WEIGHTED NORM INEQUALITIES FOR A FAMILY OF ONE-SIDED MINIMAL OPERATORS

D. Cruz-Uribe, SFO, C. J. Neugebauer and V. Olesen

1. Introduction

Given $\mu>0$ and a real-valued, non-negative function f on \mathbb{R}, we define the one sided μ-minimal function of $f, m_{\mu}^{+} f$, by

$$
m_{\mu}^{+} f(x)=\inf \frac{1}{|J|} \int_{J} f d y,
$$

where the infimum is taken over all intervals J that lie to the right of x with the property that $0 \leq \operatorname{dist}(x, J)<\mu|J|$. The minimal function $m_{\mu}^{-} f$ is defined similarly. Following our work in [2], [3], the purpose of this paper is to study the weighted norm inequalities that m_{μ}^{+}satisfies.

Our motivation for considering these operators came from the analogous maximal operator, a variant of which was introduced by Martín-Reyes and de la Torre [7]. Specifically, for $\mu>0$, define

$$
M_{\mu}^{+} f(x)=\sup \frac{1}{|J|} \int_{J} f d y
$$

where, as before, the supremum is taken over all intervals J to the right of x satisfying $0 \leq \operatorname{dist}(x, J)<\mu|J|$. Clearly, $M_{\mu_{1}}^{+} f(x) \leq M_{\mu_{2}}^{+} f(x)$ for $\mu_{1}<\mu_{2}$. On the other hand, if $J=(a, b)$ is an interval to the right of x such that $0 \leq \operatorname{dist}(x, J)<\mu_{2}|J|$, and if we define $J^{*}=\left(a^{*}, b\right)$ where $x \leq a^{*} \leq a$ is such that $a^{*}-x<\mu_{1}\left(b-a^{*}\right)$, then

$$
\frac{1}{|J|} \int_{J} f d y \leq \frac{\left(1+\mu_{2}\right)}{\left|J^{*}\right|} \int_{J^{*}} f d y
$$

Hence $M_{\mu_{2}}^{+} f(x) \leq\left(1+\mu_{2}\right) M_{\mu_{1}}^{+} f(x)$. Almost identical arguments show that each operator M_{μ}^{+}is equivalent to the one-sided Hardy-Littlewood maximal operator, M^{+}.

The one-sided μ-minimal operators, on the other hand, while satisfying $m_{\mu_{2}}^{+} f(x) \leq$ $m_{\mu_{1}}^{+} f(x)$ for $\mu_{1}<\mu_{2}$, are not equivalent: there exist functions f such that $m_{\mu_{2}}^{+} f(x) \ll$ $m_{\mu_{1}}^{+} f(x)$. For example, let $f(x)=2|x|^{-3} e^{-x^{-2}} \chi_{[-1,0]}+\chi_{(0, \infty)}$. Then for $x_{k}=$ $-\left(1+\mu_{2}\right) 2^{-k}$,

$$
\frac{m_{\mu_{1}}^{+} f\left(x_{k}\right)}{m_{\mu_{2}}^{+} f\left(x_{k}\right)} \rightarrow \infty \text { as } k \rightarrow \infty
$$

[^0]We will briefly examine the limit of m_{μ}^{+}as $\mu \rightarrow 0$ in Section 2 .
To explore the weak-type norm inequalities for $m_{\mu}^{+} f$, we first define the class $W_{p, \mu}^{+}$.

DEFINITION. A pair of non-negative weights (u, v) is in the class $W_{p, \mu}^{+}, p>$ $0, \mu>0$, if given any pair of adjacent intervals I and J, I to the left of J with $|I|=\mu|J|$, then

$$
\frac{1}{|I|} \int_{I} u d x \leq C\left(\frac{1}{|J|} \int_{J} v^{1 /(p+1)} d x\right)^{p+1}
$$

where C is independent of the choice of I and J.
It is easy to see that $W_{p, \mu_{2}}^{+} \subset W_{p, \mu_{1}}^{+}$for $\mu_{1}<\mu_{2}$. We will give a simple example in Section 2 to show that the reverse inclusion is not true. We will also examine the $W_{p, \mu}^{+}$classes in the single weight case $u=v$.

To study the strong-type norm inequalities for m_{μ}^{+}, we now define the class $\left(W_{p, \mu}^{+}\right)^{*}$. Throughout the paper, we use the notation $\sigma=v^{1 /(p+1)}$.

DEFINITION. A pair of non-negative weights (u, v) is in the class $\left(W_{p, \mu}^{+}\right)^{*}, p>$ $0, \mu>0$, if given any pair of adjacent intervals I and J, I to the left of J with $|I|=\mu|J|$, then

$$
\int_{I \cup J} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq C \int_{J} \sigma d x
$$

where C is independent of the choice of I and J.
As was the case in our previous work, a surprising result is that the strong and weak type inequalities are actually equivalent.

THEOREM 1. Given $p>0, \mu>0$, the following are equivalent.
(a) Weak-type inequality: there is a constant $C>0$ independent of $f \geq 0$ with $1 / f \in L^{p}(v)$ such that

$$
u\left\{x: m_{\mu}^{+} f(x)<1 / t\right\} \leq \frac{C}{t^{p}} \int \frac{v}{f^{p}} d x
$$

(b) $(u, v) \in W_{p, \mu}^{+}$;
(c) Strong-type inequality: there is a constant $C>0$ independent of $f \geq 0$ with $1 / f \in L^{p}(v)$ such that

$$
\int \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x \leq C \int \frac{v}{f^{p}} d x
$$

(d) $(u, v) \in\left(W_{p, \mu}^{+}\right)^{*}$.

The material in this paper is organized as follows. In Section 2, we give some preliminary results concerning the limiting case of m_{μ}^{+}as $\mu \rightarrow 0$, the inclusion properties of the $W_{p, \mu}^{+}$classes, and the one weight case $u=v$.

Section 3 gives the proof of $(d) \Rightarrow(c)$. The converse implication is proved by inserting the function $f=\sigma / \chi_{J}$ into the strong-type inequality. Similarly, the proof of $(a) \Rightarrow(b)$ is gotten by substituting $f=\sigma / \chi_{J}$ and $1 / t=|J|^{-1} \int_{J} \sigma d y$ into the weak-type inequality. Surprisingly, a direct proof of the converse implication has not been found. The implication $(c) \Rightarrow(a)$ is easily proved using Chebyshev's inequality.

