A RESULT ON CYCLES ALGEBRAICALLY EQUIVALENT TO ZERO

JAMES D. LEWIS

0. Statement of the theorem

The inspiration for this paper comes in a theorem proven in [Sch] that implies for a geometric generic hypersurface $X_{\mid \mathbf{C}}$ of degree d in \mathbf{P}^{n+1}, with $n+2 \leq d \leq 2 n-2$, there exist two lines on $X_{\mid C}$ whose difference has infinite order in $\mathrm{CH}_{1}\left(X_{\mid \mathrm{C}}\right)_{\text {alg }}$. (This follows from [Sch, Thm 0.7.] and a connectedness result in [Bo, Thm 4.1.].) The argument involves a deformation of lines to a singular fiber, where some information is known. A different proof of this result, based on Roitman's theorem on zero cycles on varieties of non-zero genus, can be found in [P]. Alberto Collino [Co] has also indicated another proof, in a similar spirit to [P]. We would like to arrive at a general result which will have a broader scope of application. The proof will involve a combination of a deformation argument, together with some of Roitman's results on dimensions of orbits. If $H=H_{\mathbf{Q}}$ is a finite dimensional Hodge structure with Hodge decomposition $H_{\mathrm{C}}=\oplus_{p, q} H^{p, q}$, we define

$$
\operatorname{Level}(H)= \begin{cases}\max \left\{p-q \mid H^{p, q} \neq 0\right\} & \text { if } H \neq 0 \\ -\infty & \text { if } H=0\end{cases}
$$

We introduce the following:
(i) Let $\left\{E_{c}\right\}_{c \in \Omega}$ be a flat family of k-dimensional (irreducible) subvarieties in some \mathbf{P}^{N}.
(ii) Let $\left\{X_{t}\right\}_{t \in W}$ be a flat family of subvarieties in \mathbf{P}^{N}, with generic member smooth.
(iii) $P=\left\{(c, t) \in \Omega \times W \mid E_{c} \subset X_{t}\right\}$, with projection diagram

(iv) Assume W, Ω, P are smooth varieties, π, ρ are surjective with connected fibers, and that ρ is a smooth morphism. Also, we will set $\Omega_{X_{t}}=\rho\left(\pi^{-1}(t)\right)$, and let $\delta=\operatorname{dim} \Omega_{X_{t}}$ for general $t \in W$.

[^0](v) Fix a closed point $t_{0} \in W$, and an integer $\ell \geq 2$. Assume that there is an irreducible component $\Omega_{t_{0}} \subset \Omega_{X_{t_{0}}}$ of dimension $m \geq \ell$, with desingularization $\tilde{\Omega}_{t_{0}}$, such that the corresponding cylinder homomorphism $H_{\ell}\left(\tilde{\Omega}_{t_{0}}, \mathbf{Q}\right) \rightarrow W_{-2 k-\ell} H_{2 k+\ell}\left(X_{t_{0}}, \mathbf{Q}\right)$ has image Hodge level ℓ. Finally, assume $\delta \geq(m-\ell)+1$.
(0.2) THEOREM. Given the setting in (0.1) above. Then, for general $t \in W$, there are (an uncountable number of) non-torsion classes in $C H_{k}\left(X_{t}\right)_{a l g}$.

1. Notation

1. All varieties are irreducible complex projective varieties.
2. $C^{\prime}(X)$ is the Chow group of subvarieties of dimension k in X, modulo rational equivalence. $C H_{k}(X)_{a l g}$ is the subgroup of cycles, algebraically equivalent to zero.
3. A c-closed subset of a projective variety Z, is a countable union of Zariski closed subsets of Z. The dimension of a c-closed set is taken to mean the maximum among the dimensions of its irreducible components. A c-open set is the complement of a c-closed set. A general point of a projective variety is a point in a c-open subset (defined by satisfying certain predetermined conditions).
4. For a mixed Hodge structure H with weight filtration $W . H$, the graded piece is given by $G r_{W}^{\ell} H=W_{\ell} H / W_{\ell-1} H$.

2. Proof of the theorem

The proof is divided into three steps, the first of which is a deformation argument, the second involves Roitman's results, and the third is a specialization argument (which follows from Fulton's work).

