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WEIGHTED NORM INEQUALITIES FOR A FAMILY OF
ONE-SIDED MINIMAL OPERATORS

D. CRUZ=URIBE, SFO, C. J. NEUGEBAUER AND V. OLESEN

I. Introduction

Given/z > 0 and a real-valued, non-negative function f on N, we define the one
+f, bysided/z-minimal function of f, mv

+f(x)=inf fm "1 f dy,

where the infimum is taken over all intervals J that lie to the right of x with the
property that 0 < dist(x, J) </zlJI. The minimal function mSf is defined similarly.
Following our work in [2], [3], the purpose of this paper is to study the weighted
norm inequalities that rn+ satisfies.

Our motivation for considering these operators came from the analogous maximal
operator, a variant of which was introduced by Martfn-Reyes and de la Torre [7].
Specifically, for/z > 0, define

Mu f(x) sup -] fdy,

where, as before, the supremum is taken over all intervals J to the right ofx satisfying
0 < dist(x, J) < mI/I. Clearly, M+.I f(x) < Mu+f(x) for/zl < /z2. On the other
hand, if J (a, b) is an interval to the right of x such that 0 < dist(x, J) </z21J I,
and if we define J* (a*, b) where x < a* < a is such that a* x </zl (b a*),
then

J---l f dy < f dy.
IJ*l

Hence M.+f(x) < (1 +/z2)M.+,f(x). Almost identical arguments show that each
operator M.+ is equivalent to the one-sided Hardy-Littlewood maximal operator, M+.

The one-sided/z-minimal operators, on the otherhand, while satisfying rn+ f(x) </Z

m+, f (x) for/Zl </Z2, are not equivalent: there exist functions f such thatm.+2 f (x) <<
m+ f(x). For example, let f(x) 2lxl-3e-x-2., X[-l,0] + X(0,). Then for xk
--(1 +/z2)2-k,

m+, f(xk)

rn+f(xk --- cx as k -- oe.
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+ as IX -- 0 in Section 2.We will briefly examine the limit of m,
To explore the weak-type norm inequalities for mf, we first define the class

W+

DEFINITION. A pair of non-negative weights (u, v) is in the class Wp+,u, p >
O, tx > O, if given any pair of adjacent intervals I and J, I to the left of J with
11[ IxlJI, then

1
v /(p+I) dxudx <C

Il
where C is independent of the choice of I and J.

It is easy to see that Wp+,,2 C Wp+,u, for Ixl < Ix2. We will give a simple example
in Section 2 to show that the reverse inclusion is not true. We will also examine the
Wp+,u classes in the single weight case u v.

+ we now define the class (Wp+u)*To study the strong-type norm inequalities for rnu,
Throughout the paper, we use the notation cr v 1/(p+I).

DEFINITION. A pair ofnon-negative weights (u, v) is in the class (Wp+,u)*, p >
O, Ix > O, if given any pair of adjacent intervals I and J, I to the left of J with

111 IxIJ[, then

u

UJ m+ (tY/XJ)p

where C is independent of the choice of I and J.

As was the case in our previous work, a surprising result is that the strong and
weak type inequalities are actually equivalent.

THEOREM 1. Given p > 0, Ix > 0, thefollowing are equivalent.
(a) Weak-type inequality: there is a constant C > 0 independent of f > 0 with

1/f LP (v) such that

CrY+f(x) < l/t} < dx"u{x: mz -(b) u, v) W,.;
(c) Strong-type inequality: there is a constant C > 0 independent of f > 0 with

1/f Lp (v) such that

uf (m+ f)p
dx < C dx;

(d) (u, v) (W.)*.
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The material in this paper is organized as follows. In Section 2, we give some
preliminary results concerning the limiting case of mS as /z --+ 0, the inclusion
properties of the Wp+,, classes, and the one weight case u v.

Section 3 gives the proof of (d) = (c). The converse implication is proved by
inserting the function f a/Xj into the strong-type inequality. Similarly, the proof
of (a) =, (b) is gotten by substituting f a/Xj and lit IJl-lfj a dy into
the weak-type inequality. Surprisingly, a direct proof of the converse implication
has not been found. The implication (c) = (a) is easily proved using Chebyshev’s
inequality.