In Section 4, we prove the equivalence of $W_{p, \mu}^{+}$and $\left(W_{p, \mu}^{+}\right)^{*}$.
In Section 5, we give an application of the one-sided μ-minimal operators to the problem of convergence of convolution operators $T_{\epsilon} f(x)=\phi_{\epsilon} * f(x)$, where $\phi_{\epsilon}(x)=\epsilon^{-1} \phi\left(\epsilon^{-1} x\right)$ for suitably defined $\phi \geq 0$. We study the type of convergence of functions $\left\{g_{k}\right\}$ to f so that the exceptional set E_{f} of convergence, i.e.,

$$
E_{f}=\left\{x: \limsup _{\epsilon \rightarrow 0}\left|T_{\epsilon} f(x)-f(x)\right|>0\right\}
$$

is controlled by the $E_{g_{k}}$'s in the sense that if $\left|E_{g_{k}}\right| \leq M<\infty$ for $k \geq 0$, then $\left|E_{f}\right| \leq M$. Similar to our work in [2], we introduce a Muckenhoupt-type A_{2} condition relative to the ϕ_{ϵ} 's.

Throughout the paper, all functions are assumed to be measurable and notation is standard or defined as necessary. Given a function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a measurable set $E, g(E)$ denotes $\int_{E} g d x$. The weights u and v satisfy $0<u(I), v(I)<\infty$ for all finite intervals I. By g / χ_{I} we denote the function equal to g on I and infinity elsewhere. The letter C denotes a positive constant whose value may be different at each appearance.

Finally, we would like to thank the referee for the many helpful comments and corrections provided in the report.

2. Preliminary results

If we define $m_{*}^{+} f(x)=\lim _{\mu \rightarrow 0} m_{\mu}^{+} f(x)$, then clearly $m_{*}^{+} f(x) \leq m^{+} f(x)$, where $m^{+} f$ is the one-sided minimal operator defined as (see [3])

$$
m^{+} f(x)=\inf _{h>0} \frac{1}{h} \int_{x}^{x+h} f(y) d y
$$

It is worthwhile to note that in many cases, $m_{*}^{+} f(x)=m^{+} f(x)$:
(i) If f is locally integrable on a finite interval I, then $m_{*}^{+}\left(f / \chi_{I}\right)(x)=m^{+}\left(f / \chi_{I}\right)(x)$ almost everywhere. For x not in the closure of $I, m_{*}^{+}\left(f / \chi_{I}\right)(x)=m^{+}\left(f / \chi_{I}\right)(x)=$ ∞. Let

$$
E=\left\{x \in I:\left(f / \chi_{I}\right)(x) \geq m^{+}\left(f / \chi_{I}\right)(x)\right\} .
$$

By the Lebesgue differentiation theorem, $|I \backslash E|=0$. Fix any Lebesgue point $x \in E$ and suppose that $m_{*}^{+}\left(f / \chi_{I}\right)(x)<m^{+}\left(f / \chi_{I}\right)(x)$. For each $\mu>0$, there exists an interval $J_{\mu} \subset I$ to the right of x so that $0 \leq \operatorname{dist}\left(x, J_{\mu}\right)<\mu\left|J_{\mu}\right|$ and

$$
m_{\mu}^{+}\left(f / \chi_{I}\right)(x) \geq \frac{1}{\left|J_{\mu}\right|} \int_{J_{\mu}} f d y-\mu .
$$

The intervals J_{μ} cannot converge to a non-empty interval J that has x as its left end point. For if they did, then by the Lebesgue dominated convergence theorem,

$$
m_{*}^{+}\left(f / \chi_{I}\right)(x) \geq \lim _{\mu \rightarrow 0}\left[\frac{1}{\left|J_{\mu}\right|} \int_{J_{\mu}} f d y-\mu\right]=\frac{1}{|J|} \int_{J} f / \chi_{J} d y \geq m^{+}\left(f / \chi_{I}\right)(x)
$$

which is a contradiction. Therefore, $\left|J_{\mu}\right| \rightarrow 0$ as $\mu \rightarrow 0$. Since $\operatorname{dist}\left(x, J_{\mu}\right) \rightarrow 0$, $J_{\mu} \rightarrow\{x\}$, and so

$$
\frac{1}{\left|J_{\mu}\right|} \int_{J_{\mu}} f d y \rightarrow\left(f / \chi_{I}\right)(x)
$$

Therefore,

$$
m_{*}^{+}\left(f / \chi_{I}\right)(x) \geq \lim _{\mu \rightarrow 0}\left[\frac{1}{\left|J_{\mu}\right|} \int_{J_{\mu}} f d y-\mu\right]=\left(f / \chi_{I}\right)(x) \geq m^{+}\left(f / \chi_{I}\right)(x)
$$

which again is a contradiction.
(ii) If $f \in L_{\mathrm{loc}}^{1}$ and $1 / f \in L^{p}$, then $m_{*}^{+} f(x)=m^{+} f(x)$ for a.e. x.

Since $1 / f \in L^{p}$, given any $\epsilon>0$, there is $N_{\epsilon}>0$ such that if I is an interval with $|I|>N_{\epsilon}$,

$$
\frac{1}{|I|} \int_{I} f d y>\frac{1}{\epsilon}
$$

Since $m^{+} f(x)$ is upper semi-continuous, on $I_{k}=[-k, k], m^{+} f(x)$ is bounded by some number R_{k}. For a fixed k, let ϵ be such that $1 / \epsilon>R_{k}$ and let $L=k+2 N_{\epsilon}$. Then, for a.e. $x \in I_{k}, m^{+} f(x)=m^{+}\left(f / \chi_{[-L, L]}\right)(x)$ and for $\mu \leq 1, m_{\mu}^{+} f(x)=$ $m_{\mu}^{+}\left(f / \chi_{[-L, L]}\right)(x)$. By applying the first remark and letting k tend to ∞, we get the result.
(iii) It is easy to see that if $1 / f \notin L^{p}$, it may happen that $m_{*}^{+} f(x)<m^{+} f(x)$ on a set of positive measure. Specifically, let a_{n} be a sequence of positive numbers such that $a_{n} \rightarrow \infty$ and $a_{n+1}>a_{n}^{2}$. Let $J_{n}=\left(a_{n}, a_{n}^{2}\right)$ and define $f=0$ on each J_{n}. Putting $\mu_{n}=1 /\left(a_{n}-1\right)$, we see that $m_{\mu_{n}}^{+} f=0$ on $\left[0, a_{n}\right]$ but $m^{+} f$ can be made as large as desired by defining f appropriately on $\mathbb{R} \backslash \cup J_{n}$.

