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p-BOREL PRINCIPAL IDEALS

ANNETTA ARAMOVA AND JIRGEN HERZOG

Introduction

This paper is an attempt to better understand the homological structure of p-Borel
ideals.

Let K be an infinite field, and I a homogeneous ideal in the polynomial ring
R K[x xn]. By a theorem of Galligo [9] (see also [5]) the generic initial
ideal of I is fixed under the action of the upper triangular matrices in GL(n). This is
the reason why one calls a monomial ideal Borel-fixed if it is a generic initial ideal.

There is a combinatorial description of Borel-fixed ideals. Provided the character-
istic of the field K is zero, a monomial ideal I is Borel-fixed if and only if it is strongly
stable, that is, whenever u I is a monomial, and xi divides u, then (xj/xi)u I for
all j < i.

Strongly stable ideals have been studied extensively. Actually these ideals share
most of their nice properties with the larger class of stable ideals. Recall that a
monomial ideal I is said to be stable if for all monomials u I and all j < m(u) one
has that (xj/Xmu))U I. Here m(u) is the maximal integer for which xi divides u.

Stable ideals were introduced by Eliahou and Kervaire [8]. In their paper they
describe explicitly the minimal free resolution of these ideals. In [2] we, and inde-
pendently Peeva 13], compute the Koszul homology of stable ideals. This result is
used in [2] to give an alternative description of the Eliahou-Kervaire resolution, and
in 13] it is shown that this resolution admits a multiplicative structure. The Eliahou-
Kervaire resolution also plays a crucial role in a theorem by Bigatti [3] and Hulett
10] which asserts that among all ideals with a givenHilbert function the lexsegment

ideals have maximal Betti-numbers.
It is worth mentioning that a similar theory has been developed 1 for squarefree

ideals. In particular the resolution of the so-called squarefree stable ideals is known;
see [1] and [6].

If the field K is of characteristic p > 0, Borel-fixed ideals can also be nicely
described in combinatorial terms as shown by Pardue in his thesis [12]: write x u

divides u but 1+1 does not, and for non-negative integers k andto express that x x
with p-adic expansion k Ei ki pi and Ei li pi, set k _<p if ki < li for all
i. Then a monomial ideal I is Borel-fixed if and only if it satisfies the following
condition: if u is a monomial in I and x u, then (xi/xj)ku I for all < j, and
all k <p 1.
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104 ANNETTA ARAMOVA AND JORGEN HERZOG

Pardue calls a monomial ideal satisfying this combinatorial condition p-Borel re-
gardless ofthe characteristic of K. It is pretty obvious that p-Borel ideals have a much
richer structure than the corresponding stable ideals, and of course are considerably
more difficult to treat. At present not too much is known about their structure. For
example one does not know the regularity of these ideals, let alone their resolution.

Among the p-Borel ideals the principal ones are the most simple. Let u be a
monomial; then (u) denotes the smallest p-Borel ideal which contains u. The ideal
(u) is called p-Borel principal with Borel generator u. In his thesis Pardue conjectures
a formula for the regularity of a p-Borel principal ideal, and proves his conjecture in
the case that at most two variables (in successive order) divide u. As one of our main
results in this paper we show in Section 3 that Pardue’s formula is indeed a lower
bound for the regularity of a p-Borel principal ideal. We prove this by exhibiting
certain Koszul cycles which we discover in Section of this paper where we succeed
in computing the Koszul homology of a p-Borel principal Cohen-Macaulay ideal. It
is noted by Pardue 12] that a p-Borel principal ideal (u) is Cohen-Macaulay if and
only if the Borel generator is of the form u x. In Section 2 we give the explicit
minimal free resolution of p-Borel principal Cohen-Macaulay ideals.

Pardue’s and our results can only be the begin in the study of p-Borel ideals. From
our point of view the most challenging tasks to be accomplished in this theory are
the following: (i) prove Pardue’s conjecture concerning the regularity of p-Borel
principal ideals, (ii) compute the Koszul homology of these ideals, or even better
their resolution, and (iii) give bounds for the regularity of general p-Borel ideals.

1. The Koszul homology of Cohen-Macaulay p-Borel principal ideals

In this section we describe a basis for the cycles of the simplest possible nonstan-
dard Borel principal ideals. Before describing the details we recall some basic facts
from Pardue’s thesis 12].

As already mentioned in the introduction one has the following combinatorial
description of Borel-fixed ideals in positive characterics.

PROPOSITION 1.1 (Pardue). Let K beafieldofcharacteristic p, I C K[x xn]
a monomial ideal. Then I is Borel-fixed if and only if the following holds: if u is a
monomial in I and x u, then (Xi/xj)klg . I for all < j, and all k <p 1.

