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A RESULT ON CYCLES ALGEBRAICALLY EQUIVALENT
TO ZERO

JAMES D. LEWIS

0. Statement of the theorem

The inspiration for this paper comes in a theorem proven in [Sch] that implies for
a geometric generic hypersurface X c of degree d in P"*!, withn +2 <d <2n -2,
there exist two lines on X c whose difference has infinite order in C Hy (X c)aig. (This
follows from [Sch, Thm 0.7.] and a connectedness result in [Bo, Thm 4.1.].) The
argument involves a deformation of lines to a singular fiber, where some information
is known. A different proof of this result, based on Roitman’s theorem on zero
cycles on varieties of non-zero genus, can be found in [P]. Alberto Collino [Co] has
also indicated another proof, in a similar spirit to [P]. We would like to arrive at a
general result which will have a broader scope of application. The proof will involve
a combination of a deformation argument, together with some of Roitman’s results
on dimensions of orbits. If H = Hg is a finite dimensional Hodge structure with
Hodge decomposition Hc = @, , H?'?, we define

- 2 :
We introduce the following:

0.1) (i) Let {E.}.eq be a flat family of k-dimensional (irreducible) subvari-
eties in some PV,

(ii) Let {X,};ew be a flat family of subvarieties in PV, with generic
member smooth.

(iii) P = {(c,t) € 2 x W | E. C X,}, with projection diagram
P ; w

l"
Q
(iv) Assume W, 2, P are smooth varieties, 7, p are surjective with con-

nected fibers, and that p is a smooth morphism. Also, we will set
Qx, = p(mr~1(1)), and let § = dim Qy, for generalt € W.
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(v) Fix a closed point t, € W, and an integer £ > 2. Assume that
there is an irreducible component €2,, C X of dimension m > £,

with desingularization Q,o , such that the corresponding cylinder
homomorphism H¢(Qy,, Q) — W_ok—¢Haye(Xy,, Q) has image
Hodge level £. Finally, assume 6 > (m — £) + 1.

(0.2) THEOREM. Given the setting in (0.1) above. Then, for generalt € W, there
are (an uncountable number of) non-torsion classes in C Hy(X)alg.

1. Notation

1. All varieties are irreducible complex projective varieties.

2. C Hy(X) is the Chow group of subvarieties of dimension & in X, modulo rational
equivalence. C Hy(X)qa, is the subgroup of cycles, algebraically equivalent to zero.

3. A c-closed subset of a projective variety Z, is a countable union of Zariski
closed subsets of Z. The dimension of a c-closed set is taken to mean the maximum
among the dimensions of its irreducible components. A c-open set is the complement
of a c-closed set. A general point of a projective variety is a point in a c-open subset
(defined by satisfying certain predetermined conditions).

4. For a mixed Hodge structure H with weight filtration W.H, the graded piece is
given by Grﬁ,H = W(H/ Wz..lH.

2. Proof of the theorem

The proof is divided into three steps, the first of which is a deformation argument,
the second involves Roitman’s results, and the third is a specialization argument
(which follows from Fulton’s work).

Step 1. Choose a general point #; € W, and also choose any points ¢y € Qx,,
cp € Q X, Since €2 is smooth and dim 2 > 1, one can always find a smooth and
irreducible curve C C 2 such that ¢y, ¢; € C. Then p~'(C) is likewise smooth and
irreducible, and one can find a smooth and irreducible curve D C p~!(C) such that
(co, t9), (c1, 1)) € D. There is a pullback diagram

’