In Section 4, we prove the equivalence of Wp+, and (Wp+,)*.
In Section 5, we give an application of the one-sided/z-minimal operators to

the problem of convergence of convolution operators Tf(x) f (x), where
b(x) -lb(-lx) for suitably defined > 0. We study the type of convergence
of functions {gk tO f SO that the exceptional set Ef of convergence, i.e.,

Ef={x:limsuplT,f(x)-f(x)l>O},o
is controlled by the Egk’s in the sense that if Egkl < M < oo for k > 0, then

IEfl <_ M. Similar to our work in [2], we introduce a Muckenhoupt-type A2 condition
relative to the ,’s.

Throughout the paper, all functions are assumed to be measurable and notation
is standard or defined as necessary. Given a function g" N IR and a measurable
set E, g(E) denotes fe g dx. The weights u and v satisfy 0 < u(1), v(1) < oo for
all finite intervals I. By g/gt we denote the function equal to g on I and infinity
elsewhere. The letter C denotes a positive constant whose value may be different at
each appearance.

Finally, we would like to thank the referee for the many helpful comments and
corrections provided in the report.

2. Preliminary results

If we define + + + m+m. f(x) om,lim f(x). then clearly m. f(x) _< f (x). where

m+f is the one-sided minimal operator defined as (see [3])

m+f(x) inf fx+h f(y) dy.
h>o h l,x

+ +f(x)"It is worthwhile to note that in many cases, m, f(x) rn
+(f/xt)(x) rn+(f/)o)(x)(i) If f is locally integrable on a finite interval I, then rn,

+ (f/xI)(X) m+ (f/Zl)(X)almost everywhere. For x not in the closure of I, m,
oo. Let

E {x I: (f/xt)(x) > rn+(f/xt)(x)}.
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By the Lebesgue differentiation theorem, I\EI 0. Fix any Lebesgue point x e E
+(f/Xl)(X) < m+ (f/Xl)(X). For each/z > 0, there exists anand suppose that rn,

interval Jv C I to the right of x so that 0 < dist(x, Jv) < zI/,l and

+ (f/xl)(x) > f dymz _- -lz.

The intervals J cannot converge to a non-empty interval J that has x as its left end
point. For if they did, then by the Lebesgue dominated convergence theorem,

m, (f/Xl)(X) > lim f dy lz f/x.J dy > m+(f/)(.l)(X)

which is a contradiction. Therefore, I/l 0 as/z 0. Since dist(x, J,) 0,

J {x }, and so

ij, ,
f dy (f/)(.t) (x).

Therefore,

m, (f/xt)(x) > lim f dy (f/xt) (x) > m+(f/xt)(x)
o lz

which again is a contradiction.
(ii) If f Loc and 1/f Lp then + m+rn, f(x) f(x) for a.e.x.
Since 1/f LP, given any e > 0, there is N > 0 such that if I is an interval with

III > N,

if,I---l f dy >

Since m+f(x) is upper semi-continuous, on Ik [-k, k], re+f(x) is bounded by
some number Rk. For a fixed k, let be such that 1/ > R and let L k + 2N.
Then, for a.e. x e I, m+f(x) m+(f/xt_t.Ll)(X) and for/x < 1, m+,f(x)
m+, (f/xt_L.l)(x). By applying the first remark and letting k tend to cx, we get the
result.

(iii) It is easy to see that if 1If Lp, it may happen that m+.f(x) < m+f(x)
on a set of positive measure. Specifically, let an be a sequence of positive numbers

2 Let J,, (an a) and define f 0 on eachsuch that an o and an+ > an.
Putting/zn / (an 1), we see that rn+n f 0 on [0, an but rn+ f can be made as
large as desired by defining f appropriately on R\ t_J Jn.
We now give an example to show that the inclusion Wp+, C Wp+,u for/Zl <

is proper. Specifically, we will find a pair of weights (u, v) W+1,1\ W+I,u for/z > 1.
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Consider Ii (e 2, e 1), Ji (1 + ei- ei) for > 2. Define u and v by

u(x) E ei XI -+- X]R\uI,,

v(x) E e2i Xy’ -t-X]I\UJi

It is not difficult to see that (u, v) W+ and the fact that (u, v) W+ for/z >1,1 1,/.t
follows immediately by taking I (e tz, ei) and J (ei, 1 + el).