Any monomial ideal satisfying the conditions of 1.1 is called p-Borel, no matter
what the characteristic of K is.

Let u K[x Xn] be a monomial. The smallest p-Borel ideal containing u
will be called a p-Borel principal ideal, and denoted (u).

Let I be a monomial ideal. We denote by G(I) the uniquely determined minimal
set of monomial generators of I. The above combinatorial condition which describes
Borel-fixed ideals needs to be checked only for the generators of I. Indeed one has:
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LEMMA 1.2. Let I C K[Xl Xn] be a monomial ideal. Then the following
conditions are equivalent:

(a) I is Borel-fixed;
(b) if u G(1) and xJ u, then (xi/xj)ku I for all < j and all k <p l.

Proof. We only need to prove the implication (b) = (a): our hypothesis implies
that (u) C I for all u G(1), and we want to show that (w) C I for all monomials
wl.

Thus we pick a monomial w I. Then there exist u G(I) and a monomial v
such that w vu. It suffices to show that (w) C (u) since by assumption (u) C I.

Suppose that for any monomial u and any xj w.e can show that (xju) C (u). Then
by induction on the degree of v one concludes that (w) C (u).

So let us choose a monomial z (xju) Then z (xt/Xs)kXjU for some k, s and
with < s and k <p where x xdu.

If s 5 j, then x. u. Hence (xt/xs)u (u), and this implies that z 6 (u).
If s j, then x-1 u. Thus if k <p 1, then (xt/xj)ku (u), and so z 6 (u).

Otherwise k :p 1, but still k <p I. Let /b=a lipi, la 0, be the p-adic
expansion of I. Then has the p-adic expansion

b

1-- (p-- 1)+(p-- 1)pq-...q-(p-- 1)pa-l-t-(la- 1)pa-q- lipi.
i=a+l

Therefore, since k <p l, we have ki 0 for < a, and ki <_ li for > a. Since
k ;p 1, we must have that ki 0 for < a, ka la, and ki < li for > a. It
follows that k has the p-adic expansion

b

k (p 1) + (p 1)p +... + (p 1)pa-1 q_ (la 1)pa +

_
kipi.

i=a+l

This implies that k <p 1, and hence we have

Z (Xt/Xj)Xj(Xt/xj)k-II, Xt(Xt/xj)k-lu,

so that z (u). [3

xi
u’ and let lzi j [.ijPJ forPROPOSITION 1.3 (Pardue). Let u Hin=l

n be the p-adic expansion ofthe exponents of u. Then

(U) II H((X1 Xi)#iJ) [pj].
i=1 j

In particular, (u) Hin_.l (x ).
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The goal of this section is to describe the Koszul homology of a p-Borel principal
ideal (u) when u x’ which is the case exactly when (u) is Cohen-Macaulay; see
[121.

Without loss of generality we may assume that n, and we set fit fit,. Then

m

(Xn H(mai)[p,]

i=0

where m (Xl Xn) and the ai are the coefficients in the p-adic expansion
in

fit -i=0 ai pi of fit.
If A and B are subsets of the polynomial ring we set AB {ab: a A, b B},

and Ak {ak" a A} for any integer k > 0. With this notation we have the following
lemma whose simple proof we leave to the reader.

LEMMA 1.4. G in ai in(Hi=0(m)[Pi]) Hi=0 a(mai)p’

Next we compare the Koszul cycles of a monomial ideal I and its Frobenius-power
I tpl" for r C {1 n}, cr {jl ji}, jl < < ji we set eo ej, /.../x ej,
where el e, is a basis of K1 (x; R/l). Let c Ylrl=i ccrer - Ki(x; R/l) be an
arbitrary element. Then we set

cp , cPxP-’e where xp-1 x-’...x-1.

Note that for any r e R one has (rc)P rPcp. Furthermore it is easy to see that if
c is a cycle in gi(x; R/l), then cp is a cycle in Ki(x; R/ItPl). More precisely we
have:

LEMMA 1.5. Let Z Zr be cycles in Ki (x; R/I) whose homology classesform
a basis of Hi (x; R/I). Then the homology classes of the cycles z zPr form a
basis of Hi (x; R/i[pl).

Proof. We may assume that K Z/pZ. Then the Frobenius homomorphism
acts trivially on K, and the map

Hi(x; R/I) Hi(x; R/I[P]), [z] [zp]

is K-linear. Since the Frobenius is a flat endomorphism of R (see [11]), R/I and
R/Ipl have the same Betti-numbers, and so

dim/c Hi(x; R/I) i(R/I) ji(R/I[p]) --dim/ Hi(x; lip]).

