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POINTED SIMPLICIAL COMPLEXES

HARA CHARALAMBOUS

I. Introduction

For what follows, R is k[xl Xn ], k is a field of characteristic p, I is a monomial
ideal of R and M R/I. The ranks of the free modules that appear in a minimal
free resolution of M might depend on p. It is well known that the zeroth and nth
betti number of M are independent of p. Bruns and Herzog, [BrHe95] show that if
n < 5 all betti numbers of M are independent of p. In the same paper they show
that for 1, 2, n 1, the th betti number of M is always independent of p.
Terai and Hibi [TeHia] show that the third and fourth betti numbers are independent
of p when I is generated by monomials of degree 2 and also prove that the betti
numbers are independent of k in some other cases as well [TeHia], [TeHib]. The
most familiar classes of monomial ideals whose betti numbers are independent of p
include (a) monomial ideals which are generated by R-sequences, (b) stable monomial
ideals [E1Ke90], and (c) squarefree stable ideals [ArHeHi95], [ChEv93].
A significant link between commutative algebra and topology comes from the

Stanley-Reisner rings. First, to any monomial ideal J one can correspond a sq_uarefree
monomial ideal I. If A is the corresponding simplicial complex of I and C. is the
augmented chain complex, Hochster’s formula may be used to compute the betti
numbers of I (and of J) from the k dimensions of the homology groups of A and its
subcomplexes A / T.

In this paper we show that for certain simplicial complexes we can find a vertex
y, such that O----li(A/{y})----Ii(A)----li_(link y)----->O is short exact for all
i. We call complexes with this property pointed complexes. Examples of pointed
complexes include the complexes and subcomplexes that correspond to the ideals of
(a), (b) and (c). It is clear that if the reduced homology groups of both ends of the
short exact sequence are free Z-modules then Hi (A) is a free Z-module. In practice,
whenever the associated ideals of A/y and link y are of the same kind as the ideal of
A, one can use induction on the total degree of the minimal generators of the ideals to
conclude that the reduced homology groups are free Z-modules. This explains from
a topological point of view why the ideals with pointed complexes and subcomplexes
have betti numbers that do not depend on p.
We are grateful to Lauren Rose for some discussions that motivated this present

work.
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2. Notations and definitions

A simplicial complex A with vertex set Vzx {x Xn} is a family of subsets
of V/x such that the next two conditions hold: (a) {xi} is an element of A, i and
(b) if tr is in A and r is a subset of or, then r is in A. If {Xil Xi(r+l)} is an
element of A we call it an r-face of A. To any subset F {xi, xi. of Vzx we
correspond a monomial mF Xi,’’’Xis of R k[xl Xn] and vice versa. To
A we associate a squarefree ideal I of R whose generators are the monomials rnF
such that F A. We call I the associated ideal of A. Conversely whenever I is a
squarefree monomial ideal of R whose generators are of degree strictly bigger than
1, the associated simplicial complex m has vertex set V {Xl Xn and faces
the subsets F of V for which rn F I. If I is a squarefree monomial ideal minimally
generated by Xil Xit, ml ms and the degree of the monomials mi is bigger
than 1, then we set At :-- At,, the simplicial complex whose associated ideal is
I’= (ml ms). The vertex set of AI is {x xn} \ {Xil Xit}.
We give the elements of V a linear order and construct the simplicial chain complex,

C.(A),with coefficients in Z"

Here Cr(A) is the free Z module on the ordered r-faces of A [Xil Xi(r+l)], <
2 < < (r+ 1)), and the differentiation is the map 0 that sends [xi xi (r+l) to
yj=r+l )j+lj= (-1 [Xil xij xi,r+)]. For more details on simplicial complexes
consult [St83] or [BrHe93]. We set [x,,i) x,ik)] signum(cr)[xi xik].