In the single weight case u v, the classes Wp+,, all collapse to the single class

A+oo--the union of the classes Ap+, p > 1, which govern the weighted norm inequal-
ities for M+. For if (09, 09) Wp+,u, then for any adjacent intervals I and J, I to the
left of J, and III =/zlJI,

(1) /(p+)
09 dX

III
dx < C

II U JI

In [3], we showed that this "one-sided" reverse H61der inequality is equivalent to
09 being in A+. Conversely, if w A+ then (1) holds, and by the geometric
characterization of A+. (see [3] or [9]), 09/(P+) satisfies the one-sided doubling
condition

f 091/(p+l) dx

_
c fj 091/(p+l) dx,

where the constant C depends only on 09 and tt. Hence (09, 09) Wp+,.

3. Proof of (d) = (c)

We first state a preliminary lemma that will be used repeatedly throughout the
paper. It is a technical result due to Muckenhoupt 10] generalized to arbitrary regular
measures. With the appropriate substitutions, the proof is identical to his proof for
Lebesgue measure and so is omitted.

LEMMA 2. Given a function f, a regular measure v and an interval I, let I
be a collection of intervals contained in I such that, for each t,

f dv > Nv(Ia).

If J U, I, then

f dv > (N/2)v(J).
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To prove that (d) = (c), we will first consider the special case where f is such
that 1/f has compact support. For each k Z define

+f(x) < 2-/}k= {x 2-k-1 <mu

and let Kk be an arbitrary compact subset of Ai. For each x Ak there is an open
interval Jx,i to the right of x such that 0 < dist(x, Jx,,) < lzl Jx,,l and

1 fJx 2-k
IJx,l f dy <

,k

Note that UJx,k C T, where T is some interval containing the support of 1/f. This will
be important later in the proof when we apply Lemma 2. Let Ix,k be the interval that
is adjacent to Jx,t,, to the left of Jx,k and IIx,,l tzl&,kl; then Ak C t_JIx,,. Therefore,
by compactness, for each k we can find a finite collection lj,, }jl C lx,k that covers
the set Kk. In fact,

mk

K U Ej,i,
j=l

where the Ej,,’s are the disjoint sets defined inductively by El,k ll,k f’) Kk, E2,k
(12,1 \ Ii,k) N Ki

For an arbitrary positive integer N we have

(2) u u

=_K (m-f)P
dx ., Z dx

.,
<_ 2p u(Ej,i) 2ip

j

<_ 2p

_
u(Ej,)lJj,lp f dy

1 f dy
(J,) ,

Define the measure on X Z x N by

( )
u(e:,)lg: 1 forljm,
(g:,)

and (k, j) 0 for j > m. Fuher, for h L() define

(JJ’) and Th(k, j) fJ:’ h dy
Sh(k, j)

fg:, h dy (Jj,)
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2By Htilder’s inequality, Sh(k, j) <_ T(hl-r’)(k, j)r-! for r > 1. Putting r + 7
and rewriting (2), we get

(_)2--u K, (m+u f p dx < 2p S f p {Tr’
cr fr’-

If T were a bounded operator from L2(a) --> L2(X, do)), then

=-uKk (m+u f)p
dx <_ C -f--cr dx C -- dx.

By taking nested compact sets Ki,k C Ki+l,k that increase monotonically to Ak
(modulo a set of measure zero), the monotone convergence theorem yields

u

=_vA, (m+ f)p
dx <_ C - dx.

Letting N --> cxz gives the desired result.
Therefore, it remains to show that T: L2(o") ----> L2(X, dw) is bounded. Since T

is clearly bounded in L, by Marcinkiewicz interpolation it will suffice to show that
T is weak (1,1): for all . > 0,

dw < ha dx.

To prove this, define the set

G(,) {(k, j)" Th(k, j) > L} { (k, j): 1: hadx > . ]r J, ,

and let

(k,j)eG(.)

The open set G is the countable union of disjoint open intervals Ji. Therefore by
Lemma 2, we have

(3) ha dx >
a(Ji) 2

If Jj,k C G, then Jj,k C Ji for exactly one i. Hence, if x 6 Ej, and Jj,k C Ji, then

mu
+ (a/Xsi (x) _<
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That is,

Therefore,

IJj,kl < inf [m+ (a/Xj) (x)]-cr(Jj,k) xEj.k lz

(4)

Now let li be the interval adjacent to Ji on the left such that Iii1 =/zl Ji I. If Jj.k C Ji,
then Ej, C li U Ji; hence, since the Ej,’s are disjoint, (4) is bounded by

u

uJ m+ (o’/X)P
2c f 2c frdx < CZo’(Ji)<_ TZ hdx < htTdx.