Step 1. Choose a general point $t_{1} \in W$, and also choose any points $c_{0} \in \Omega_{X_{t_{0}}}$, $c_{1} \in \Omega_{X_{t_{1}}}$. Since Ω is smooth and $\operatorname{dim} \Omega \geq 1$, one can always find a smooth and irreducible curve $C \subset \Omega$ such that $c_{0}, c_{1} \in C$. Then $\rho^{-1}(C)$ is likewise smooth and irreducible, and one can find a smooth and irreducible curve $D \subset \rho^{-1}(C)$ such that $\left(c_{0}, t_{0}\right),\left(c_{1}, t_{1}\right) \in D$. There is a pullback diagram

where P_{D} is the unique irreducible component of $D \times_{W} P$ mapping onto D. Note that for each $(c, t) \in D, \operatorname{dim} \rho_{D}^{-1}((c, t))=\delta$, with choice of subvariety $E_{c} \subset X_{\pi((c, t))=t}$.

We will write $(\tilde{c}, t) \in \rho_{D}^{-1}((c, t))$, to really mean $\left.((c, t),(\tilde{c}, t)) \in \rho_{D}^{-1}(c, t)\right) \subset$ $D \times_{W} P$. Then we note that since $(c, t) \in \rho_{D}^{-1}((c, t))$ for general (c, t), and since D is the closure of its general points, it follows that $(c, t) \in \rho_{D}^{-1}((c, t))$ for all $(c, t) \in D$. Now choose any points $e_{0}, e_{1} \in \Omega$ subject to the condition that $\left(e_{0}, t_{0}\right) \in$ $\rho_{D}^{-1}\left(\left(c_{0}, t_{0}\right)\right),\left(e_{1}, t_{1}\right) \in \rho_{D}^{-1}\left(\left(c_{1}, t_{1}\right)\right)$. Now let $E \subset P_{D}$ be an irreducible curve passing through $\left(e_{0}, t_{0}\right)$ and (e_{1}, t_{1}), which we can assume to be smooth, by passing to a desingularization. One can further pullback P_{D} to E, with pullback diagram

Moreover, for each point $(e, t) \in E$, there are corresponding subvarieties E_{e}, $E_{\rho \circ \rho_{D}(e, t)=c} \subset X_{t}$. Now let $\mathcal{X} \stackrel{\text { def }}{=} \coprod_{t \in W} X_{t} \rightarrow W$ be the flat morphism describing our family $\left\{X_{t}\right\}_{t \in W}$, and pullback this family to $X_{E}=E \times{ }_{W} \mathcal{X} \xrightarrow{\lambda} E$, (and write $X_{\xi}=\lambda^{-1}(\xi)$). By construction, we have the following:
(2.0) (i) For any point $\xi \in E$, we have k-dimensional subvarieties $E_{e(\xi)}$, $E_{c(\xi)} \subset X_{\xi}$.
(ii) There are points $\xi_{0}, \xi_{1} \in E$ such that (with respect to reduced scheme structure) $X_{\xi_{0}}=X_{t_{0}}, X_{\xi_{1}}=X_{t_{1}}, E_{e\left(\xi_{0}\right)}=E_{e_{0}} \subset X_{t_{0}}$, $E_{c\left(\xi_{0}\right)}=E_{c_{0}} \subset X_{t_{0}}, E_{e\left(\xi_{1}\right)}=E_{e_{1}} \subset X_{t_{1}}, E_{c\left(\xi_{1}\right)}=E_{c_{1}} \subset X_{t_{1}}$.

It follows easily from (0.1) (iv) that $E_{e(\xi)} \sim_{a l g} E_{c(\xi)}$ in X_{ξ} for all $\xi \in E$. The reader can easily verify from our construction of c_{0}, e_{0} above, that in addition to (i) and (ii) above, the following can be arranged (we refer to (0.1)):
(iii) Let $S \subset \tilde{\Omega}_{t_{0}}$ be a general subvariety of dimension ℓ cut out by $m-\ell$ general hyperplane sections of $\tilde{\Omega}_{t_{0}}$. Then c_{0} can be chosen to correspond to a general point \tilde{c}_{0} of S, and e_{0} can be chosen to correspond to a general point of a certain subvariety in S of dimension ≥ 1 passing through \tilde{c}_{0}. This follows from the fact that the fibers of ρ_{E} are of dimension δ, and that $\delta \geq(m-\ell)+1((0.1)(\mathrm{v}))$.