’, (1) stands for the complex " shifted by to the left: i (1) ’i-. By
/i (A) we mean the homology of C,(A) at the ith place and by/i(A, k) we mean
the homology of C,(A) (R) k. If Hi (A) is a free Z-module then Hi (A, k) has k-
dimension equal to the rank of i (A) as a Z-module. If A contains the maximum
face {X Xn then i (A) 0 for all i.
We briefly recall the connection between the betti numbers of I and the ranks of the

homology groups of the associated simplicial complex. If I is a squarefree monomial
ideal whose generators all have degree greater than and A is the corresponding
simplicial complex, then we can compute the betti numbers of I from the following

Rformula due to Hochster [Ho77]: bq (R/I) dim:li(A/T, k) where T varies
among all subsets of V with Tl+q (n- 1)-i. Here A / T stands for the subcomplex
of A consisting of all faces with vertices outside T. If I is a monomial squarefree ideal
minimally generated by Xil xit and the monomials rn ms whose degree is
bigger than 1, then we can compute the betti numbers of I’ (ml ms) by the
above formula and the betti numbers of ! by shifting and adding successively (t-times)
the betti numbers of I’.

Let y be a vertex of VA. By linka y we mean the faces G such that G U y
A,yfqG 13. Let F [Xil xit] be an oriented face of A. We will con-
sider the diminution [, F] of F" we define [, F] (-1)’- [xi .is xit]
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if y Xis for some s, otherwise we let [, F] 0. We will also consider the
augmentation [y, F] of F by y: [y, F] 0 if y Xis for some s, otherwise
[y, F] [y, Xil xit].

Let T {Xil Xik}. The associated ideal of AI/T is the ideal I A R’ of
R’ k[xjl Xjs], (it =/= il). It has the same generators as I except we omit
these generators which are divisible by the variables in T. Finally we remark that
At/T A(l+(xi Xik))"

3. Pointed simplicial complexes

Let y be a vertex of Ai. We are going to consider the relations among the homology
groups of AI, A(l.y) and A(l:y).

Remark. (i) Let I be a squarefree ideal, A the corresponding simplicial complex
and y a vertex of At. Then linkA, y A<l:y).

(ii) Let I be a squarefree ideal, A the corresponding simplicial complex, y a
vertex of AI, T {y}. Then AI/T A(l,y).

The proof of these statements is straightforward once we notice that the cor-
responding simplicial complexes have the same vertex set. Next we define the
maps e C.(A<I,y))-----C.(AI) and pyC,(AI)------C,(A(I:y))(1 by e(z) z and
py( ai Fi ai [, Fi ]. Note that py is not a homomorphism of complexes; see
Lemma 1.
We have the following commutative diagram with exact columns:

0 0 0

0 Bi(A(l,y))

0 Zi(A(l,y))

0

e
Bi(AI) PY

e
Zi(At) p

0

Bi-1 (A(l:y)) 0

Zi_ (A(l:y)) 0

/-1 (ZX(:y) 0

0

The first two rows are not exact in general. Below we record some of the properties
of the maps e and py.



4 HARA CHARALAMBOUS

LEMMA 1. Let F A and y a vertex of At. Then py(O(F)) -O(py(F)).

Proof. If y is not among the vertices of F then both sides are zero. Otherwise
F [y, xi,..., xiL]. We let F’ [xi xis] and suppose that O(F’) _, ai El,
ai + 1. Then py(O(F)) py((F’- ,ai[y, Fi])) _,aiFi -O(F’)
-O (py F)). []

LEMMA 2. O--- Bi(A(l,y))-- Bi(Al)- Bi_l(A(l:y))---+O is a complex, e is
injective and py is surjective.

Proof. It is clear that the first map is injective and that the image of e is in the
kernel of py. To show that py is surjective it is enough to show that whenever F is
an face of AI:y then O(F) has a preimage. If F At:y then [y, F] is an +
face of At so that py([y, F]) F and py(O(-[y, F])) O(F) by the previous
lemma. !-1

LEMMA 3. O---Zi(A(1,y))-Zi(AI)-Zi_l(A(l:y)) is exact.