We now give an example to show that the inclusion $W_{p, \mu_{2}}^{+} \subset W_{p, \mu_{1}}^{+}$for $\mu_{1}<\mu_{2}$ is proper. Specifically, we will find a pair of weights $(u, v) \in W_{1,1}^{+} \backslash W_{1, \mu}^{+}$for $\mu>1$.

Consider $I_{i}=\left(e^{i}-2, e^{i}-1\right), J_{i}=\left(1+e^{i-1}, e^{i}\right)$ for $i \geq 2$. Define u and v by

$$
\begin{aligned}
& u(x)=\sum_{i} e^{i} \chi_{I_{i}}+\chi_{\mathbb{R} \backslash \cup I_{i}} \\
& v(x)=\sum_{i} e^{2 i} \chi_{J_{i}}+\chi_{\mathbb{R} \backslash \cup J_{i}}
\end{aligned}
$$

It is not difficult to see that $(u, v) \in W_{1,1}^{+}$and the fact that $(u, v) \notin W_{1, \mu}^{+}$for $\mu>1$ follows immediately by taking $I=\left(e^{i}-\mu, e^{i}\right)$ and $J=\left(e^{i}, 1+e^{i}\right)$.

In the single weight case $u=v$, the classes $W_{p, \mu}^{+}$all collapse to the single class A_{∞}^{+}-the union of the classes $A_{p}^{+}, p>1$, which govern the weighted norm inequalities for M^{+}. For if $(\omega, \omega) \in W_{p, \mu}^{+}$, then for any adjacent intervals I and J, I to the left of J, and $|I|=\mu|J|$,

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \omega d x \leq C\left(\frac{1}{|I \cup J|} \int_{I \cup J} \omega^{1 /(p+1)} d x\right)^{p+1} \tag{1}
\end{equation*}
$$

In [3], we showed that this "one-sided" reverse Hölder inequality is equivalent to ω being in A_{∞}^{+}. Conversely, if $w \in A_{\infty}^{+}$then (1) holds, and by the geometric characterization of A_{∞}^{+}(see [3] or [9]), $\omega^{1 /(p+1)}$ satisfies the one-sided doubling condition

$$
\int_{I} \omega^{1 /(p+1)} d x \leq C \int_{J} \omega^{1 /(p+1)} d x
$$

where the constant C depends only on ω and μ. Hence $(\omega, \omega) \in W_{p, \mu}^{+}$.

3. Proof of $(\mathbf{d}) \Rightarrow$ (c)

We first state a preliminary lemma that will be used repeatedly throughout the paper. It is a technical result due to Muckenhoupt [10] generalized to arbitrary regular measures. With the appropriate substitutions, the proof is identical to his proof for Lebesgue measure and so is omitted.

LEMMA 2. Given a function f, a regular measure v and an interval I, let $\left\{I_{\alpha}\right\}$ be a collection of intervals contained in I such that, for each α,

$$
\int_{I_{\alpha}} f d v \geq N v\left(I_{\alpha}\right)
$$

If $J=\cup_{\alpha} I_{\alpha}$, then

$$
\int_{J} f d v \geq(N / 2) v(J)
$$

To prove that $(d) \Rightarrow(c)$, we will first consider the special case where f is such that $1 / f$ has compact support. For each $k \in \mathbb{Z}$ define

$$
A_{k}=\left\{x: 2^{-k-1} \leq m_{\mu}^{+} f(x)<2^{-k}\right\}
$$

and let K_{k} be an arbitrary compact subset of A_{k}. For each $x \in A_{k}$ there is an open interval $J_{x, k}$ to the right of x such that $0 \leq \operatorname{dist}\left(x, J_{x, k}\right)<\mu\left|J_{x, k}\right|$ and

$$
\frac{1}{\left|J_{x, k}\right|} \int_{J_{x, k}} f d y<2^{-k}
$$

Note that $\cup J_{x, k} \subset T$, where T is some interval containing the support of $1 / f$. This will be important later in the proof when we apply Lemma 2. Let $I_{x, k}$ be the interval that is adjacent to $J_{x, k}$, to the left of $J_{x, k}$ and $\left|I_{x, k}\right|=\mu\left|J_{x, k}\right|$; then $A_{k} \subset \cup I_{x, k}$. Therefore, by compactness, for each k we can find a finite collection $\left\{I_{j, k}\right\}_{j=1}^{m_{k}} \subset\left\{I_{x, k}\right\}$ that covers the set K_{k}. In fact,

$$
K_{k}=\bigcup_{j=1}^{m_{k}} E_{j, k}
$$

where the $E_{j, k}$'s are the disjoint sets defined inductively by $E_{1, k}=I_{1, k} \cap K_{k}, E_{2, k}=$ $\left(I_{2, k} \backslash I_{1, k}\right) \cap K_{k}, \ldots$

For an arbitrary positive integer N we have

$$
\begin{align*}
\int_{U_{k=-N}^{N} K_{k}} \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x= & \sum_{k=-N}^{N} \sum_{j=1}^{m_{k}} \int_{E_{j, k}} \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x \tag{2}\\
\leq & 2^{p} \sum_{k} \sum_{j} u\left(E_{j, k}\right) \cdot 2^{k p} \\
\leq & 2^{p} \sum_{k} \sum_{j} u\left(E_{j, k}\right)\left|J_{j, k}\right|^{p}\left(\int_{J_{j, k}} f d y\right)^{-p} \\
= & 2^{p} \sum_{k} \sum_{j} u\left(E_{j, k}\right) \frac{\left|J_{j, k}\right|^{p}}{\sigma\left(J_{j, k}\right)^{p}} \\
& \cdot\left(\frac{1}{\sigma\left(J_{j, k}\right)} \int_{J_{j, k}} \frac{f}{\sigma} \cdot \sigma d y\right)^{-p}
\end{align*}
$$