Hence it suffices to show that 99 is surjective. So let w Ki(x; R/I(p]) be a cycle
whose homology class is not zero, and which is homogeneous in the Zn-grading. The
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Zn-degree of w corresponds to a Zn-shift in the resolution of R/Ipl. Any Zn-shift
of R/I[p] is of the form pa, where a is a Zn-shift of R/I. We write

w ,k,rue,r

where for all a in the sum, u is a monomial and 6 K. Then for all a with # 0
we have

degz, u + a pa

for some a (a an), ai Z, ai O. Here a (c Cn) with ci for
a, andci 0fori

It follows from the equation that ai 0 for 6 a. Hence b a a 6 Nn, and
we have

degz, u pb + (p- 1)a.
p p-1Thus u vx where v is a monomial of Z-degree b. This implies that

w zp where z 11=i Lve. Hence it remains to show that z is a cycle in
Ki(x; R/I).

By assumption we have

in Ki_ (x; R/I[Pl), where for
O’s < t/l.
We want to show that

Oz ( (-1)(’’r)x’r)
( (--1)(’’rlX(Xb+a/xr)) er=O

in Ki-1 (; R/I).
This will follow once we can show the following: if xpC/x l [pl for some

c N, then x/x I.
So suppose that xpc/xr l [pl. Then there exist a monomial u I, and a monomial

v such that xp uPvx. Therefore (xC/u)p vx, and so ulxc. Hence xc wu
for some monomial w. It follows that xpc wPup uPvxr. Therefore wp vx,
which implies thatx divides w. So w w’x for some monomial w’, and this finally
implies that xC/x
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Let u be a monomial, and tr C {1 n} a subset. We set m(u) max{/" xilu},
m(cr) max{/" or}, u’ U/Xm(U), and f(cr; u) u’e A em(u).
Now we are ready to formulate and to prove the main result of this section.

THEOREM 1.6. Let L (x,) be a p-Borel principal ideal, and let -j aj pJ be
the p-adic expansion ofa. Thenfor all i, 0 < <_ m, the elements

pJH uJ f(tr; Hi)p

j>i

withuj G(maJ)forj > i,andltrl--k-l,m(cr) < m(ui)arecyclesinKk(x; R/L)
whose homology classesfor k > 2form a basis of Hk (x; R/L).

pJ piWe call I-lj>i uj f (cr Hi) a cycle of type Note that the homology classes of
the cycles of type zero with r 0 form a basis of H1 (x; R/L).

The following simple example demonstrates the theorem: let R K[Xl, x2],
p 2, a 5. Then 5 1 + 0.2 + 1.4, so that (x25) (xl, X2)(X14, X)
(xS1, x41x2, xlx4,xS2). By the theorem, HE(X; g/(xS2)) is generated by [x31xEee2],3
[xele2] and [xee2]. Here

xx3ele2 f({1}; X2)4 is of type 2,

while

xele2 xaf({1}; x2) and xele2 x24f({1}; x2) are of type 0.

Proofof Theorem 1.6. Let min{i" ai 0}, and set

b a/pl al 4- al+lP 4- 4- am pm-l.

Then L (Xbn) ptl. Applying Lemma 1.5 we may assume that 0, and so

a ao 4- ap 4- 4- ampm, with a0 :/: 0.

It follows that (x,) J I[p] where J rrta and I (xb) with b a + a2p +... +
am pro-1.

Associated with the exact sequence

0 I [p] / J I [p] R/J I [p] -- R/I [p] 0

we have the long exact sequence of Koszul homology

Hi (x; R/J I[P]) -- Hi (x; R/liP]) - Hi_ (I[P]/J lip1)

We claim that i 0 for > 2. Indeed, let w Z (x; R//[P]); then, by Lemma 1.5,
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tO Zp -+- I[P]Ki(x; R) where z lcrl=i ue Ki(x; R), and where

Irl--i-I tr r, let I--i

belongs to I Ki-i (x; R).
p.p--1Since zp Ylcrl=i ur.cr ecr, it follows that

Irl=i-1 Dr, ltrl=i

belongs to J I [p] Ki-1 (x; R). Hence, since t tO OZp "3
t- J I[p] Ki-I (x; R), the homol-

ogy class of i tO is zero.
As a consequence, for k > 2 we have the exact sequences

0 nk (x; I [p]/J I[P]) nk (x; R/Jlip]) nk (x; R/I[P]) 0.

It follows that a basis of H(x; R/JI[P]) is formed by a basis of Hk (x; R/I[P]) and a
basis of H(x; I[p] / J I[P]).