PD—-n—-)P

o &

7Tlp
D —— W,

where Pp, is the unique irreducible component of D x y P mapping onto D. Note that
for each (c, t) € D, dim pgl((c, t)) = 8, with choice of subvariety E; C Xy ((c.1))=t-
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We will write (¢,t) € PL_)I((C» 1)), to really mean ((c,?), (¢, t)) € pl’,l(c, 1)) C
D xw P. Then we note that since (c,t) € p[)‘((c, 1)) for general (c, t), and since
D is the closure of its general points, it follows that (c,t) € p,;'((c, 1)) for all
(c,t) € D. Now choose any points eg, e; € 2 subject to the condition that (eg, t) €
p;'((co, 1)), (e1, 1)) € p,;‘((cl, f1)). Now let E C Pp be an irreducible curve
passing through (eo, 7o) and (e;, t;), which we can assume to be smooth, by passing
to a desingularization. One can further pullback Pp to E, with pullback diagram

Pr —— P

al &

E — W,

Moreover, for each point (e,t) € E, there are corresponding subvarieties E,,
d . .
Epoppen=c C X;. Now let X o UteW X, — W be the flat morphism describ-

ing our family {X,},cw, and pullback this family to Xy = E xy X SN E, (and
write X; = A~1(£)). By construction, we have the following:

2.0) (i) For any point £ € E, we have k-dimensional subvarieties E,),
E. ¢ C Xe.

(ii) There are points &, & € E such that (with respect to reduced
scheme structure) Xg, = X, Xe, = Xy, Eey) = Eoy C Xi
EC(Eo) = E¢ C X Ee(él) = E, C Xy, EC(%‘l) =E;, CX,.

It follows easily from (0.1) (iv) that E.¢) ~a, Ece) in X forall £ € E. The
reader can easily verify from our construction of cg, ey above, that in addition to (i)
and (ii) above, the following can be arranged (we refer to (0.1)):

(iii) LetS C €, be a general subvariety of dimension £ cut out by m — £
general hyperplane sections of fz,o. Then cg can be chosen to corre-
spond to a general point ¢ of S, and eg can be chosen to correspond
to a general point of a certain subvariety in S of dimension > 1
passing through ¢y. This follows from the fact that the fibers of pg
are of dimension 8, and that § > (m — £) + 1 ((0.1) (v)).

Step 2. Let S be given as in (iii) above, and consider the cycle class map k: S —
C Hi(X,,). One could argue, using Chow variety arguments, that the fibers of « are
c-closed subsets of S. We would like to argue that for general p € S, p is acomponent
of the fiber ¥ ~! (k (p)). This will essentially be a by-product of Roitman’s work. By
(0.1)(v) and the weak Lefschetz theorem, the image of the cylinder homomorphism
H(S, Q) = W_pi—gHopye(Xy,, Q) has Hodge level £. Therefore there is a non-zero
holomorphic ¢-form w in the image of the dual map Gri* H**%(X,,, C)**** —
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H%(S, C), viz. n = w. Let SV (S) be the N""-symmetric product of S. The form
Z,N:l Pr}(w) induces a corresponding “form” wy on SV (S). More specifically, wy
will be regular outside of the singular set of S*Y)(S). There is a corresponding cycle
classmap ky: SV (S) - CH (X 1)- Since £ > 2 ((0.1)(v)), we can use the following
result found in [R, Section 3]:

(2.1) PROPOSITION. Let ¥ C SN (S) be an irreducible subvariety passing through
a general point of SV (S), and suppose that wy s, = 0, where ., is the non-singular
part of Z. ThendimX < N¢ — N.

Now let & € SM(S) and define V' = {p € S| 3u € S¥I(8),kn(§) =
kn (4 + p)}. We need the following:

(2.2) LEMMA. Suppose that for all p € S, there exists a subvariety %, C S of
dimension > 1 through p, such that k(X,) = k(p). Then dim V,;N > 1forall &
and N.

Proof. Let& € SV(S) be given and choose g € |£|. Then & = q + &’ for some
& € SN-1(S). Then it follows that &, C VEN . [Note: Similarly, if dim VEl > 1 for
all § € §'(S) = §, then dim V" > 1 forall § and N.]

We now prove the following:

(2.3) PROPOSITION.  Dim V,¥ = 0 for some & and N.