Define the measure ω on $X=\mathbb{Z} \times \mathbb{N}$ by

$$
\omega(k, j)=\frac{u\left(E_{j, k}\right)\left|J_{j, k}\right|^{p}}{\sigma\left(J_{j, k}\right)^{p}} \quad \text { for } 1 \leq j \leq m_{k}
$$

and $\omega(k, j)=0$ for $j>m_{k}$. Further, for $h \in L^{2}(\sigma)$ define

$$
\operatorname{Sh}(k, j)=\frac{\sigma\left(J_{j, k}\right)}{\int_{J_{j, k}} h \sigma d y} \quad \text { and } \quad T h(k, j)=\frac{\int_{J_{j, k}} h \sigma d y}{\sigma\left(J_{j, k}\right)} .
$$

By Hölder's inequality, $\operatorname{Sh}(k, j) \leq T\left(h^{1-r^{\prime}}\right)(k, j)^{r-1}$ for $r>1$. Putting $r=1+\frac{2}{p}$ and rewriting (2), we get

$$
\int_{\cup_{k=-N}^{N} K_{k}} \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x \leq 2^{p} \int_{X} S\left(\frac{f}{\sigma}\right)^{p} d \omega \leq 2^{p} \int_{X} T\left(\frac{\sigma^{r^{\prime}-1}}{f^{r^{\prime}-1}}\right)^{2} d \omega
$$

If T were a bounded operator from $L^{2}(\sigma) \rightarrow L^{2}(X, d \omega)$, then

$$
\int_{\cup_{k=-N}^{N} K_{k}} \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x \leq C \int_{\mathbb{R}} \frac{\sigma^{p}}{f^{p}} \sigma d x=C \int_{\mathbb{R}} \frac{v}{f^{p}} d x
$$

By taking nested compact sets $K_{i, k} \subset K_{i+1, k}$ that increase monotonically to A_{k} (modulo a set of measure zero), the monotone convergence theorem yields

$$
\int_{\cup_{k=-N}^{N} A_{k}} \frac{u}{\left(m_{\mu}^{+} f\right)^{p}} d x \leq C \int_{\mathbb{R}} \frac{v}{f^{p}} d x
$$

Letting $N \rightarrow \infty$ gives the desired result.
Therefore, it remains to show that $T: L^{2}(\sigma) \rightarrow L^{2}(X, d \omega)$ is bounded. Since T is clearly bounded in L^{∞}, by Marcinkiewicz interpolation it will suffice to show that T is weak $(1,1)$: for all $\lambda>0$,

$$
\int_{\{T h>\lambda\}} d \omega \leq \frac{C}{\lambda} \int_{\mathbb{R}} h \sigma d x .
$$

To prove this, define the set

$$
G(\lambda)=\{(k, j): \operatorname{Th}(k, j)>\lambda\}=\left\{(k, j): \frac{1}{\sigma\left(J_{j, k}\right)} \int_{J_{j, k}} h \sigma d x>\lambda\right\}
$$

and let

$$
G=\bigcup_{(k, j) \in G(\lambda)} J_{j, k}
$$

The open set G is the countable union of disjoint open intervals J_{i}. Therefore by Lemma 2, we have

$$
\begin{equation*}
\frac{1}{\sigma\left(J_{i}\right)} \int_{J_{i}} h \sigma d x \geq \frac{\lambda}{2} . \tag{3}
\end{equation*}
$$

If $J_{j, k} \subset G$, then $J_{j, k} \subset J_{i}$ for exactly one i. Hence, if $x \in E_{j, k}$ and $J_{j, k} \subset J_{i}$, then

$$
m_{\mu}^{+}\left(\sigma / \chi_{J_{i}}\right)(x) \leq \frac{1}{\left|J_{j, k}\right|} \int_{J_{j, k}} \sigma d y
$$

That is,

$$
\frac{\left|J_{j, k}\right|}{\sigma\left(J_{j, k}\right)} \leq \inf _{x \in E_{j, k}}\left[m_{\mu}^{+}\left(\sigma / \chi_{J_{i}}\right)(x)\right]^{-1}
$$

Therefore,

$$
\begin{align*}
\int_{\{T h>\lambda\}} d \omega & =\sum_{(k, j) \in G(\lambda)} \frac{u\left(E_{j, k}\right)\left|J_{j, k}\right|^{p}}{\sigma\left(J_{j, k}\right)^{p}} \\
& =\sum_{i} \sum_{(k, j) \in G(\lambda): J_{j, k} \subset J_{i}} \frac{u\left(E_{j, k}\right)\left|J_{j, k}\right|^{p}}{\sigma\left(J_{j, k}\right)^{p}} \\
& \leq \sum_{i} \sum_{(k, j) \in G(\lambda): J_{j, k} \subset J_{i}} u\left(E_{j, k}\right) \inf _{x \in E_{j, k}}\left[m_{\mu}^{+}\left(\sigma / \chi_{J_{i}}\right)(x)\right]^{-p} \\
& \leq \sum_{i} \sum_{(k, j) \in G(\lambda): J_{j, k} \subset J_{i}} \int_{E_{j, k}} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J_{i}}\right)^{p}} d x \tag{4}
\end{align*}
$$

Now let I_{i} be the interval adjacent to J_{i} on the left such that $\left|I_{i}\right|=\mu\left|J_{i}\right|$. If $J_{j, k} \subset J_{i}$, then $E_{j, k} \subset I_{i} \cup J_{i}$; hence, since the $E_{j, k}$'s are disjoint, (4) is bounded by

$$
\sum_{i} \int_{I_{i} \cup J_{i}} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J_{i}}\right)^{p}} d x \leq C \sum_{i} \sigma\left(J_{i}\right) \leq \frac{2 C}{\lambda} \sum_{i} \int_{J_{i}} h \sigma d x \leq \frac{2 C}{\lambda} \int_{\mathbb{R}} h \sigma d x .
$$

The first inequality follows from the $\left(W_{p, \mu}^{+}\right)^{*}$ condition, the second from (3) and the third since the J_{i} 's are disjoint.

To complete the proof, fix an arbitrary f and define the sequence $f_{n}=f / \chi_{[-n, n]}$. Clearly the sequence decreases monotonically to f. The sequence $m_{\mu}^{+}\left(f_{n}\right)$ is also monotonically decreasing and $m_{\mu}^{+} f \leq \lim _{n \rightarrow \infty} m_{\mu}^{+}\left(f_{n}\right)$. On the other hand, for a fixed x in \mathbb{R} and $\epsilon>0$, there is an interval J to the right of x with $0 \leq \operatorname{dist}(x, J)<\mu|J|$ so that for all n sufficiently large,

$$
m_{\mu}^{+} f(x) \geq \frac{1}{|J|} \int_{J} f d y-\epsilon \geq m_{\mu}^{+}\left(f_{n}\right)(x)-\epsilon
$$

Therefore, by the monotone convergence theorem, the strong-type inequality holds for all f and we are done.

$$
\text { 4. Proof of }(b) \Rightarrow \text { (d) }
$$

We require the following well-known covering properties for \mathbb{R}. Their proofs can be found in [2].