Proof. Lemma shows that the image of py consists of cycles, e is clearly
injective and its image is contained in the kernel of py. Moreover let c at Ft
be an element in the kernel of py. Suppose that y is a vertex of F F. and
Fj [y, Fj] for j s. Since _,atpy(Ft) O, _,ajFj =0(j s)
and c’ aF +.-. + a.E 0. Thus c e(c c’). I,’I

Whenever the kernel of py is equal to the image of e (on the first row) and py
is surjective (on the second row) an easy diagram chase shows that the third row
of our commutative dia_gram is exact, see also the 3 x 3 Lemma [Ro79]. In this
case if ffli(A(l,y)) and ni_l(A(l:y)) are free Z-modules, then/i(AI), is also a free
Z-module. The following condition guarantees that the first two rows are exact.

Definition. The simplicial complex A is i-pointed with respect to y if there exists
a vertex z y with the property that whenever F is an (i 1)-face of A and F is in
the link of y then z t_J F is a face of A.

For example the 1-skeleton of a triangle or a square are 1-pointed with respect to
any vertex. The triangulation of the projective plane is not 2-pointed for any vertex.

LEMMA 4.
is exact.

IfA is (i + 1)-pointed with respect to y then the top row ofthe diagram

Proof. Let c atO(Ft) Bi(At) be in the kernel of py. Without loss of
generality we can assume that y is a vertex of F E and that Ft [y, Ft’] for
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s. Let z be the vertex of the definition. Then G [z, F/] is a face
of At. We claim that c e(- atO(Gt)) where Gt [Z, F/] for s and
Gt Ft for all other t. Indeed if O(F[) Fj then O(Ft) F[ )-[y, F.]j
and O(Gt) F/ -tz, Ft. Since py(C)._.-- O, E E at Ft O, E E at[y, Fi]
S, at[z, Fi’] 0 and ,a,O(G,) a,F[ where in this sum varies from

s. Finally e( a,O(G,)) atO(Gt) a,O(Ft). El

LEMMA 5.
is exact.

If A is i-pointed with respect to y then the second row ofthe diagram

Proof We show that py(Zi(Al)) Zi_l(m(l:y)). The proof is similar to the
previous one. Let c’ at Ft be a cycle in Zi_l(A(l:y)) so that Ft are (i 1)
faces in A(I:y) and y U Ft is in At for all t. Then z t3 F is in At. The element
C Y at [y, Ft _, at [z, Ft is a cycle in Zi (At), and py (C) C’. I-’!

COROLLARY 6. If A is and (i + 1)-pointed with respect to y then

0----- f-]i /k(l,y))--’-- fli A l)--’- ]i-I (A(l:y))----O

is short exact.

4. Examples

4.1. Monomial complete intersections. Let I be an a monomial squarefree
ideal whose generators form an R-sequence. In this case 1 is a monomial complete
intersection.

Example. If I is a squarefree monomial ideal generated by an R-sequence, A
is the corresponding simplicial complex, T is any subset of the vertex set of A then
A ! T is/-pointed with respect to any of its vertices.

Proof. Let T be a subset of the vertex set of A and consider the subcomplex
A’ A/T. Let I’ be the associated ideal of A’. I’ is generated by a subset of the
generators of I and is a monomial complete intersection.

Let y Xl be a variable that divides a generator of I’. We can take z to be any
other vertex of Ar that divides the same generator of I as Xl. Let F be in the link of
y. If zmF is in I then a monomial generator r of I divides zmF. Since mF does not
involve y, y does not divide r and r must divide mF, a contradiction. El

If xt is a vertex of At then (I xt) and (I, xt) are ideals which are generated by
R-sequences. An easy induction on the total degree of the generators implies that
Hi (A / T) is a free Z-module.
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4.2. Shifted complexes. Let A be a simplicial complex. We write the subsets of
V,x in an ascending order of indices: F {xit xil where < i2 < < it.
We give the/-faces of A a partial order: F {xt, xt,/, < G {xj, xj,/
iff 11 < jl, 12 < j2 li+l < ji+l.