Step 2. Let S be given as in (iii) above, and consider the cycle class map $\kappa: S \rightarrow$ $C H_{k}\left(X_{t_{0}}\right)$. One could argue, using Chow variety arguments, that the fibers of κ are c-closed subsets of S. We would like to argue that for general $p \in S, p$ is a component of the fiber $\kappa^{-1}(\kappa(p))$. This will essentially be a by-product of Roitman's work. By $(0.1)(\mathrm{v})$ and the weak Lefschetz theorem, the image of the cylinder homomorphism $H_{\ell}(S, \mathbf{Q}) \rightarrow W_{-2 k-\ell} H_{2 k+\ell}\left(X_{t_{0}}, \mathbf{Q}\right)$ has Hodge level ℓ. Therefore there is a non-zero holomorphic ℓ-form w in the image of the dual map $G r_{W}^{\ell+2 k} H^{\ell+2 k}\left(X_{t_{0}}, \mathbf{C}\right)^{\ell+k, k} \rightarrow$
$H^{\ell, 0}(S, \mathbf{C})$, viz. $\eta \mapsto w$. Let $\mathcal{S}^{N}(S)$ be the $N^{t h}$-symmetric product of S. The form $\sum_{i=1}^{N} \operatorname{Pr}_{i}^{*}(w)$ induces a corresponding "form" w_{N} on $\mathcal{S}^{N}(S)$. More specifically, w_{N} will be regular outside of the singular set of $\mathcal{S}^{(N)}(S)$. There is a corresponding cycle class map $\kappa_{N}: \mathcal{S}^{N}(S) \rightarrow C H_{k}\left(X_{t_{0}}\right)$. Since $\ell \geq 2((0.1)(v))$, we can use the following result found in [R, Section 3]:
(2.1) PROPOSITION. Let $\Sigma \subset \mathcal{S}^{N}(S)$ be an irreducible subvariety passing through a general point of $\mathcal{S}^{N}(S)$, and suppose that $w_{N \mid \Sigma_{n s}} \equiv 0$, where $\Sigma_{n s}$ is the non-singular part of Σ. Then $\operatorname{dim} \Sigma \leq N \ell-N$.

Now let $\xi \in \mathcal{S}^{N}(S)$ and define $V_{\xi}^{N}=\left\{p \in S \mid \exists \mu \in \mathcal{S}^{N-i}(S), \kappa_{N}(\xi)=\right.$ $\left.\kappa_{N}(\mu+p)\right\}$. We need the following:
(2.2) Lemma. Suppose that for all $p \in S$, there exists a subvariety $\Sigma_{p} \subset S$ of dimension ≥ 1 through p, such that $\kappa\left(\Sigma_{p}\right)=\kappa(p)$. Then $\operatorname{dim} V_{\xi}^{N} \geq 1$ for all ξ and N.

Proof. Let $\xi \in \mathcal{S}^{N}(S)$ be given and choose $q \in|\xi|$. Then $\xi=q+\xi^{\prime}$ for some $\xi^{\prime} \in \mathcal{S}^{N-1}(S)$. Then it follows that $\Sigma_{q} \subset V_{\xi}^{N}$. [Note: Similarly, if $\operatorname{dim} V_{\xi}^{1} \geq 1$ for all $\xi \in \mathcal{S}^{1}(S)=S$, then $\operatorname{dim} V_{\xi}^{N} \geq 1$ for all ξ and N.]

We now prove the following:
(2.3) Proposition. $\quad \operatorname{Dim} V_{\xi}^{N}=0$ for some ξ and N.

Proof (sketch only). The proof given here is a slight variation of one appearing in $[\mathrm{R}]$. We assume to the contrary that $\operatorname{dim} V_{\xi}^{N} \geq 1$ for all ξ and N. Let $Y \subset S$ be a general hyperplane section. Then $Y \cap V_{\xi}^{N} \neq \emptyset$ for all ξ. We define the c-closed set
$W_{Y}=\left\{(p, \xi) \in S \times \mathcal{S}^{N}(S) \mid \kappa(p)=\kappa_{N}(\xi)\right.$ modulo the image $\left.C H_{0}(Y) \rightarrow C H_{k}\left(X_{t_{0}}\right)\right\}$.
Then it is easy to see that the projection $\operatorname{Pr}_{2}: W_{Y} \rightarrow \mathcal{S}^{N}(S)$ is onto. [Proof: We have $\kappa_{N-1}(\mu)=\kappa_{N}(\xi)$ modulo $C H_{0}(Y) \rightarrow C H_{k}\left(X_{t_{0}}\right)$ for some $\mu \in \mathcal{S}^{N-1}(S)$. Now proceed by downward induction on N.] Thus $\operatorname{dim} W_{Y} \geq N \ell$. The fibers of the projection $P r_{1}: W_{Y} \rightarrow S$ have therefore dimension $\geq N \ell-\ell>N \ell-N$ for $N>\ell$. Now define the c-closed set

$$
W_{Y, \xi}=\left\{\nu \in \mathcal{S}^{N}(S) \mid \kappa_{N}(\nu)=\kappa_{N}(\xi) \text { modulo } C H_{0}(Y) \rightarrow C H_{k}\left(X_{t_{0}}\right)\right\}
$$