Arguing by induction on m we may assume that we know a basis of H(x; R/I).
The induction begin is guaranteed since for m 0, I is stable, and a basis is known
from [2] or [13]. Thus, by Lemma 1.5, we know a basis of H(x; R/IEP]), and hence

pjwe conclude that the homology classes of the elements 1-Ij>i uj f(tr; 1,1i) if, >_ l,
with uj G(maj) for j >_ i, and m(tr) < m(ui) form a basis of Hk(X; R/ItP]). Thus
it remains to show that the elements of a basis of Hk(x; ItPl/JI[p]) are mapped to

pJthe homology classes of the elements 1-Ij>0 uj f(r; u0) with uj G(maj) for j >_ 0,
and rn(cr) < m(uo).

By Lemma 1.4, these are exactly the elements [vf(cr; u)], v G(I), u G(ma).
We choose a minimal presentation

R R --+ I--+ O.

Then

R R ---+ I[P]-- 0

is a minimal presentation of I Epl. Therefore, since all ot 6 rrta, it follows that

I[Pl /J I[P] D (R/J)b,,
vG(1)

is a free R/J-module with basis, say, by, v G(I). Hence Hk(X; I[P]/JI [p]) is
isomorphic to )vzGl) Hg (x; R/J)bo.
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Since J is a stable ideal, we know from [2] (or [13]) that [f(a; u)] with u G(J),
k 1, m(a) < m(u) is a basis of Hk(X; R/J). Finally we see that the

homomorphism given by the composition

Hk(X; R/J)bv -- Hk(X; I[P]/JI[p]) Hk(R/JI[p])
vG(1)

maps the element [f(a; u)]bv to [vf(a; u)], as desired.

2. The resolution of a p-Borel principal Cohen-Macaulay ideal

In this section we compute the resolution of the p-Borel ideals studied in the
previous section. Knowing the Koszul homology we use the technique developed in
[2] to compute the differentials in the resolution.

Let L (x,) be a p-Borel principal ideal in the polynomial ring R K[x xn ].
We set Gk R (R)K Hk(x; R/L) for all k > 0. Then L has a free resolution of the
form

G2 - G1 -- Go --+ 0.

It is clear that, according to 1.6, the elements (R) [vf(a; u)pi], which for simplicity
pJwe simply denote by [vf(a; u)pi], form a basis of G. Here v I-’lj>i uj u ui,

uj G(maj) for j > i, lal k 1, and m(a) < m(u). As in the previous section
we set u’ U/Xm, m m(u).

THEOREM 2.1.
formulas:

The maps dk in the resolution ofR/ (x) are given by thefollowing

d ([vf (0; u) ]) vu,

d2([vf (t; u)P/l) Xm U(XtU’) pi XnqPqf(; Xm
q--1

X UU f X)
q=l

and

dk([Vf (a; u)pi]) (--1)a(a’t)+k-l(XtPi[vf (a \ t; U) p’]
tea

pi pi piXm [vf(a \ t; xtu’) XmS(V(xtu’) O" \ t; m))

--Xm(a)S(uuPi; o" \ m(a); m(a))
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pJwherefor p C dr, w Hj>i 11o) lloj E G(ma;), and r, < r < n, we set

s(w; 19; r)-- xl’ H xttlt N N xiqt
/.t=0 tEp q=/z+l tEpUr

where the second sum is taken over all jqt >-- 0 such that tpur jqt aq for
tz < q < 1, (19 lx p i- p i--2q=tz jqt Pq PU for p, u q=Iz jqr Pq 1,
and we set f (p; v) 0 ifm(p) >_ m(v).

To prove the theorem we need the following lemma.

pqLEMMA 2.2. Let J Hq>_i 13q where IJq G(ma0), z C dr, Irl j, j > 1, and
let r > m(r). Assume that theformulafor dj+l in 2.1 is true. Then

dj+l(S(f); r, r)) (-1)a(r’t)+JxtPi s(; z \ t; r)
tr

"q"XPri-lxm(z)S (; Z \ m(z); m(r)).

i-1 jqtPq and m’ m(r). Since s(" r" r) -Proof. Set//3#_i_ Hq---lz+l Htpur "’t
0 only if jtzr >_ 1, we obtain, for 0 < #z < 1,

txr> tEr trUr

where

Iz (--1)t(r’t)-f-j Xr XSt X W+lf(v \ t" H j"s
,ts

tr ur> srUr

--X wu+lf(z \ t; H
sE\t

dCr ,is r \ t; r
jur>_l srXt

Clz
+u’m’"-t-I

i.m, x.""s(w; z \m’;m’).
jr>l sEr\m’
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Considering the summands in for a fixed r, we see that they cancel two by
two, and only the summands for j.t 0 or jr 0 are left. But if - m’, then