Definition.
then G 6 A.

A is a shifted simplicial complex if whenever F A and G < F

Shifted complexes were considered by Kalai [Ka93]. The corresponding ideals are
squarefree strongly stable ideals and their minimal resolution is given in [ArHeHi95]
(see also cite ChEv93).
We remark the following:

(i) If A is a shifted simplicial complex and T is any subset of the vertex set of A
then A ! T is a shifted simplicial complex,

(ii) If A is a shifted simplicial complex with vertex set {xl Xn} then the link
of Xn is also a shifted complex.

Theorem 7. Let A be a shifted simplicial complex, T any subset ofthe vertex set

of A. Then A / T is i-pointedfor all i.

Proof. Let I be the squarefree ideal associated to A. Since A / T is also a shifted
complex it is enough to prove the claim for A. We choose y to be the vertex of highest
index in the vertex set of A and z to be the vertex of A of immediate lower index.
Let F be a cycle in the link of y. Since F t2 {y} 6 A and z has index greater than
or equal to any of the indices that appear in F it follows that either F U {z} F or
F LJ {z} < F t.J {y}. In both cases F LJ {z} is in A. E3

As in the previous examples, it follows by induction that Hi (A ! T) is a free Z-
module.

4.3. Polarizations ofideals. We recall a technique that associates to every mono-
mial ideal a squarefree ideal.

Let J be an ideal of S k[x Xn] minimally generated by monomials

mi I-I A;.ji. For each variable xj we let bj be the largest exponent such that
Xj/mi for some i. We will replace each occurence of xj by new variables xjt in a
systematic way. For this we consider the ring R k[x Xb,, x21 Xnb,,].

]--ajiFor each mi we consider its polarization pmi Hj lt=l xJt" By the polarization
of J we mean the ideal I of R generated by the monomials pmi. For example
the polarization of the ideal J of k[x, x2, x3] where J (x, xx2, xx3, x3) is
the ideal I (xx2xl3, XlX2X2, xx2x22x23, x3) and the underlying ring is
k[x, Xl2, Xl3, X21, X22, X23, X31].
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The two ideals J and its polarization I are intimately related; see for example
[Fr82]. The betti numbers of I and J are the same: one can get the minimal resolution
of J from the minimal resolution of I by substituting the value xj for each appearance
ofthe variable xjt. Thus the dimensions ofthe homology groups of A and A / T where
A is the simplicial complex that corresponds to I determine the betti numbers of J.
With the notation as above we have:

THEOREM 8. Let J be a monomial ideal such that x2i divides mj. If I is the
polarization of J then A is i-pointed with respect to xi l.

Proof Let z be the vertex Xi2. Suppose that Xil [..J F AI. If xi2mF - I it has
to be divisible by one of the generators of I. The polarization technique guarantees
that none of the generators of I can be divisible by xl2 unless it is also divisible by
Xl. It follows that mF is divisible by a generator of I so that F 6 At which is a
contradiction.

COROLLARY 9. Let {mj be a collection ofmonomials such that X2
f(j) Imj and let

J be the ideal generated by the mj. If I is the polarization of J and T is any subset

ofthe vertex set of A then A / T is i-pointed with respect to some vertex xj 1.