The first inequality follows from the (W+ )* condition, the second from (3) and the
p,/z

third since the Ji’s are disjoint.
To complete the proof, fix an arbitrary f and define the sequence fn f/Xt-n,n].

Clearly the sequence decreases monotonically to f. The sequence m+(fn) is also
+ (fn) On the other hand, for a fixedmonotonically decreasing and m+f < limn rn,

x in 1 and > 0, there is an interval J to the right of x with 0 < dist(x, J) <
so that for all n sufficiently large,

+f(x) > fdy e > +(fn)(X) em 1 mz
Therefore, by the monotone convergence theorem, the strong-type inequality holds
for all f and we are done.

4. Proof of (b) = (d)

We require the following well-known covering properties for . Their proofs can
be found in [2].

LEMMA 3. Let . be a collection of intervals in I ofpositive length. Then there
exists a countable sub-collection o such that U{ I" I .} U{ I" I o}.
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LEMMA 4. Let .T" be a finite collection of intervals in . Then there exist two
sub-collections f’l and .T’2 such that the intervals in .T’i are disjoint, 1, 2, and
U{I" I 1 U{I: I f’l} U {I" I ,’2}.

To prove that (b) = (d), first fix adjacent intervals I and J, I to the left of J,
such that I =/z] J I. We write

tJ m+ (cr/XJ)p m+ (cr/Xj)p
dx +

m_(cr/xj)p
dx

and estimate each integral separately.

u
dx < Ca(J).Step 1. Show that m+u (a/xj)p

Fix e > 0 and define

+(cr/xj)(x < 1/t]Et {x E I" mu

Then for any R > 0,

u
(5) m+ (a/xj)p

dx < gPu (I) + p tp-lu (Et) dt.

Note that if x Et, then there is an interval jt C J to the right of x so that
0 < dist(x, jt) </ZlJxtl and

(6) cr dy < -’t

Associate to jt the adjacent interval Ixt, where/x is to the left of Jx and [Ixt =/z[ Jx 1.
Now for each x Et, Itx contains the right endpoint of I since Jx C J. That is, for
every pair of points x and x2 in Et, the intervals Ix f) I and Ix2 N I are such that
one is contained in the other. Therefore, Et is the union of nested intervals I N I,
x Et, so we can find a point xt such that

bl (Et) <_ II (Itxt N I) + o(t),

where

e
6o (t) Xo,l - 2p tp+l X(l,o).
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Then by the Wp+,, condition and our choice of the Jxt’S,

u (Et) < u (Itx,) -t- eo(t) < C
l tx,

< C+o(t) <C+o(t).

-F e0(t)

Therefore,

p tP-llt (Et) dt < Cp III -2 dt + p tP-leo(t) dt < C 111 + e.g

Since e > 0 is arbitrary, by combining this with (5) we see that

u

m _a_Xj/
dx _< RPu (I) -+- C II

Let Rp a (J)" then the Wp+,u condition gives
u (I)’

m+u(a/xj)p
dx < Ca (J),

which is what we wanted.

U
Step 2. Show that

m+lz (a/Xj)p
dx < Ca(J).

Fix . 6 N such that 2-4 < /z. Define the intervals Ji inductively as follows
let J1 be the open interval that comprises the left half of the interval J. Let J2 be
the open interval adjacent to J that comprises the left half of the interval J\J.
Let J3 be the open interval adjacent to J2 that comprises the left half of the interval
J\(J1 U J2), etc. For each i, ]Ji[ 21Jg+l. Now, divide each Ji into otx 2TM

equal intervals, Ji, Ji, and to each Ji,j adjoin to the right an interval J’i,jQJ
with J’ 2-i-i,j[ I1i/1 IJI. The intervals Ji,j are of bounded overlap:

j=l

Fix a pair (i, j) and let

+(a/Xj)(x) < l/t}.Et Ei,j,t {x . Ji,j mu
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Ifx 6 Et then there exists Jx j.t
t,j,x C J to the right ofx suchthat0 < dist(x, Jxt) <