Xf(r \ t; I-Isr )P" 0; therefore z y + hz where

pi -i-Pi-_.iq-=.jqm’Pq --/_.aq=la+ljqrPq-|
htZ

_
Xm, Xr H X,s"

jum,>l sr\m’

i-1 i-1Set y v=o Yv and h =oh. Changing the summation indices, one obtains

btu .t r Xs
j,r 1, jur >0 .’ \t

Fix r, 0 < /x < 1, 0 < v < /z, and consider an arbitrary summand of btu.
Computing the powers of Xs, s r U r, one sees that each summand of btu appears
in y taking jqt 0 for u + < q </z 1 and j.t > 1. Therefore

On the other hand, from the definition of s(w.; r \ m’; m’) it follows that each
summand of c. appears in ho taking jqr 0 for v + < q < /x and jtzr >-- 1.

i-1 pi --1Hence h -=oc Xr Xm,S(f); r \ m m’), and this completes the proof of the
lemma.
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Proofof Theorem 2.1. According to [2] we have to find a sequence of elements
gj E gk_j(x; Gj), 0 < j < k- 1, satisfying do(go) v(f(a; U)) pi, Ok-j(gj)
dj+l (gj+l) for 0 < j < k 2. Here 0 denotes the differential of the Koszul complex
K (x; Gj), and for short we write dj for the map K (x; Gj) K (x; Gj_). With this

notation the desired differential is given by the formula dk([vf(a; u)pi]) 01 (gk-1).
Let

go v(u’)P’xPm’-lxPo,’-ler A em,

p -1 aogl Xm (--1)a(r’t)xa\ l)(Xtblt) pi xnqPqf(’ Xm ) er\t A em
tEtr q--1

.di_(__1)k_l pi_Zq=o aqpq [ i-1i-I

_lxPi_ pi
Xm(cr) a\m(r) l)U H xaqpq ao

m(r) f (11; eoXm(cr
q=l

Note here that xtu’ G(mai) for each 6 or. It is easy to verify that Ok(go) dl (g);
therefore we obtain the formula for d2. For j >_ 2 let

pCa, lPl=j-1 r_cr, lrl=j

where ekj k + (j+l)(j+e)2 /(/9) ZtEp Ol(O’, t) and

p-1pi_l pi pi.bp x\p [vf(p, u) + x\t\m)s(vu p; m(cr));

)p-1 )ot(r,t) pi lgt)pi (l)(Xttlt)picr xr\r (--1 (Xm -l[vf (z \ t; X -t- S Z \ t, m))

Proceeding by induction on k, we can assume that the formulas are true for j / < k
and we will verify that 0k_j (gj) dj+l(gj+l). We have

Ok-J(gJ) (--1)ekJ (rccr, lrl=jy (-1)#(r) (Y(-1)a(r’t)xtbr\t-XmCr)
+(--1)k-j (--1)()(s(--1)’(’lxsc\s)ecr\Aem)

y___tr, IYl=j/l

Fix r C or, Irl j and set b .,tEr(--1)a(r’t)xtbr\t XmCr. If m(tr) r, then

S(Ul,lpi
i_

r\t; m(cr)) - 0onlyift m(tr); henceb (-1)JxP\rldj+l([vf(r; u)P’]).
So, assume r m (or) ’ r. Then

p -1 pi t)b (1) p i-l
x\ dj+([vf(r; u) ]) + (-1)xP\r Xm,S(VU r \m’;m

pi--1 )Or pi+ Xcr\r\r (-1 r’t)xtP s(vu r \ t; r)
tel"



114 ANNETTA ARAMOVA AND JORGEN HERZOG

where m’ m(r). By 2.2 we have

dj+(s(vuP" r r)) Z(-1)u(r’t)+JxtPis(l)upi" T\t; r)+xrpi-lxm,S(VUpi r\m’;m’).

Hence we obtain b (-1)Jdj+l(b,:).
Now fix y

_
r, 19/I j + and consider c sE(-1)(r"S)xsC\s. We will

show that c (-1)J+ldj+l(cr,). For p

_
cr and w E G(mai), set

A(p, w) {t E p" m(p \ t) < m(xtw’)}.

piThen c x\ (hi + h2) where

pihl y (-l)t(y’s)+t(y\s’t)Xs s(u(xt.’)pi
/ \ {t, s}; m);

sEy tE,\s

pi

s, tA(y\s,u)

(--1)a(Y’s)+a(\s’t)XsPi [vf (?’ \ {t, s}; x,u’)P’].

pi --1On the other hand, c x\ (Cl + c2) where

pi--1
C1 Xm

, (--1)a(’O[vf (g \ t;
tEA(g,u)

C2 Z(--1)t(V’t)s(l)(XtUt)pi y \ t; m).