Note that $\kappa_{N}(\xi)=\kappa(p)$ modulo $\mathrm{CH}_{0}(Y) \rightarrow C H_{k}\left(X_{t_{0}}\right)$ for some $p \in S$. Thus $\operatorname{dim} W_{Y, \xi}>N \ell-N$ for $N>\ell$, and we can assume $W_{Y, \xi}$ is irreducible (with $\xi \in W_{Y, \xi}$) by restricting to irreducible components. Note that for dimension reasons alone $w_{\mid Y} \equiv 0$; moreover if $\tilde{\kappa}_{\xi}^{r}: \mathcal{S}^{r}(Y) \times \mathcal{S}^{r}(Y) \rightarrow C H_{k}(X)$ is the map given by $\tilde{\kappa}_{\xi}^{r}(A, B)=$
$\kappa_{N}(\xi)+\kappa_{r}(A)-\kappa_{r}(B)$, then one easily checks that the (well defined) pullback $\tilde{\kappa}_{\xi}^{r, *}(\eta)=\underline{P r} r_{1}^{*}\left(w_{r}\right)-\underline{P r}_{2}^{*}\left(w_{r}\right)=0$ on $\mathcal{S}^{r}(Y) \times \mathcal{S}^{r}(Y)$, where $w_{r}=\sum_{i} \operatorname{Pr}_{i}^{*}(w)$ is the obvious "form" and $P r_{j}: \mathcal{S}^{r}(Y) \times \mathcal{S}^{r}(Y) \rightarrow \mathcal{S}^{r}(Y)$ is the $j^{\text {th }}$-projection. Next, we observe that $\kappa_{N}\left(W_{Y, \xi}\right) \subset \cup_{r} \operatorname{Im}\left(\tilde{\kappa}_{\xi}^{r}\right)$. It follows from some standard c-closed arguments that $\kappa_{N}\left(W_{Y, \xi}\right) \subset \tilde{\kappa}_{\xi}^{r}\left(\mathcal{S}^{r}(Y) \times \mathcal{S}^{r}(Y)\right)$ for some r, and so there exist an irreducible component V of the c-closed set $\left\{(a, b) \in W_{Y, \xi} \times \mathcal{S}^{r}(Y) \times \mathcal{S}^{r}(Y) \mid \kappa_{N}(a)=\right.$ $\left.\tilde{\kappa}_{\xi}^{r}(b)\right\}$ such that the projection $P r_{1}$ is dominant in the commutative diagram below:

Then as a generalization of [Sa , Prop. 2.5] or [R, Section 3] (see [Le-1, Section 3]), there are well defined pullbacks which agree, viz. $\left(\kappa_{N} \circ \operatorname{Pr}_{1}\right)^{*}(\eta)=\left(\tilde{\kappa}_{\xi}^{r} \circ \operatorname{Pr}_{2}\right)^{*}(\eta)$. $\operatorname{But}\left(\tilde{\kappa}_{\xi}^{r} \circ \operatorname{Pr}_{2}\right)^{*}(\eta)=\operatorname{Pr}_{2}^{*} \circ \tilde{\kappa}_{\xi}^{r, *}(\eta)=0$, hence $0=\left(\kappa_{N} \circ \operatorname{Pr} r_{1}\right)^{*}(\eta)=\operatorname{Pr} r_{1}^{*} \circ \kappa_{N}^{*}(\eta)$. Since $P r_{1}$ is dominating, we deduce that $\left.w_{N}\right|_{\left(W_{Y, \xi}\right)_{n s}}=\left.\kappa_{N}^{*}(\eta)\right|_{\left(W_{Y, \xi}\right)_{n s}}=0$. This contradicts (2.1) for general choice of ξ, since $\operatorname{dim} W_{Y, \xi}>N \ell-N$ for $N>\ell$.