/zl Jxt and

(7) r dy < -’t
Associate to J the adjacent interval It, where I is to the left of J and IIx IX Jx .
By Lemma 3, there exists a countable collection I}e C {I }xse, such that

et U (I Ji,j) (I Ji,j)
xEt k

Let

Et,n ,J (I f3 Ji, )
k=l

By Lemma 4, there exists a disjoint sub-collection I,n f3 Ji,j /k--llmt’n C It N Ji,j }k=
such that

mt,n

(8) U (Et,n) <_ 2 u (I,n 0 Ji,j)
k=l

Among the set I[,n C Ji,j Im"n there is at most one interval, call it I1,, that contains/k=l’

the right hand endpoint of Ji,j. Similarly, there is at most one I,,, call it l2,,’t that
contains the left hand endpoint of Ji,j. All ofthe other intervals are properly contained
in Ji,j. A simple geometrical argument shows that
hence [I, tx [jt < 2x+2,n kl,n Ix Ji,j Similarly, I2,n Ix jtk2,n <- 2Z+2Ix Ji,j [.
Therefore

mt,n

(9) 11,n _< (1 + 2’+3Ix)[Ji,j [.
k=l

Then by (8), the Wp+,. condition, (7), and (9),

m,,n mt,n Ii/,,n r (J,n)p+I C mt,n C [Ji
U (Et,n) <_ 2 u (I,n) <_ C

_
<

k=l k=l ]J,nl p+I -tp+l
k=l tP+l

Since the right hand side of the above inequality is independent of n, we may take
the limit as n tends to infinity to get

clJi,l
U (Et) <

tp+l

Reasoning exactly as in step 1, we see that

, m+ (a/xj)p
dx <_ u + C---if-
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for each pair (i, j) and R > 0. Let Rp

2- _</z, (u, v) W;2_x, so
U (Ji,j)

since IJi,jl 2-XlJi’,l and

fj U

,: m+# (o’/xJ)p
dx <_ C,,

Finally, since the intervals J’i,j have bounded overlap, we sum over (i, j) to get the
desired inequality.

5. Application to convolution operators

Throughout this section let be a non-negative function of compact support such
that I111 1. Define the family of convolution operators T f(x) f(x), >
0, where q(x) e-lq (e-x); then it is well known that Tf f in Lp, < p <
cx. Further, if the associated maximal operator

T*f(x) sup I, * f(x)l
>0

is dominated by the Hardy-Littlewood maximal function, Mf, then T, f(x) f(x)
for a.e.x. However, the estimate T* f(x) < CMf(x) places a significant restriction
on " for example,

(x)-- sup (t)L.
Itl>_lxl

(See [5] or [13].) If ap L then there may exist f e L such that

lim sup Tf(x) o
--+0

almost everywhere. For the convenience of the reader we sketch a simple example:
define the sequence {Cn} such that the intervals In [1In 1In + otn] are disjointn=l
and

(x) x(x)

is in L . Let bj (x) jqb(jx); then T*f(x) sup Ij * f(x)l is not weak-type (1, 1)
since sup x(x) oo. (See [5, p. 296].) This implies that there exists a function

f L for which T*f(x) oo a.e. (See Proposition in [13, p. 441].)
Define the exceptional set for the pointwise convergence of the T’s by

Ef {x" limsuplTf(x)- f(x)l > 0}.
---> 0

The question we are interested in is the following: Given a sequence {gk} converging
pointwise to a function f, under what additional hypotheses is Ef controlled by the



NORM INEQUALITIES FOR A ONE-SIDED MINIMAL OPERATORS 89

Egk’s that is, if Egk < M < o for all k, then Ef <_ M. As the previous example
shows, L convergence is not sufficient: there exist gk Cc such that gk --+ f in L 1,
and clearly Eg is empty for continuous gk.

To give the correct condition, we need to assume that 1/f LP for some p > 0.
We can do this with no loss of generality since given f, we can replace f by F(x)
f(x) + e Ixl Then /F LP and Ef EF.
We now define the minimal operator associated to the T,’s:

T,f(x) infb f(x).
>0

The following result may be thought of as a Harnack inequality for the T’s.

LEMMA 5. Suppose for some ho > 0 the set {x: (x) > ho} contains a non-
empty open interval Io C (-0, 0). Then there exist constants lz lz > 0 and
c c > 0 such thatfor every x ,

T,f(x) > cm+ f(x).

Remark. If I0 C (0, cx), then m+ is replaced by m.
Proof. Suppose I0 (a, b), b < 0. Define/z -b/(b a) and bo ho. Xto.