Then we have (-1)J+ldj+l(Cl) XPmi-1 (y + Sl -+" $2 -1- S3) where

Z Z (--1)u(r"t)+a(r’\t’s)+lxsPi[vf(Y \ {t’s};xtu’)Pi];
tEA(y,u) sEy\t

Y (--1)("t)+(r’\t’S)Xm(xtu,)S(V(Xs(XtU’)’) pi" y \ {t, S}; m(xtu’));
tEA(y,u) sEy\t

(- )ot(y,t)-l-ot(y\t,s)..pi,m(x,u,)[vf (y \ {t, s}; Xs(Xtblt)t)Pi];
tA(y,u) sA(y\t,xtu’)

$3 (_l)J
tEA(y,u)

(--1)t(Y’t)Xml,y\t)S(l)(Xtut)pi; \ \ m(y \ t); m(y \ t)).
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By Lemma 2.2 applied to each s(l)(xtbl’)Pi; / \ t; m), we obtain (-1)J+ldj+l(2)
whereh -+- s
h -’_( 1)t(y’t"k-ot(y\t’s’+lXsPiS(U(Xtblt)Pi" ?’ \ {t, S}; m),
t sey\t

p;-1Z(_l)a blt)pi.S3 (--1)J+lXm (Y’t)Xm(,\t)S(U(X ?’ \ \ m(’ \ t), m(y \ t)).

Now we have xPm’-1s3 + s (- 1)j+lxmp’-ls4 where

$4 1)a("t)Xm(y\t)s (l)(xtut)pi y \ \ m(y \ t)," m(, \ t)).
tA(y.u)

Sincet(y,s)+a(y\s,t) =_a(,,t)+(y\t,s)+ (mod2),weobtainhl=h.
Moreover, each summand of xPmg-ly appears in h2, because if 6 A(y, u), then
m(’ \ {t, s}) _< m(, \ t) < m(xtu’), so that 6 A(y \ s, u). Therefore in h2
remain the summands for which ’ A(y, u) and 6 A(?, \ s, u). But then m(,)
s, or(y, s) j, hence we have to show that

XPmi_lxm(? (--1)j Z (--1)a(’t)[vf(Y \ {t, m(y)}’, Xtblt) pi
ca(9\m(y),u),tqA(y,u)

pg- 1)+Xm (S +S2 + (-- S4).

We now show that s + (-1)J+ls4 0. Let A(,, u) and s , \ t. First assume
that s A(y, u). Then we may assume < s. If m(xsu’) > s, then m(xtu’)
m(XsU’), which implies that the summand XlS(l)((XtXsU’)/xl)Pg; y \ {t, s}; l) occurs
in s with coefficients +1 and -1. Ifm(xsU’) s, then since m(y \ s) < s, we have
m(y) s, so thatweobtainthecontradictions m(?,\t) < m(xtu’) <_ m(XsU’) s.
Now let s ’ A(?,, u). Assuming < s, one obtains a contradiction; therefore

s < t. If m(xtu’) > t, then we obtain again a contradiction; hence m(xtu’) and
m(y) m(, \ s). Since ct(?,, m(?’)) j, we get Sl + (-1)J+ls4 0.

Consider s2, and fix 6 A(,, u) and s A(?, \ t, xtu’). First assume that < s.
Then the case m(x.u’) s is not possible, so that m(xtu’) m(xsu’) > s.

Therefore a(y \ s, XsU’) and s 6 a(y, u). Hence the summand xfi[vf(y \
{t, s}; (XtXsU’)/Xl) pi occurs in s2 with coefficients +1 and -1.

Finally, let > s. If m(xtu’) > t, then we show as above that the summands
cancel. Let m(xtu’) t. Then m(y) and since s A(y \ t, xtu’), one obtains
s 6 a(y \ t, u). Moreover m(y \ s) m(y) rn(xtu’) > m(x.u’); hence
s ’ A(y, u), and this completes the proof of the theorem.

3. Bounds for the regularity

In this section we study the regularity of a Borel principal ideal (xt’), where
uk Recall that for a graded ideal I the regularity is defined as follows:x I-Ik= xk
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for each > 0 let ai be the largest integer for which Hi (x; R/l)a, O. Then the
regularity reg(I) of I is max/{ai + }.

According to [12] one has reg(xu) lz + reg(.t); therefore we can assume

that x does not divide xu.
Denote by [.J the greatest integer function. For < k < n and j > 0 define

For every k such that/k 0, let Sk [1Ogp/ZkJ. Set

Ok dksk(lz)psk + (k- 1)(psk- 1).

CONJECTURE 3.1 (Pardue). IfXl does not divide x, then

max {Dk}.reg(x)
k: 0

We show that the conjectured formula is a lower bound for the regularity.

n a and let IZk Y]=o lzkJP where 0 < tXkj <THEOREM 3.2. Let U Hk=2 Xk
p 1. Ifmaxk:0 Dk DI, then the elements

pJ )pSIH uj f(tr, Us,
j>st+l

are cycles in K/(x; R/(u)) whose homology classes are non trivial in H/(x; R/(u)).
Here,forj > Sl, Uj G(I-Ik>_2(x Xk)UJ),max(us,) 1,andtr -{1 I-1}.