Finally, there are the following results, the first of which is a simple generalization of [R, p. 591], and the second a consequence of rigidity ([Lec], also see [Sch, Lemma 4.2]), or a generalization of [R, Sect. 2]:
(1) For any integer $N \geq 1$, $\operatorname{codim} V_{\xi}^{N}$, as a function of $\xi \in \mathcal{S}^{N}(S)$, attains its maximum on a c-open subset of $\mathcal{S}^{N}(S)$.
(2) The torsion subgroup $C H_{k}\left(X_{t_{0}}\right)_{t o r}$ is countable.

As a consequence of the above, there is the following:
(2.4) COROLLARY. Let $c_{0} \in S$ be a general point, $\Sigma \subset S$ a subvariety of dimension ≥ 1 through c_{0}, and e_{0} a general point in Σ. Then $\kappa\left(c_{0}-e_{0}\right) \in C H_{k}\left(X_{t_{0}}\right)_{\text {alg }}$ is a non-torsion class.

Step 3. We now refer to the setting of (2.0)(i), (ii) and (iii). By step 2, we can now assume that $\left\{E_{c\left(\xi_{0}\right)}-E_{e\left(\xi_{0}\right)}\right\} \in C H_{k}\left(X_{t_{0}}\right)_{a l g}$ and that $\left\{E_{c\left(\xi_{0}\right)}-E_{e\left(\xi_{0}\right)}\right\} \in C H_{k}\left(X_{t_{0}}\right)_{\text {alg }}$ is a non-torsion class. Let η be the generic point of E. Then $E_{c\left(\xi_{0}\right)}, E_{e\left(\xi_{0}\right)}$ are specializations of the cycles $E_{c(\eta)}, E_{e(\eta)} \in C H_{k}\left(\left(X_{K}\right)\right.$, where X_{K} is the generic fiber (over η). Let R be the local ring of E at t_{0} [Note that $K=$ Quot (R)]. Since E is smooth, R is a discrete valuation ring. According to [F, Section 4.4.], there is a
commutative diagram and specialization map below:

We conclude therefore that $M\left(E_{c(\eta)}-E_{e(\eta)}\right)$ is not rationally equivalent to zero for any integer $M \geq 1$, and therefore $E_{c(\xi)}-E_{e(\xi)}$ is a non-torsion class in $C H_{k}\left(X_{\xi}\right)$ for sufficiently general $\xi \in E$. This implies that $C H_{k}\left(X_{t}\right)_{a l g}$ has non-torsion classes for general $t \in W$. In fact, there is the following result:
(2.5) Proposition. Let Z be a smooth projective variety, and k an integer. If $C H_{k}(Z)_{a l g} \neq 0$, then $C H_{k}(Z)_{a l g}$ is uncountable. [Hence by the countability of $C H_{k}(Z)_{t o r}$, there must exist non-torsion classes.]

Proof. See [Sch, Thm 0.8.]. Alternatively, if $\mathrm{CH}_{k}(Z)_{a l g} \neq 0$, then there exist an abelian variety A and a non-trivial cycle induced homomorphism $A \rightarrow \mathrm{CH}_{k}(Z)_{a l g}$ with c-closed fibers. The connected component of zero in the kernel will be an abelian variety B; thus factoring out by B, the corresponding induced map $A / B \rightarrow$ $C H_{k}(Z)_{a l g}$ has countable fibers, hence uncountable image.

3. Applications of the theorem

Using [Bo] and [Le-2], there is the following result:
(3.0) TheOrem (See [Bo, Cor. 2.2.] and [Le-2, Cor. 3.8.]). Assume given a smooth general hypersurface $Z \subset \mathbf{P}^{n+1}$ of degree $d_{0} \geq 3$. Let $k=\left[\frac{n+1}{d_{0}}\right]$, and $\Omega_{Z} \xlongequal{\text { def }}\left\{\mathbf{P}^{k}\right.$'s $\subset Z\}$. Then Ω_{Z} is smooth and of dimension m, where $m=(k+1)(n+1-k)-\binom{d_{0}+k}{k}$ (and provided $m \geq 0$); moreover if $m \geq \ell$, where $\ell=n-2 k$, then the cylinder homomorphism $H_{n-2 k}\left(\Omega_{Z}, \mathbf{Q}\right) \rightarrow H_{n}(Z, \mathbf{Q})$ is surjective. [Also, if in addition $\ell \geq 2$, then $\mathrm{CH}_{k}(Z)_{\text {alg }}$ is infinite dimensional.]