Proof. The generators of the associated ideal of A /T form a subset of the
generating set of Ai, so one can apply the previous theorem, ff]

For example it is well known that the betti numbers of I (abe, abf, acf, acd,
ade, bce, bcd, bdf, def, cef) depend on the characteristic of k, (I corresponds to
the triangulation of the projective plane). Consider now the ideals I (a2be, a2bf,
a2cf, a2cd, a2de, bce, bcd, bdf, def, cef) and 12 (a2be, a2bf, a2cf, a2cd,
a2de, b2ce, b2cd, b2df, d2ef, c2ef). With the notation as before, the polarization of
I is/-pointed for all with respect to a and the associated ideal of the link of al
is I. It follows that the betti numbers of I also depend on the characteristic. On the
other hand one can see that the betti numbers of 12 are independent of characteristic by
using Theorem 8 recursively until the associated ideals involve less than 6 variables.

Our final application examines the ideals which are the polarizations of stable
ideals. First we recall the definitions of stable ideals.

Definition. Let J be a monomial ideal of k[Xl Xn]. J is a stable ideal if for
mall monomials m J, then xi J for all < k where x is the variable of largest

index that divides m.

In [EIKe90], Eliahou and Kervaire described the minimal resolution of stable
ideals. Theorem 10 explains from a topological point of view why the betti numbers
of these ideals do not depend on p. First we remark that if J (ml mL) is
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a stable ideal of R and J contains the variable xt then J must contain all variables
of index less than and J (xl xt, mt+l m.) where mj is a monomial in
k[Xt/l Xn]. If J’ (mt+l mL), I is the polarization of J, I’ the polarization
of J’ then J’ is stable in k[xt+l Xn] and At, At.

THEOREM 10. If I is an ideal which is the polarization of a stable ideal J, At
is the corresponding simplicial complex, T is any subset of the vertex set of A and
ffti(At / T) :/: 0, then At / T is i-pointed with respect to some vertex Xrl.

Proof. By the previous remark we can assume that I is the associated ideal of
At. We can also assume that the sum of the degrees of the generators of I is strictly
bigger than 2.
We first treat the case T 0. Since J is stable, x must appear to a power of at

least 2 in J and x 12 is also a vertex of At. By Theorem 8, A is/-pointed with respect
to xil.

Let T now be a nonempty subset of the vertex set of A and consider the subcom-
plex A’ A/T. We can assume that A’ consists of more than one vertex. Let L
be the associated ideal. If the vertex set V,v of A’ contains some vertex xf. where
s >_ 2 but not Xfl for some < s then A’ is a cone with respect to xf.. Indeed if F
is in A’ then xf.m F cannot be in L, since none of the generators of L is divisible by
xf. but not by xft. Thus the homology of A’ is zero for all i. So we can assume that
if Xfs . VA, then Xfl . VA, Vl < s. Let r be the smallest index such that Xrl is in
VA,. We claim that A’ with respect to y Xrl is/-pointed. Indeed if Xrt E VA, for
> then we let z Xrt and the proof is the same as in Theorem 8. Suppose that

Vzx, does not contain Xrt for any > 1. Let z be the vertex Xls with the property that
if Xhk is any other vertex of V,x, then either > h or h and s > k. Let F be a face
of A’ which is in the link of Xrl. If z tO F A’ then XlsmF - I and XlsmF mb
for some generator m of I. Since mF is not in I it follows that m is divisible by Xl..
Suppose that m is the polarization of the generator/z. Since J is stable, -x is in J

X!
and the polarization of that element m--x

xts
is in I, (notice that Xr does not divide/z).

rnTherefore Xr XrlmF I, a contradiction since F is in the link of Xrl. !’-!

Remarks. An easy induction on the total degree ofthe generators ofthe associated
ideals implies that Hi (A / T) is a free Z-module. Note that if I is a squarefree mono-
mial ideal which is the polarization of J, then the polarization of (J xi is rp ((I xil ))
where tp is the isomorphism k[xll /1 Xnb,, --k[xll X’ibi Xnb,,
such that (xjt) xjt if j :/: and qb(xit) xi<t-1), (1 2 bi). One can also
show using the same techniques that a basis for the cycle space of Ci (At) consists
of elements of the form O(G) where G is an + 1-simplex, (not necessarily a face
of Zl).
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