From the theorem and 3.5 below, we obtain the following:

COROLLARY 3.3. With the notation of3.2 the regularity of (u) is bounded below

max {Dk}.
k:

Before proving the theorem we introduce some more notation and prove a few
technical lemmata: Let m maxk: u0{Sk}, nj max{k: lZkj # 0}, 0 < j < m and
set

nj m

1-I,.,,u,2 I=HI)p2-’Irnk (x Xk), Ij "’k
k=2 j=l

Let lj max{k" sk j } and set rj Dlj. Then

rj i Uki pi + (lj 1)(p 1),
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and therefore rj > Dk for each k such that sk j and k < lj. Hence

max{Dk max{rt }.

Finally for j > let

)j-I tZki pi-I -!-(lj 1)(pj-I

i=j \k=2

LEMMA 3.4. Thefollowing rules hold:

(i) Ifs < and ls < lt, then rs < rt.
(ii) Ifmax{rj rs, then nj < ls for s + < j < rn and ns l.
(iii) Let max{rj rt and max{fj fs-1. lf rt rs, then < s and It > ls.
(iv) Ifmax{rj rs, then r > deg u.

Proof. (i) From the definition of the integers rj it follows that

t- Is m It
rt- rs (it- 1)(p --1)- (ls- 1)(p’- 1)- E E/ZkJ pj / E E /zkJPJ"

j=s k=2 j=t k=ls+l

Since l, < It, and since each/xkj < p 1, one obtains

t-1

rt rs > (l 1)(p pS) (l 1)(p 1) pJ O.
j=s

(ii) Assume lZkj 0 for some k > ls and s < j < m. Then s > s but since
k > l, Sk > s and l > l. Applying (i), we obtain the contradiction rk > rs.
Therefore nj < ls for s < j < m. As IZlsj 0 for j > s + and lZlss O, one has

nj < ls for j > s + and ns l,.
(iii) Since for j > one has rj Pfj-1 + (lj 1)(p 1), we obtain

rt Pft-i + (It- 1)(p- 1)
<_ Ps-1 +-(lt- 1)(p- 1)

rs (ls 1)(p 1) + (lt 1)(p 1) rs + (lt ls)(p 1).

By assumption rt > rs, therefore It > ls. From (ii) applied to the ideal I and to the
fj it follows that/xkj 0 for k > ls and j > s. Since [dblt O, one has < s.

(iv) There exists a j such that lj n. Then rj deg u (n 1)(pJ 1)
n j-1 piYk=2 Yi=0 IZki > 0, because each IZki _< p 1. As r, > rj, we obtain the desired

inequality.
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COROLLARY 3.5. Let max{rj rs. Thenfor the element

-I P pSz u f(r, u)

with uj G(Ij)for j > s, max(us) ls and cr {1 l, 1} we have deg z
(ls- 1) rs.

This follows from 3.4(ii).

hLEMMA 3.6. Let J I-Ik=2 rrtk with 0 < vk < p and let L be an ideal generated
pq-I--1by monomials of degree d. Let r {1 l} and q > 1. If r\i L for each

h pq-1r and if(pq 1)(1- 1) > Y’k=2 v + pd, then xr\ JL[plfor each r.

pq--p L[p], pq-p
Up X;qjProof Since r\i c one has ’r\i Hjr\i with v G(L) and

qj > O. Moreover p Ej6r\i qJ -" (l 1)(p 1) > Y=2 v and it remains to show that

Hj6r\ix;qj+p-1 p-1
6 J. If h < l, then one sees easily that x\ J. Assume h > 1.

(Hk=2 rn and p Ejr\i qJ + deg g2 >-- Ek=/+l I)k"Then xP. gig2 where gl G vk h

qj Zk=t+! vk vkTherefore Hjr\i X; g2 m/+l H=/+I ink" =
ProofofTheorem 3.2. We will prove the theorem by induction on m. If m 0,

then max D Dn, and since (u) is a stable ideal, by [2] we have that [f ({ n
1}; u0)] is a basis element of Hn(x; R/(u)).

