = [log, ux]. Set
Dy = dis, (W) p™ + (k = 1)(p* = 1).
CONJECTURE 3.1 (Pardue). If x| does not divide x", then

reg(x") = k,nﬁo{Dk}.

We show that the conjectured formula is a lower bound for the regularity.

THEOREM 3.2. Let u = [[;_, x;* and let py = 37 ui;p’ where 0 < py; <
p — 1. If maxy. u,20{Dx} = Dy, then the elements

J St
l_[ uj) f(o’ us,)p

jzsi+1

are cycles in K;(x; R/{u)) whose homology classes are non trivial in H;(x; R/{u)).
Here, for j > si,u; € G(]_[kzz(xl, co X)), max(ug) = lando ={1,...,1—-1}.

From the theorem and 3.5 below, we obtain the following:

COROLLARY 3.3.  With the notation of 3.2 the regularity of (u) is bounded below
by

max {Dy}.
k: i #0
Before proving the theorem we introduce some more notation and prove a few

technical lemmata: Let m = maxy. ., zo{s}, n; = max{k: u;; #0},0 < j < m and
set

Ilj m
Wk J=1
me=Genx), L=[]md, =47
k=2 Jj=1

Letl; = max{k: s, = j}, and setr; = Dy,. Then

m lj )
=y ( uki> P+ =D =1,

i=j \k=2
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and therefore r; > D for each k such that s, = j and k < [;. Hence
max{D;} = max{r,}.
Finally for j > 1 let

m

Ui
rj-1 = Z (Z Mki) P - DT -,
k=2

i=j
LEMMA 3.4. The following rules hold:

() Ifs <tandl; <, thenr; <r,.

(i) Ifmax{rj} =rs, thenn; <Il;—1fors+1=<j <mandn; =1;.
(iii) Let max{r;} = r; and max({r;} = rs_1. If r; # rs, thent < s andl, > I;.
(iv) If max{r;} =ry, thenr; > degu.

Proof. (i) From the definition of the integers r; it follows that

t—1 I m A

re=re=U=DE =D =U=DE =D =D > wp’ +Y, Y wp’

j=s k=2 Jj=t k=l;+1

Since I; < I;, and since each u;; < p — 1, one obtains

t—1
r—r> U= —p) == Dp-1DY. p/=0.

j=s

(ii) Assume uy; 7# O for some k > I, and s < j < m. Then sy > s but since
k > I, sk > s and I;, > [,. Applying (i), we obtain the contradiction r;, > r;.
Therefore n; < I;fors < j <m. Asu;; =0for j > s + 1 and u,;; # 0, one has
nj <lg—1forj>s+1andn, =I.

(iii) Since for j > 1 one has r; = pi;_1 + (I — 1)(p — 1), we obtain

re = pria+U—-D(p-1)
< prsa+UG-D(p-1
=r—U(-DE-D+UL-Dp-D=r+U-L)(p-1.

By assumption r, > r;, therefore I, > I;. From (ii) applied to the ideal I and to the
7; it follows that p;; = 0 for k > [; and j > s. Since u;,; # 0, one has ¢t < s.
(iv) There exists a j such that [; = n. Then r; — degu = (n — D(p/ —1) —

S e Z{;& Ui p' > 0, because each uy; < p — 1. Asr, > rj, we obtain the desired
inequality. O
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COROLLARY 3.5. Let max{r;} = rs. Then for the element

m
j S
z=[]u] flo,u)”

j>s

withuj € G(I;) for j = s, max(us) =l and o = {1, ...,l; — 1} we have degz —
U —1) =rs.

This follows from 3.4(ii).

LEMMA 3.6. LetJ = ]_]Lz m* withO < v, < p and let L be an ideal generated
by monomials of degree d. Lett = {1,...,l} and q > 1. Ifxfzi_]_l € L for each

ictandif(p? —1)(I—1) > ZZ=2 Ve + pd, then xfzi_l € JLP for eachi € 7.
Proof.  Since xr\ P e LP), one has x?. \, = P [[jer; X/ with v € G(L) and
gj = 0. Moreover p 3.\, g+ —D(p—1) > SF_, v and it remains to show that
e x;’q"“’_l € J. If h <, then one sees easily that x”;' € J. Assume h > .
Then xf\;l = g1g, where g, € G([Ti_, m*) and p Y jer\i 4 tdeggr > Sk —ia1 Ve

_ Vk
Therefore [ [, X Jp Ugy € mZk 0 g my. O

Proof of Theorem 3.2. 'We will prove the theorem by induction on m. If m = 0,
then max{D;} = D, and since (u) is a stable ideal, by [2] we have that[ f ({1, ...,n—
1}; up)] is a basis element of H, (x; R/(u)).