Lemma 3. Let \mathcal{F} be a collection of intervals in \mathbb{R} of positive length. Then there exists a countable sub-collection \mathcal{F}_{0} such that $\cup\{I: I \in \mathcal{F}\}=\cup\left\{I: I \in \mathcal{F}_{0}\right\}$.

Lemma 4. Let \mathcal{F} be a finite collection of intervals in \mathbb{R}. Then there exist two sub-collections \mathcal{F}_{1} and \mathcal{F}_{2} such that the intervals in \mathcal{F}_{i} are disjoint, $i=1,2$, and $\cup\{I: I \in \mathcal{F}\}=\cup\left\{I: I \in \mathcal{F}_{1}\right\} \cup\left\{I: I \in \mathcal{F}_{2}\right\}$.

To prove that $(b) \Rightarrow(d)$, first fix adjacent intervals I and J, I to the left of J, such that $|I|=\mu|J|$. We write

$$
\int_{I \cup J} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x=\int_{I} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x+\int_{J} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x
$$

and estimate each integral separately.
Step 1. Show that $\int_{I} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq C \sigma(J)$.
Fix $\epsilon>0$ and define

$$
E_{t}=\left\{x \in I: m_{\mu}^{+}\left(\sigma / \chi_{J}\right)(x)<1 / t\right\} .
$$

Then for any $R>0$,

$$
\begin{equation*}
\int_{I} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq R^{p} u(I)+p \int_{R}^{\infty} t^{p-1} u\left(E_{t}\right) d t \tag{5}
\end{equation*}
$$

Note that if $x \in E_{t}$, then there is an interval $J_{x}^{t} \subset J$ to the right of x so that $0 \leq \operatorname{dist}\left(x, J_{x}^{t}\right)<\mu\left|J_{x}^{t}\right|$ and

$$
\begin{equation*}
\frac{1}{\left|J_{x}^{t}\right|} \int_{J_{x}^{\prime}} \sigma d y<\frac{1}{t} \tag{6}
\end{equation*}
$$

Associate to J_{x}^{t} the adjacent interval I_{x}^{t}, where I_{x}^{t} is to the left of J_{x}^{t} and $\left|I_{x}^{t}\right|=\mu\left|J_{x}^{t}\right|$. Now for each $x \in E_{t}, I_{x}^{t}$ contains the right endpoint of I since $J_{x}^{t} \subset J$. That is, for every pair of points x_{1} and x_{2} in E_{t}, the intervals $I_{x_{1}} \cap I$ and $I_{x_{2}} \cap I$ are such that one is contained in the other. Therefore, E_{t} is the union of nested intervals $I_{x}^{t} \cap I$, $x \in E_{t}$, so we can find a point x_{t} such that

$$
u\left(E_{t}\right) \leq u\left(I_{x_{t}}^{t} \cap I\right)+\epsilon_{0}(t)
$$

where

$$
\epsilon_{0}(t)=\frac{\epsilon}{2} \chi_{(0,1]}+\frac{\epsilon}{2 p} \frac{1}{t^{p+1}} \chi_{(1, \infty)} .
$$

Then by the $W_{p, \mu}^{+}$condition and our choice of the J_{x}^{t} 's,

$$
\begin{aligned}
u\left(E_{t}\right) & \leq u\left(I_{x_{t}}^{t}\right)+\epsilon_{0}(t) \leq C \frac{\left|I_{x_{t}}^{t}\right| \sigma\left(J_{x_{t}}^{t}\right)^{p+1}}{\left|J_{x_{t}}^{t}\right|^{p+1}}+\epsilon_{0}(t) \\
& \leq C \frac{\left|I_{x_{t}}^{t}\right|}{t^{p+1}}+\epsilon_{0}(t) \leq C \frac{|I|}{t^{p+1}}+\epsilon_{0}(t)
\end{aligned}
$$

Therefore,

$$
p \int_{R}^{\infty} t^{p-1} u\left(E_{t}\right) d t \leq C p|I| \int_{R}^{\infty} t^{-2} d t+p \int_{R}^{\infty} t^{p-1} \epsilon_{0}(t) d t \leq C \frac{|I|}{R}+\epsilon
$$

Since $\epsilon>0$ is arbitrary, by combining this with (5) we see that

$$
\int_{I} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq R^{p} u(I)+C \frac{|I|}{R} .
$$

Let $R^{p}=\frac{\sigma(J)}{u(I)}$; then the $W_{p, \mu}^{+}$condition gives

$$
\int_{I} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq C \sigma(J),
$$

which is what we wanted.
Step 2. Show that $\int_{J} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq C \sigma(J)$.
Fix $\lambda \in \mathbb{N}$ such that $2^{-\lambda} \leq \mu$. Define the intervals J_{i} inductively as follows: let J_{1} be the open interval that comprises the left half of the interval J. Let J_{2} be the open interval adjacent to J_{1} that comprises the left half of the interval $J \backslash J_{1}$. Let J_{3} be the open interval adjacent to J_{2} that comprises the left half of the interval $J \backslash\left(J_{1} \cup J_{2}\right)$, etc. For each $i,\left|J_{i}\right|=2\left|J_{i+1}\right|$. Now, divide each J_{i} into $\alpha_{\lambda}=2^{\lambda+1}$ equal intervals, $J_{i, 1} \ldots J_{i, \alpha_{\lambda}}$ and to each $J_{i, j}$ adjoin to the right an interval $J_{i, j}^{\prime} \subset J$ with $\left|J_{i, j}^{\prime}\right|=\left|J_{i+1}\right|=2^{-i-1}|J|$. The intervals $J_{i, j}^{\prime}$ are of bounded overlap:

$$
\sum_{i} \sum_{j=1}^{\alpha_{\lambda}} \chi_{J_{i, j}^{\prime}} \leq 2^{\lambda+2} .
$$

Fix a pair (i, j) and let

$$
E_{t}=E_{i, j, t}=\left\{x \in J_{i, j}: m_{\mu}^{+}\left(\sigma / \chi_{J}\right)(x)<1 / t\right\} .
$$