Let m > 0. Let max{rj rt and max{?j Ys-. Assume first rt rs. Then by
the induction hypothesis the element

pj-I
Z H lj f (or, us) p’-

j>s+l

is a cycle in Kl, (x; R/I). From 1.5 we know that zp is a cycle in Kls (x; R/lip]).
Consider the exact sequence

Hl(X; R/(u)) --+ Hl(X; R/I[p]) --+

We will show that 6[zp] 0. We have

pJ p xp -1OzP Z(-1)a(r’i) H Uj (U:Xi) r\i
i6r j>s+l

er\{i}

pS--1 s-1 j-I

where r {1 1,}. By the induction hypothesis x\ l-[j= I for each

6 r. By 3.4(iv), rs- deg u (ls- 1)(ps- 1)- Y=2 Y- lzkjpJ > O. Now
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Lemma 3.6 implies that x/- I-lj=0 I for each r. Moreover, since the ideal
I, is stable, UsXi I, for each r. Hence [zp] 0, and so zp may be viewed as
a cycle in K/s (x; R/(u)).
Now let rt =/= rs. Then by 3.4(iii), < s and It > ls, and by 3.4(ii) we have

nj < lt-- fort+ < j < mandnt lt. Therefore for the ideal L Hj=t+lrn --l)p
one has G(L) C KIx Xl,- ], so that HI, (x; R/L) 0, and we obtain the exact
sequence

0 HI, (x; L[p] //t Ltp]) Hit (x; R//tL[P]) ), nl, (x; R/L[P]) 0.

Consider the element

m

Z H u"j ’f(cr, ut) Kit(x; t[P]/It L[p])
j=t+l

with o" {1 It 1}, uj G(Ij) for < j < m and max(ut) lt. We have

OZ --1)a(r’i) u UtXiXr\ier\li
ir j=t+l

where r lt}. Since It is stable, blttXi It; therefore z is a cycle in
gl,(X; R/ItLtPl). We will show that zp’ may be viewed as a cycle in Kit(x; R/(u)).
If 0, this is already proved, so assume > 0.

By 1.5, zp is a cycle in KI, (x; R/I[tP]L[p2]). For j 0, consider the
exact sequences

HI, x; R/Ij H I’[pi-’]" HI, x; R/ H I’[pi-J]" --’)"
i=j+l i=j+l

p-1If nj < It for 0 < j < 1, then, by 3.6, Xr\ lj for 6 r and for j 0.

Therefore, as above, we obtain recursively that 8[zp’-j 0 for j 0, and
we conclude that zp’ is a cycle in Kit(X; R/(u)).
Now assume nj <_ It for q < j _< and nq > It for some q, 0 < q < t. Then

nj
Sn, q and nq lq. Set dj Y2k=2/zkj for 0 < j < m. Then since lq > It >_ nj for

rn rnq < j < rn we have rq _,j=q dj pJ -t- (lq 1) (pq 1) and rt Y2j=t dj pJ -t-- (lt
1)(p 1). Therefore rt rq (lt 1)(p 1) (lq 1)(pq l) 2j-lq djpj

and since by assumption rt is the maximum we obtain

(1)
t-1

djpJ <_ (lt-- 1)(pt-- 1)--(lq--1)(pq-- 1)
j=q

< (1,-- 1)(pt--pq)
pq (It 1) (pt-q 1).
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Hence
t-1

djpJ-q < (lt 1)(pt-q 1).
j=q

From this inequality and from dj < (lt 1)(p 1) for q < j < 1, by 3.6 it
pt-q t- ip -q

follows that At\ E Hj---q j for E r. This implies that Zpt-q is a cycle in
m Igl, (X; R/[-Ij=q P-q]). If q 0, the theorem is proved, so let q > 0. Assume

again that nj <_ It for q’ < j < q and nq, > It for some 0 < q’ < q. If nq, > lq, then

rq, is defined and, as above, Z
p’-q’ is a cycle in gl, (X; R/I-Ijm=q, [)PJ-q’]). It remains to

pt-q [pJ-q p-consider the case rtq, <_ lq. Since "r\i I-Ij=q lj for r and x\ Ij for
O
t-q [PJ-q

q < j < q, we again have X\
-p

A,\i’’(pt-q-1)pq-q’xr\ipq-q’-p Hj=q’+lt-1 lj for
E r. Moreover, using inequality (1), we get

q-1 t-I

dq, pq’ + djp -k- djp
j=q’+ j=q

q-1

pq’ (p 1) (lq 1) -t- (lt 1) (p 1) pJ + (lt 1) (pt 1) (lq 1) (pq
j=q’+l

--(lq 1)(pq pq’+l .3r_ pq’_ 1) + (lt 1)(p 1) -I- (lt 1)(pq pq’+l)
< (lt 1)(p pq’);

therefore
t-1

_
djpJ-q’< (lt- 1)(p 1).

j--q’

pt-qt t- ip
-q’

Now applying 3.6 we have x\ l-j=q, Therefore zp’ q’, is a cycle in

Kl, (x; R l-[j__.q, Ipj-’l). Proceeding in this way we get the desired result, v1
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