Now let $X \subset \mathbf{P}^{n+1}$ be a general hypersurface of degree d, and k an integer ≥ 0. If we set Ω_{X} to be the variety of k-planes on X, then according to [Bo], $\operatorname{dim} \Omega_{X}=\delta$, where $\delta=(k+1)(n+1-k)-\binom{d+k}{k}$. The role of δ, and of m, ℓ in (3.0), will be the same as for δ, m, ℓ in (0.1) above. As for choices of $W, \Omega, X_{t_{0}}$ in (0.1), we will set W to be the projective space of hypersurfaces of degree d in \mathbf{P}^{n+1}, Ω to be the Grassmannian of \mathbf{P}^{k} 's in \mathbf{P}^{n+1}, and $X_{t_{0}}=Z \cup M$, where Z is given in (3.0),
M is a smooth hypersurface of degree $d-d_{0}$ (where we assume $d \geq d_{0} \geq 3$), and where Z meets M transversally in a smooth variety K. Since $d_{0} \geq 3$ it follows that $\operatorname{Level}\left(H_{n}(Z, \mathbf{Q})\right)=\ell$. Now let $\tilde{\Omega}_{t_{0}}=\Omega_{Z}$, and assume $\ell \geq 2$. Then the image of the cylinder homomorphism $H_{\ell}\left(\tilde{\Omega}_{t_{0}}, \mathbf{Q}\right) \rightarrow W_{-2 k-\ell} H_{2 k+\ell=n}\left(X_{t_{0}}, \mathbf{Q}\right)$ has level ℓ. [This is easily seen from the Mayer-Vietoris description $W_{-n} H_{n}\left(X_{t_{0}}\right) \simeq$ $\left\{H_{n}(Z, \mathbf{Q}) \oplus H_{n}(M, \mathbf{Q})\right\} / H_{n}(K, \mathbf{Q})$, where $\operatorname{dim} H_{n}(K, \mathbf{Q}) \leq 1$ by the Lefschetz theorem.] Now in order to satisy the conditions of Theorem (0.2), viz. (0.1), we are going to require $d_{0} \leq d, k=\left[\frac{n+1}{d_{0}}\right], \ell \geq 2, m \geq \ell$, and $\delta \geq(m-\ell)+1$. In this case, $\Omega_{X_{t}}$ is connected for all $t \in W$ (see [Bo, Thm 4.1.]), and $\rho: P \rightarrow \Omega$ is a projective bundle. A reformulation of these conditions appears in (3.1) below. In particular, we deduce:
(3.1) Corollary. Let $X \subset \mathbf{P}^{n+1}$ be a general hypersurface of degree $d \geq 3$. Assume given positive integers d_{0}, ℓ, k satisfying
(i) $k=\left[\frac{n+1}{d_{0}}\right]$,
(ii) $n-2 k \geq 2$,
(iii) $k(n+2-k)+1-\binom{d_{0}+k}{k} \geq 0$,
(iv) $0 \leq\binom{ d+k}{k}-\binom{d_{0}+k}{k} \leq n-2 k-1$.

Then $\mathrm{CH}_{k}(X)_{\text {alg }}$ is uncountable. In particular $\mathrm{CH}_{k}(X)_{\text {alg }}$ contains non-torsion classes.

Example. If we choose $d_{0}=n+1$, so that $k=1$, then Schoen's result as stated in Section 0 follows.

REFERENCES

[Bo] C. Borcea, Deforming varieties of k-planes of projective complete intersections, Pacific J. Math. 143 (1990), 25-36.
[Co] A. Collino, Correspondence 1991.
[F] W. Fulton, Rational equivalence on singular varieties, Publ. Math. I.H.E.S. 45 (1975), 147-167.
[Lec] F. Lecomte, Ridigité des groupes de Chow, Duke Math. J. 53 (1986), 405-426.
[Le1] J. Lewis, A generalization of Mumford's theorem II, Illinois J. Math. 39 (1995), 288-304.
[Le2] \qquad Cylinder homomorphisms and Chow groups, Math Nachr. 160 (1993), 205-221.
[P] K. Paranjape, Cohomological and cycle theoretic connectivity, Ann. of Math. 140 (1994), 641-660.
[R] A. Roitman, Rational equivalence of zero cycles, Math. USSR Sbornik 18 (1972), 571-588.
[Sa] H. Saito, The Hodge cohomology and cubic equivalences, Nagoya Math. J. 94 (1984), 1-41.
[Sch] C. Schoen, On Hodge structures and non-representability of Chow groups, Compositio Math. 88 (1993), 285-316.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
jale@oscar.math.ualberta.ca

[^0]: Received October 24, 1995.
 1991 Mathematics Subject Classification. Primary 14C30.