If $x \in E_{t}$, then there exists $J_{x}^{t}=J_{i, j, x}^{t} \subset J$ to the right of x such that $0 \leq \operatorname{dist}\left(x, J_{x}^{t}\right)<$ $\mu\left|J_{x}^{t}\right|$ and

$$
\begin{equation*}
\frac{1}{\left|J_{x}^{t}\right|} \int_{J_{x}^{\prime}} \sigma d y<\frac{1}{t} \tag{7}
\end{equation*}
$$

Associate to J_{x}^{t} the adjacent interval I_{x}^{t}, where I_{x}^{t} is to the left of J_{x}^{t} and $\left|I_{x}^{t}\right|=\mu\left|J_{x}^{t}\right|$. By Lemma 3, there exists a countable collection $\left\{I_{k}^{t}\right\}_{k \in \mathbb{N}} \subset\left\{I_{x}^{t}\right\}_{x \in E_{t}}$ such that

$$
E_{t}=\bigcup_{x \in E_{t}}\left(I_{x}^{t} \cap J_{i, j}\right)=\bigcup_{k}\left(I_{k}^{t} \cap J_{i, j}\right) .
$$

Let

$$
E_{t, n}=\bigcup_{k=1}^{n}\left(I_{k}^{t} \cap J_{i, j}\right)
$$

By Lemma 4, there exists a disjoint sub-collection $\left\{I_{k, n}^{t} \cap J_{i, j}\right\}_{k=1}^{m_{t, n}} \subset\left\{I_{k}^{t} \cap J_{i, j}\right\}_{k=1}^{n}$ such that

$$
\begin{equation*}
u\left(E_{t, n}\right) \leq 2 \sum_{k=1}^{m_{t, n}} u\left(I_{k, n}^{t} \cap J_{i, j}\right) \tag{8}
\end{equation*}
$$

Among the set $\left\{I_{k, n}^{t} \cap J_{i, j}\right\}_{k=1}^{m_{t, n}}$, there is at most one interval, call it $I_{k_{1}, n}^{t}$, that contains the right hand endpoint of $J_{i, j}$. Similarly, there is at most one $I_{k, n}^{t}$, call it $I_{k_{2}, n}^{t}$, that contains the left hand endpoint of $J_{i, j}$. All of the other intervals are properly contained in $J_{i, j}$. A simple geometrical argument shows that $\left|J_{k_{1}, n}^{t}\right| \leq 2\left|J_{i}\right|=2^{k+2}\left|J_{i, j}\right|$; hence $\left|I_{k_{1}, n}^{t}\right|=\mu\left|J_{k_{1}, n}^{t}\right| \leq 2^{\lambda+2} \mu\left|J_{i, j}\right|$. Similarly, $\left|I_{k_{2}, n}^{t}\right|=\mu\left|J_{k_{2}, n}^{t}\right| \leq 2^{\lambda+2} \mu\left|J_{i, j}\right|$. Therefore

$$
\begin{equation*}
\sum_{k=1}^{m_{t, n}}\left|I_{k, n}^{t}\right| \leq\left(1+2^{\lambda+3} \mu\right)\left|J_{i, j}\right| \tag{9}
\end{equation*}
$$

Then by (8), the $W_{p, \mu}^{+}$condition, (7), and (9),

$$
u\left(E_{t, n}\right) \leq 2 \sum_{k=1}^{m_{t, n}} u\left(I_{k, n}^{t}\right) \leq C \sum_{k=1}^{m_{t, n}} \frac{\left|I_{k, n}^{t}\right| \sigma\left(J_{k, n}^{t}\right)^{p+1}}{\left|J_{k, n}^{t}\right|^{p+1}} \leq \frac{C}{t^{p+1}} \sum_{k=1}^{m_{t, n}}\left|I_{k, n}^{t}\right| \leq \frac{C\left|J_{i, j}\right|}{t^{p+1}}
$$

Since the right hand side of the above inequality is independent of n, we may take the limit as n tends to infinity to get

$$
u\left(E_{t}\right) \leq \frac{C\left|J_{i, j}\right|}{t^{p+1}}
$$

Reasoning exactly as in step 1 , we see that

$$
\int_{J_{i, j}} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq u\left(J_{i, j}\right) R^{p}+C \frac{\left|J_{i, j}\right|}{R}
$$

for each pair (i, j) and $R>0$. Let $R^{p}=\frac{\sigma\left(J_{i, j}^{\prime}\right)}{u\left(J_{i, j}\right)}$; since $\left|J_{i, j}\right|=2^{-\lambda}\left|J_{i, j}^{\prime}\right|$ and $2^{-\lambda} \leq \mu,(u, v) \in W_{p, 2^{-\lambda}}^{+}$, so

$$
\int_{J_{i, j}} \frac{u}{m_{\mu}^{+}\left(\sigma / \chi_{J}\right)^{p}} d x \leq C \sigma\left(J_{i, j}^{\prime}\right)
$$

Finally, since the intervals $\left\{J_{i, j}^{\prime}\right\}$ have bounded overlap, we sum over (i, j) to get the desired inequality.

5. Application to convolution operators

Throughout this section let ϕ be a non-negative function of compact support such that $\|\phi\|_{1}=1$. Define the family of convolution operators $T_{\epsilon} f(x)=\phi_{\epsilon} * f(x), \epsilon>$ 0 , where $\phi_{\epsilon}(x)=\epsilon^{-1} \phi\left(\epsilon^{-1} x\right)$; then it is well known that $T_{\epsilon} f \rightarrow f$ in $L^{p}, 1 \leq p<$ ∞. Further, if the associated maximal operator

$$
T^{*} f(x)=\sup _{\epsilon>0}\left|\phi_{\epsilon} * f(x)\right|
$$

is dominated by the Hardy-Littlewood maximal function, $M f$, then $T_{\epsilon} f(x) \rightarrow f(x)$ for a.e. x. However, the estimate $T^{*} f(x) \leq C M f(x)$ places a significant restriction on ϕ : for example,

$$
\psi(x)=\sup _{|t| \geq|x|} \phi(t) \in L^{1}
$$

(See [5] or [13].) If $\psi \notin L^{1}$ then there may exist $f \in L^{1}$ such that

$$
\limsup _{\epsilon \rightarrow 0} T_{\epsilon} f(x)=\infty
$$

almost everywhere. For the convenience of the reader we sketch a simple example: define the sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ such that the intervals $I_{n}=\left[1 / n, 1 / n+\alpha_{n}\right]$ are disjoint and

$$
\phi(x)=\frac{1}{x^{2}} \chi_{\cup I_{n}}(x)
$$

is in L^{1}. Let $\phi_{j}(x)=j \phi(j x)$; then $T^{*} f(x)=\sup \left|\phi_{j} * f(x)\right|$ is not weak-type $(1,1)$ since $\sup x \phi(x)=\infty$. (See [5, p. 296].) This implies that there exists a function $f \in L^{1}$ for which $T^{*} f(x)=\infty$ a.e. (See Proposition 1 in [13, p. 441].)