Proof (sketch only). The proof given here is a slight variation of one appearing
in [R]. We assume to the contrary that dim VEN > 1foralléand N. LetY C Sbea

general hyperplane section. Then Y N VSN # @ for all £. We define the c-closed set

Wy ={(p, &) € SxSN(S) |k (p) = kn (&) modulotheimage C Hy(Y) — C Hy(Xy,)).

Then it is easy to see that the projection Pry: Wy — SN(S) is onto. [Proof:
We have ky_; (1) = kn(€) modulo CHy(Y) — CHi(X,,) for some u € SN=I(S).
Now proceed by downward induction on N.] Thus dim Wy > N¢£. The fibers of the
projection Pr;: Wy — S have therefore dimension > N£—¢ > N¢— N for N > £.
Now define the c-closed set

Wye = {v € SY(S) | ky(v) = kn (&) modulo CHo(Y) — CHi(X,,)}.

Note that ky(§) = «(p) modulo CHy(Y) — CHi(X,,) for some p € S. Thus
dim Wy > N{—N for N > £,and we canassume Wy, isirreducible (withé € Wy )
by restricting to irreducible components. Note that for dimension reasons alone
wyy = 0; moreoverif kf: S"(Y)xS"(Y) — CHy(X) isthe map given by ﬁg(A, B) =
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kn(€) + k- (A) — k,(B), then one easily checks that the (well defined) pullback
&"(m) = Pri(w,) — Pri(w,) =0on 8 (Y) x S"(Y), where w, = ), Pr}*(w) is
the obvious “form” and Pr;: S"(Y) x 8"(Y) — S"(Y) is the j™-projection. Next,
we observe that ky(Wy) C U, I m(l?g ). It follows from some standard c-closed
arguments that xy(Wye) C k7 (S"(Y) x S"(Y)) for some r, and so there exist an
irreducible component V of the c-closed set {(a, b) € Wy xS"(Y)xS"(Y) |kn(a) =
I?g (b)} such that the projection Pr; is dominant in the commutative diagram below:

v o S'(Y) x S'(Y)

Pnl l'?g

K,
Wye ——  CH(X,).

Then as a generalization of [Sa, Prop. 2.5] or [R, Section 3] (see [Le-1, Section 3]),
there are well defined pullbacks which agree, viz. (ky o Pry)*(n) = (kg o Pry)*(n).
But (¢ o Pr2)*(n) = Prj ok;™(n) = 0, hence 0 = (ky o Pri)*(n) = Pr} ok ().
Since Pr; is dominating, we deduce that wy|wy,),, = kxy(MIwy,, = 0. This
contradicts (2.1) for general choice of &, since dim Wy, > N — N for N > £.

Finally, there are the following results, the first of which is a simple generalization
of [R, p. 591], and the second a consequence of rigidity ([Lec], also see [Sch, Lemma
4.2]), or a generalization of [R, Sect. 2]:

(1) For any integer N > 1, codim VEN , as a function of £ € SM(S), attains its
maximum on a c-open subset of S N(S).
(2) The torsion subgroup C Hi(X,):or is countable.

As a consequence of the above, there is the following:

(2.4) COROLLARY. Letcy € S be a general point, £ C S a subvariety of dimen-
sion > 1 through cy, and ey a general point in X.. Then k(co — ep) € CHy(Xyy)aig is
a non-torsion class.

Step 3. 'We now refer to the setting of (2.0)(i), (ii) and (iii). By step 2, we can now
assume that {Ec(go) — Ee(ég)} € CHk(Xto)alg and that {Ec(go) - Ee(go)} € CH; (Xto)alg
is a non-torsion class. Let n be the generic point of E. Then E.g,, E.¢,) are
specializations of the cycles Ey), E¢y € CHi((Xg), where X is the generic fiber
(over n). Let R be the local ring of E at fy [Note that K = Quot(R)]. Since E
is smooth, R is a discrete valuation ring. According to [F, Section 4.4.], there is a
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commutative diagram and specialization map below:
(Eeon = Eecn)} — {Een) = Eew)
CHi+1(Xg) —  CHi(Xk)