Letm > 0. Let max{r;} = r, and max{7;} = F,_;. Assume first r, = r;. Then by
the induction hypothesis the element

7= l_[ uj‘.’j_'f(a, u)?P"

Jj=s+1

is a cycle in K;, (x; R/I). From 1.5 we know that z” is a cycle in K, (x; R/I'P)).
Consider the exact sequence

- > Hy(x; R/(u) - Hy(x; R/IPY S ...

We will show that §{z”] = 0. We have

Azl = Z( 1D l—[ u (u xi)P x e,\{,]

iet Jj=s+1

. . . p—1 s—1 ypi=
where T = {1, ...,[}. By the induction hypothesis X € ]_[] 1 ' for each

i €t. By34(@v), ry —degu = (I, — )(p* — 1) — >, Zj=0 wkjp’ = 0. Now
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Lemma 3.6 1mplles that x,\, 'e | ; I; P for each i € . Moreover, since the ideal
I, is stable, ux; € I, foreachi e 7. Hence 8[zP] = 0, and so z” may be viewed as
acycle in K; (x; R/(u)).

Now let r, # r;. Then by 3.4(iii), ¢t < s and I; > [, and by 3.4(ii)) we have
n; <l;—1fort+1 < j < mandn; = l;. Therefore for the ideal L = ﬂ il IJ[”] i
one has G(L) C K[xi, ..., x;,-1], so that H;, (x; R/L) = 0, and we obtam the exact
sequence

0 — H,(x; L'"Y/I,L'")y — H, (x; R/L,L""") - H; (x; R/L'"") =0

Consider the element
2= [T« fo.u) € Ky LP/1,L17Y)

witho =(1,...,l; — 1}, u; € G(;) fort < j < m and max(u,) = I;. We have

m
. J—t
9z =Y (=*D T u/ wixixeviens

i€t Jj=t+1

where © = (1,...,[;}. Since I, is stable, u;x; € I,; therefore z is a cycle in
K, (x; R/I,LP"). We will show that z”' may be viewed as a cycle in K;, (x; R/(u)).
If t = 0, this is already proved, so assume ¢ > 0.

By 1.5, z” is a cycle in K, (x; R/I/P'LIP"Y). For j =t —1,...,0, consider the
exact sequences

m . m i
.= H, (x; rR/L [T 1 ’1) - H,, (x; R/ ] 17 ’1> >

i=j+1

Ifn; <l for0<j < t—l,then,by3.6,xf\:1 € I;fori e randforj=¢t-1,...,0.
Therefore, as above, we obtain recursively that 8[zp'_j] =0forj=¢t-1,...,0,and
we conclude that z7' is a cycle in K, (x; R/(u)).

Now assume n; < I, forq < j <t andn, > I; forsome q,0 < g < t. Then
sn, =qandng =1,;. Setd; = S v, mxj for0 < j < m. Thensincel, > I, > n; for
g <j<mwehaver, =37 dip/+(,—1)(p? =) andr, =3 ;_ d;p/ +(z,
D(p' = 1). Thereforer, —ry = (4t = D(p' =1 =g — D(p? = 1) = 1;7, 2P
and since by assumption r, is the maximum we obtain

t—1
(1) > dip’
j=q

IA

G=DP' -D -1 - D -1

A

& —D(p' - p?
pid. — D7 -1.
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Hence

t—1
> dipi™ < U = DT =)

j=q

From this inequality and fromd; < (I, — 1)(p — 1) forg < j <t —1,by 3.6 it

follows that xf{?q

-1Te ]'[’ ! I[" dl for i € t. This implies that z?™* is a cycle in

K, (x; R/ ]_[;';q Ij[pl ‘1. If ¢ = 0, the theorem is proved , so let ¢ > 0. Assume
againthatn; </, forq’ < j < q and ny > I, forsome 0 < ¢’ < q. Ifng > 1y, then

ry is defined and, as above, 2?7 isa cycle in K;, (x; R/ ﬂ"’ , l (p’™ ]). It remains to

consider the case ny < [,. Since x,\i Le T2 12 fori € 7 and xf\_,l € I; for

j=q °J

’ !
' . . Pl =p _ _(pa-1ptd _ pi~d—p P~
q' < j < g, we again have X = X\; X\ € ﬂ j=q'+1 I for

T\i T\i

i € t. Moreover, using inequality (1), we get

dyp? + Z dp’+Zd,p

Jj=q'+1
9=l
<pl(p=-DU-D+U-DP-1 Z pPr+U=-D@ -)=>0 =D -1
j=q'+1
= (= D@ = p™ +p! =D+ U= DG =D+ U= DT - pTH
< U= D' = p";
therefore
=1 o ,
Y dip ™7 < U - DT - 1),
i=q'
Now applying 3.6 we have xf{;q/_l € ﬂ’ ! A (P71 Therefore 27" is a cycle in

K, (x; R/ ]_[;-';q, I j[” " ]). Proceeding in this way we get the desired result. O

[\
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