Define the exceptional set for the pointwise convergence of the T_{ϵ} 's by

$$
E_{f}=\left\{x: \underset{\epsilon \rightarrow 0}{\limsup }\left|T_{\epsilon} f(x)-f(x)\right|>0\right\}
$$

The question we are interested in is the following: Given a sequence $\left\{g_{k}\right\}$ converging pointwise to a function f, under what additional hypotheses is E_{f} controlled by the
$E_{g_{k}}$'s - that is, if $\left|E_{g_{k}}\right| \leq M<\infty$ for all k, then $\left|E_{f}\right| \leq M$. As the previous example shows, L^{1} convergence is not sufficient: there exist $g_{k} \in C_{c}$ such that $g_{k} \rightarrow f$ in L^{1}, and clearly $E_{g_{k}}$ is empty for continuous g_{k}.

To give the correct condition, we need to assume that $1 / f \in L^{p}$ for some $p>0$. We can do this with no loss of generality since given f, we can replace f by $F(x)=$ $f(x)+e^{|x|}$. Then $1 / F \in L^{p}$ and $E_{f}=E_{F}$.

We now define the minimal operator associated to the T_{ϵ} 's:

$$
T_{*} f(x)=\inf _{\epsilon>0} \phi_{\epsilon} * f(x)
$$

The following result may be thought of as a Harnack inequality for the T_{ϵ} 's.
Lemma 5. Suppose for some $h_{0}>0$ the set $\left\{x: \phi(x)>h_{0}\right\}$ contains a nonempty open interval $I_{0} \subset(-\infty, 0)$. Then there exist constants $\mu=\mu_{\phi}>0$ and $c=c_{\phi}>0$ such that for every $x \in \mathbb{R}$,

$$
T_{*} f(x) \geq c m_{\mu}^{+} f(x)
$$

Remark. If $I_{0} \subset(0, \infty)$, then m_{μ}^{+}is replaced by m_{μ}^{-}.
Proof. Suppose $I_{0}=(a, b), b \leq 0$. Define $\mu=-b /(b-a)$ and $\phi_{0}=h_{0} \cdot \chi_{I_{0}}$. Then $0 \leq \phi_{0} \leq \phi$, and so for $x \in \mathbb{R}$,

$$
\begin{aligned}
T_{\epsilon} f(x) & \geq \frac{1}{\epsilon} \int_{\epsilon a}^{\epsilon b} \phi_{0}(t / \epsilon) f(x-t) d t \\
& =\frac{h_{0}}{\epsilon} \int_{\epsilon a}^{\epsilon b} f(x-t) d t \\
& =h_{0}\left|I_{0}\right| \frac{1}{\epsilon\left|I_{0}\right|} \int_{x-\epsilon b}^{x-\epsilon a} f(t) d t \\
& \geq h_{0}\left|I_{0}\right| m_{\mu}^{+} f(x)
\end{aligned}
$$

Let $c=h_{0}\left|I_{0}\right|$ and we are done.
COROLLARY 6. Suppose for some $h_{0}>0$ the set $\left\{x: \phi(x)>h_{0}\right\}$ contains a nonempty open interval I_{0} such that $I_{0} \subset(-\infty, 0)$. If $0<p<\infty$ and $(u, v) \in W_{p, \mu}^{+}$, then

$$
\int_{\mathbb{R}} \frac{u}{\left(T_{*} f\right)^{p}} d x \leq c \int_{\mathbb{R}} \frac{v}{f^{p}} d x
$$

Proof. This follows from Lemma 5 and Theorem 1.
For general ϕ, the set $\{x: \phi(x)>h\}$ may not contain an interval for any $h>$ 0 , and thus Lemma 5 is not applicable. We can avoid this by replacing ϕ with
$\tilde{\phi}=\left(\phi+\chi_{[-1,0]}\right) / 2$. Then, apart from a set of measure $0, E_{f}=\tilde{E}_{f}$, where $\tilde{E}_{f}=$ $\left\{x: \lim \sup \left|\tilde{\phi}_{\epsilon} * f(x)-f(x)\right|>0\right\}$. This follows at once from the fact that if f is locally integrable, then $\left(\chi_{[-1,0]}\right)_{\epsilon} * f(x) \rightarrow f(x)$ for a.e. x.

We now define the Muckenhoupt-type A_{2} condition that plays a key role in controlling the sets E_{f}. For $w \geq 0$, define

$$
A_{2}(w)=\sup _{I} \frac{1}{|I|} \int_{I} w d y \cdot \frac{1}{|I|} \int_{I} 1 / w d y+\sup _{x, \epsilon>0} T_{\epsilon} w(x) \cdot T_{\epsilon}(1 / w)(x)
$$

The first term is the usual A_{2}-condition and the second term can be viewed as an A_{2}-condition relative to $\left\{\phi_{\epsilon}\right\}$. Note that if for some $h>0$, the set $\{x: \phi(x)>h\}$ contains an interval, the first term is dominated by the second and can thus be dropped.