\: \  h
{EC(EO) - Ee(c‘fo)} € CHk(Xto)

We conclude therefore that M (E.;) — E.(;) is not rationally equivalent to zero
for any integer M > 1, and therefore E ) — E. () is a non-torsion class in C Hy(X¢)
for sufficiently general £ € E. This implies that C Hi(X;)4, has non-torsion classes
for general + € W. In fact, there is the following result:

(2.5) PROPOSITION. Let Z be a smooth projective variety, and k an integer. If
CH(Z)aig # 0, then CH(Z)a is uncountable. [Hence by the countability of
CH(Z),,r, there must exist non-torsion classes.]

Proof. See [Sch, Thm 0.8.]. Alternatively, if C Hy(Z)a # 0, then there exist an
abelian variety A and a non-trivial cycle induced homomorphism A — CH(Z)a
with c-closed fibers. The connected component of zero in the kernel will be an
abelian variety B; thus factoring out by B, the corresponding induced map A/B —
C Hy(Z) 414 has countable fibers, hence uncountable image.

3. Applications of the theorem

Using [Bo] and [Le-2], there is the following result:

(3.0) THEOREM (See [Bo, Cor. 2.2.] and [Le-2, Cor. 3.8.]). Assume givenasmooth

general hypersurface Z C P**! of degree dy > 3. Letk = [”d%l], and Qz &t {P*’s

C Z}. Then Q is smooth and of dimension m, wherem = (k+1)(n+1—k) — (d";"k)
(and provided m > 0); moreover if m > £, where £ = n — 2k, then the cylinder ho-
momorphism H, (27, Q) — H,(Z, Q) is surjective. [Also, if in addition £ > 2,
then C Hy(Z) a1, is infinite dimensional.]

Now let X C P"*! be a general hypersurface of degree d, and k an integer > 0. If
we set Qx to be the variety of k-planes on X, then according to [Bo], dim 2x = 4,
where § = (k + 1)(n + 1 — k) — (*}*). The role of &, and of m, € in (3.0), will
be the same as for &, m, £ in (0.1) above. As for choices of W, Q, X, in (0.1), we
will set W to be the projective space of hypersurfaces of degree d in P**!, Q to be
the Grassmannian of P¥’s in P"*!, and X, = Z U M, where Z is given in (3.0),
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M is a smooth hypersurface of degree d — dp (where we assume d > dy > 3), and
where Z meets M transversally in a smooth variety K. Since dy > 3 it follows
that Level(H,(Z,Q)) = £. Now let s"z,o = Qz, and assume £ > 2. Then the
image of the cylinder homomorphism He(s”z,o, Q) > W_g—¢Hppyo=n(Xy), Q) has
level £. [This is easily seen from the Mayer-Vietoris description W_, H,(X,) =~
{H,(Z,Q) & H,(M,Q)}/H,(K,Q), where dim H,(K,Q) < 1 by the Lefschetz
theorem.] Now in order to satisy the conditions of Theorem (0.2), viz. (0.1), we are
going torequire dy < d, k = [%], £>2,m>¢{,and 8 > (m —£)+ 1. In this case,
Qy, is connected for all t € W (see [Bo, Thm 4.1.]), and p: P — R is a projective

bundle. A reformulation of these conditions appears in (3.1) below. In particular, we
deduce:

(3.1) COROLLARY. Let X C P"™*! be a general hypersurface of degree d > 3.
Assume given positive integers dy, £, k satisfying

d,
Qi) n— 2k >2,
(iii) k(n +2—k)+1— (“F) >0,
) 0< (N — (") <n-2k—1.

i k= [=1],

Then CHy(X)aig is uncountable. In particular CHy(X)a, contains non-torsion
classes.

Example. 1f we choose dy = n + 1, so that k = 1, then Schoen’s result as stated
in Section O follows.
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