Then 0 < o < , and so for x e ,
Tf(x) > o(t/)f(x t) dt

ho
f(x t) dt

x-a1
f(t) dthlll e-01

+f(x)> hollolmu
Let c h01Iol and we are done.

COROLLARY 6. Supposefor some ho > 0 the set {x" (x) > ho} contains a non-
empty open interval Io such that Io C (-o, 0). IfO < p < o and (u, v) Wp+,u,
then

(T, f)’-"’ dx < c - dx.

Proof. This follows from Lemma 5 and Theorem 1.

For general , the set {x" (x) > h} may not contain an interval for any h >
0, and thus Lemma 5 is not applicable. We can avoid this by replacing with
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(q + Xt_l,Ol)/2. Then, apart from a set of measure 0, Ef .f, where f
{x" lim sup Iq * f(x) f(x)l > 0}. This follows at once from the fact that if f is
locally integrable, then (XL-I,Ol), * f(x) f(x) for a.e.x.
We now define the Muckenhoupt-type A2 condition that plays a key role in con-

trolling the sets Ef. For w >_ 0, define

A2(w) sup wdy 1/wdy + sup Tw(x) T(1/w)(x).

The first term is the usual A2-condition and the second term can be viewed as an
A2-condition relative to {4, }. Note that if for some h > 0, the set {x" 4 (x) > h}
contains an interval, the first term is dominated by the second and can thus be dropped.

LEMMA 7. Let f, g be non-negativefunctions such that A2(If g I) co < cx.
Then

1

Tf(x) Tg(x)
CO (fg)l/3< where F

{TeE(x)}3’ If gl

Proof Apply H61der’s inequality with respect to the measure q(t) dt to get

(1)(x)’T(lf-gl)(x){TF(x)}3 T,(If gl)(x) < T,f(x) T,g(x) T,
If- gl

< coT, f(x). T,g(x).

THEOREM 8. Let (u, v) be a pair of weights and fix p > O. Let f be a non-
negative, locally integrablefunction such that 1/f E Lp (v). Then there exists tz > 0
such that, if (u v) W+ thefollowing holds:3p,/z’

If {gk is a sequence ofnon-negativefunctions satisfying

1
_+ in LP(v) and A2(lgk fl) -< c < cx for all k,

gk f
then given any ) < u(Ef and r/ > 0, there exists k k(,k, r/) such that u(Egk) >
)- rl.

Proof Since the measure udx is absolutely continuous, by the comment follow-
ing Corollary 6, we may assume that the set {x: q(x) > h} contains an open interval
contained in (-cxz, 0) for some h. Therefore Lemma 5 applies, so fix/x as in that
result.

Suppose now that (u v) W.+ Then u < cv so 1If LP(u). Hence3p,/x"
f(x) > 0 for almost every x (with respect to udx). Further, since f is locally
integrable, f(x) < o a.e.. Therefore u(Ef) u(D), where

D=lx limsup }>0
,0 T, f(x f(x
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Now let ) and r/be as in the statement of the theorem, and let Di C D be the set
where the given limit supremum is larger than ! i. Then we can find sufficiently
large so that u (Di) > . Now for each k let

fgk )Fk
If gl

Then by Lemma 7,

Tf(x) f(x)
c

T, Fk(X)3
1

Tg(x g(x)
1

g (x f(x

Hence, taking the limit supremum as tends to 0,

Di C {x" T, Fk(x) < 3ci} U Dk U {x" gk(x) f(x)

where Dgk is defined as D with f replaced by g. As before, u(Duk) u(Eg). Since
(u v) W+ by Corollary 6 and Theorem3p,/z’

u(Di) < cip fll
p

v dx + u(Egk).

Now choose k so large that the first term is < r/and we are done.

COROLLARY 9.
k, then u(Ef < M.

With the same hypotheses as above, ifu(Eg) < M < cxfor all

Remarks. (i) If u v 1, (that is, the unweighted case) we trivially have
(u, v) 6 W,u for all p and/z. Given a non-negative u, then (u, eu) Wp+,u for all p
and

(ii) We can replace the norm convergence of 1/gk to 1/f by the stronger hypothesis
that the g’s decrease monotonically to f. In this case, Theorem 8 can be thought of
as a Harnack principle for the T,’s.

(iii) The question of extending the convergence results given above to ]n for n >
+ should beremains open. It is unclear what the appropriate substitute form
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