Lemma 7. Let f, g be non-negative functions such that $A_{2}(|f-g|)=c_{0}<\infty$. Then

$$
\left|\frac{1}{T_{\epsilon} f(x)}-\frac{1}{T_{\epsilon} g(x)}\right| \leq \frac{c_{0}}{\left\{T_{\epsilon} F(x)\right\}^{3}}, \text { where } F=\left(\frac{f g}{|f-g|}\right)^{1 / 3}
$$

Proof. Apply Hölder's inequality with respect to the measure $\phi_{\epsilon}(t) d t$ to get

$$
\begin{aligned}
\left\{T_{\epsilon} F(x)\right\}^{3} \cdot T_{\epsilon}(|f-g|)(x) & \leq T_{\epsilon} f(x) \cdot T_{\epsilon} g(x) \cdot T_{\epsilon}\left(\frac{1}{|f-g|}\right)(x) \cdot T_{\epsilon}(|f-g|)(x) \\
& \leq c_{0} T_{\epsilon} f(x) \cdot T_{\epsilon} g(x)
\end{aligned}
$$

THEOREM 8. Let (u, v) be a pair of weights and fix $p>0$. Let f be a nonnegative, locally integrable function such that $1 / f \in L^{p}(v)$. Then there exists $\mu>0$ such that, if $(u, v) \in W_{3 p, \mu}^{+}$, the following holds:

If $\left\{g_{k}\right\}$ is a sequence of non-negative functions satisfying

$$
\frac{1}{g_{k}} \rightarrow \frac{1}{f} \text { in } L^{p}(v) \quad \text { and } \quad A_{2}\left(\left|g_{k}-f\right|\right) \leq c<\infty \text { for all } k
$$

then given any $\lambda<u\left(E_{f}\right)$ and $\eta>0$, there exists $k=k(\lambda, \eta)$ such that $u\left(E_{g_{k}}\right)>$ $\lambda-\eta$.

Proof. Since the measure $u d x$ is absolutely continuous, by the comment following Corollary 6, we may assume that the set $\{x: \phi(x)>h\}$ contains an open interval contained in $(-\infty, 0)$ for some h. Therefore Lemma 5 applies, so fix μ as in that result.

Suppose now that $(u, v) \in W_{3 p, \mu}^{+}$. Then $u \leq c v$, so $1 / f \in L^{p}(u)$. Hence $f(x)>0$ for almost every x (with respect to $u d x$). Further, since f is locally integrable, $f(x)<\infty$ a.e.. Therefore $u\left(E_{f}\right)=u(D)$, where

$$
D=\left\{x: \limsup _{\epsilon \rightarrow 0}\left|\frac{1}{T_{\epsilon} f(x)}-\frac{1}{f(x)}\right|>0\right\}
$$

Now let λ and η be as in the statement of the theorem, and let $D_{i} \subset D$ be the set where the given limit supremum is larger than $1 / i$. Then we can find i sufficiently large so that $u\left(D_{i}\right)>\lambda$. Now for each k let

$$
F_{k}=\left(\frac{f g_{k}}{\left|f-g_{k}\right|}\right)^{1 / 3}
$$

Then by Lemma 7,

$$
\left|\frac{1}{T_{\epsilon} f(x)}-\frac{1}{f(x)}\right| \leq \frac{c}{T_{*} F_{k}(x)^{3}}+\left|\frac{1}{T_{\epsilon} g_{k}(x)}-\frac{1}{g_{k}(x)}\right|+\left|\frac{1}{g_{k}(x)}-\frac{1}{f(x)}\right| .
$$

Hence, taking the limit supremum as ϵ tends to 0 ,

$$
D_{i} \subset\left\{x: T_{*} F_{k}(x)^{3}<3 c i\right\} \cup D_{g_{k}} \cup\left\{x:\left|\frac{1}{g_{k}(x)}-\frac{1}{f(x)}\right|>\frac{1}{3 i}\right\},
$$

where $D_{g_{k}}$ is defined as D with f replaced by g_{k}. As before, $u\left(D_{g_{k}}\right)=u\left(E_{g_{k}}\right)$. Since $(u, v) \in W_{3 p, \mu}^{+}$, by Corollary 6 and Theorem 1,

$$
u\left(D_{i}\right)<c i^{p} \int_{\mathbb{R}}\left|\frac{1}{g_{k}}-\frac{1}{f}\right|^{p} v d x+u\left(E_{g_{k}}\right)
$$

Now choose k so large that the first term is $\leq \eta$ and we are done.

COROLLARY 9. With the same hypotheses as above, if $u\left(E_{g_{k}}\right) \leq M<\infty$ for all k, then $u\left(E_{f}\right) \leq M$.

Remarks. (i) If $u=v=1$, (that is, the unweighted case) we trivially have $(u, v) \in W_{p, \mu}^{+}$for all p and μ. Given a non-negative u, then $\left(u, e^{u}\right) \in W_{p, \mu}^{+}$for all p and μ.
(ii) We can replace the norm convergence of $1 / g_{k}$ to $1 / f$ by the stronger hypothesis that the g_{k} 's decrease monotonically to f. In this case, Theorem 8 can be thought of as a Harnack principle for the T_{ϵ} 's.
(iii) The question of extending the convergence results given above to \mathbb{R}^{n} for $n>1$ remains open. It is unclear what the appropriate substitute for m_{μ}^{+}should be.

REFERENCES

1. D. Cruz-Uribe, SFO and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), 2941-2960.
2. D. Cruz-Uribe, SFO, C. J. Neugebauer and V. Olesen, Norm inequalities for the minimal and maximal operator, and differentiation of the integral, preprint.
3. \ldots, The one-sided minimal operator and the one-sided reverse Hölder inequality, Studia Math. 116 (1995), 255-270.
4. J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland Math. Studies, North Holland, Amsterdam, vol. 116, 1985.
5. M. de Guzmàn, Real variable methods in Fourier analysis, North Holland Math. Studies, North Holland, Amsterdam, vol. 46, 1981.
6. B. Jawerth, Weighted inequalities for maximal operators: linearization, localization and factorization, Amer. J. Math. 108 (1986), 361-414.
7. F. J. Martín-Reyes and A. de la Torre, Two weight norm inequalities for fractional one-sided maximal operators, Proc. Amer. Math. Soc. 117 (1993), 483-489.
8. F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698.
9. F. J. Martín-Reyes, L. Pick and A. de la Torre, A_{∞}^{+}condition, Canad. J. Math. 45 (1993), 1231-1244.
10. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
11. E. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11.
12. \qquad Weighted inequalities for the one sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
13. E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, N.J., 1993.
D. Cruz-Uribe, SFO, Department of Mathematics, Trinity College, Hartford, CT 06106-3100
david.cruzuribe@mail.trincoll.edu

C. J. Neugebauer, Department of Mathematics, Purdue University, Lafayette, IN 47907-1395
neug@math.purdue.edu

V. Olesen, Department of Mathematics, Purdue University, Lafayette, IN 47907-1395 olesen@math.purdue.edu.

[^0]: Received August 27, 1995
 1991 Mathematics Subject Classification. Primary 42B25; Secondary 42A85.

