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POINTED SIMPLICIAL COMPLEXES
HARA CHARALAMBOUS

1. Introduction

For what follows, Risk[x, ..., x,], k is afield of characteristic p, I is amonomial
ideal of R and M = R/I. The ranks of the free modules that appear in a minimal
free resolution of M might depend on p. It is well known that the zeroth and nth
betti number of M are independent of p. Bruns and Herzog, [BrHe95] show that if
n < 5 all betti numbers of M are independent of p. In the same paper they show
that for i = 1,2,n — 1, the ith betti number of M is always independent of p.
Terai and Hibi [TeHia] show that the third and fourth betti numbers are independent
of p when I is generated by monomials of degree 2 and also prove that the betti
numbers are independent of k in some other cases as well [TeHia], [TeHib]. The
most familiar classes of monomial ideals whose betti numbers are independent of p
include (a) monomial ideals which are generated by R-sequences, (b) stable monomial
ideals [E1Ke90], and (c) squarefree stable ideals [ArHeHi95], [ChEv93].

A significant link between commutative algebra and topology comes from the
Stanley-Reisner rings. First, to any monomial ideal J one can correspond a squarefree
monomial ideal 1. If A is the corresponding simplicial complex of I and C, is the
augmented chain complex, Hochster’s formula may be used to compute the betti
numbers of I (and of J) from the k dimensions of the homology groups of A and its
subcomplexes A/T.

In this paper we show that for certain simplicial complexes we can find a vertex
y, such that 0—> H; (A /{y})—> H;(A)—> H;_;(link y)—>0 is short exact for all
i. We call complexes with this property pointed complexes. Examples of pointed
complexes include the complexes and subcomplexes that correspond to the ideals of
(a), (b) and (c). It is clear that if the reduced homology groups of both ends of the
short exact sequence are free Z-modules then I-I,~ (A) is a free Z-module. In practice,
whenever the associated ideals of A /y and link y are of the same kind as the ideal of
A, one can use induction on the total degree of the minimal generators of the ideals to
conclude that the reduced homology groups are free Z-modules. This explains from
a topological point of view why the ideals with pointed complexes and subcomplexes
have betti numbers that do not depend on p.

We are grateful to Lauren Rose for some discussions that motivated this present
work.
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2. Notations and definitions

A simplicial complex A with vertex set Va = {xi, ..., x,} is a family of subsets
of V, such that the next two conditions hold: (a) {x;} is an element of A, Vi and
(b) if o is in A and 7 is a subset of o, then 7 is in A. If {x;;,..., xi¢+1} is an
element of A we call it an r-face of A. To any subset F' = {x;,, ..., x; } of Vo we
correspond a monomial mg = x;, ---x;, of R = k[xi, ..., x,] and vice versa. To
A we associate a squarefree ideal / of R whose generators are the monomials m
such that F ¢ A. We call I the associated ideal of A. Conversely whenever [ is a
squarefree monomial ideal of R whose generators are of degree strictly bigger than
1, the associated simplicial complex A; has vertex set V = {x, ..., x,} and faces
the subsets F of V for whichmp ¢ I. If I is a squarefree monomial ideal minimally
generated by x;{, ..., xj;, my, ..., ms and the degree of the monomials m; is bigger
than 1, then we set A; := Ay, the simplicial complex whose associated ideal is

= (my, ..., ms). The vertex set of A is {xy, ..., x,} \ {xi1, ..., Xir}.

We give the elements of V alinear order and construct the simplicial chain complex,
(:‘*(A),with coefficients in Z:

0—C(A)—> - - — Co(A)—> C_ 1 (A)—>0.

Here C, (A) is the free Z module on the ordered r-faces of A [x;1, ..., Xip+n], (il <

i2 < --- <i(r+1)), and the differentiation is the map 6 thatsends [x;1, . . ., X;¢-+1)] tO
J _'“( D/ xi, ..., Xijy - - -y Xig+1y]. For more details on simplicial complexes

consult [St83] or [BrHe93]. We set [x,,(,l), co XaG] = s1gnum(a)[x,1, ceo Xikd

C.(1) stands for the complex C shifted by 1 to the left: C; (1) = Ci—y. By
H; (A) we mean the homology of Ci(A) at the ith place and by H (A, k) we mean
the homology of C.(A) ® k. If H;(A) is a free Z-module then H; (A, k) has k-
dimension equal to the rank of H;(A) as a Z-module. If A contains the maximum
face {x, ..., x,} then ﬁi(A) =0 foralli.

We briefly recall the connection between the betti numbers of I and the ranks of the
homology groups of the associated simplicial complex. If I is a squarefree monomial
ideal whose generators all have degree greater than 1 and A is the corresponding
simplicial complex, then we can compute the betti numbers of / from the following
formula due to Hochster [Ho77]: b"f(R /1) =" dimy ﬁ,-(A/ T, k) where T varies
among all subsets of V with |T'|+g = (n—1)—i. Here A /T stands for the subcomplex
of A consisting of all faces with vertices outside 7. If I is a monomial squarefree ideal
minimally generated by x;y, . .., x;; and the monomials m, ..., m; whose degree is
bigger than 1, then we can compute the betti numbers of I’ = (my, ..., m;) by the
above formula and the betti numbers of I by shifting and adding successively (¢-times)
the betti numbers of I'.

Let y be a vertex of V5. By linka y we mean the faces G suchthat GU y €
A,yNnG = @. Let F = [x;1,...,x;] be an oriented face of A. We will con-
sider the diminution [§, F] of F: we define [$. F] = (=1~ '[xi1, ..., Kis, - . ., Xic]
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if y = x;; for some s, otherwise we let [y, F] = 0. We will also consider the
augmentation [y, F] of F by y: [y, F] = 0if y = x;; for some s, otherwise
Ly, F1= 1Ly, xit, ..., Xit]-

Let T = {x;1,...,xix}. The associated ideal of A;/T is the ideal I N R’ of
R = klxj1, ..., xj], (jt # il). It has the same generators as / except we omit
these generators which are divisible by the variables in 7. Finally we remark that
Ar/T = D,

..... Xik))*

3. Pointed simplicial complexes

Let y be avertex of A;. We are going to consider the relations among the homology
groups of Ay, A(,y) and Ay,

Remark. (i) Let I be a squarefree ideal, A the corresponding simplicial complex
and y a vertex of A;. Then linka, ¥y = A.y).

(ii) Let I be a squarefree ideal, A; the corresponding simplicial complex, y a
vertex of A;, T = {y}. Then A;/T = A, y).

The proof of these statements is straightforward once we notice that the cor-
responding simplicial complexes have the same vertex set. Next we define the
maps e : C.(A,y)—>Cx(Ay) and pyCi(A7)—> Ci(A(:y))(1) by e(z) = z and

py(Q_aiF;) =) a;[y, F;]. Note that p, is not a homomorphism of complexes; see
Lemma 1.

We have the following commutative diagram with exact columns:
0 0 0

0 — Bi(Aq,y) — Bi(Ay) —DB Bi_1(Auyy) — 0

0 —Zi(Auy) —— zZi(A) —Bv  Zi(Auy) — 0

0 —’I:Ii(A(I,y)) Hi(A)) ﬁi—l(A(I:y)) —0

0 0 0

The first two rows are not exact in general. Below we record some of the properties
of the maps e and p,.
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LEMMA 1. Let F € Ajand y a vertex of Aj. Then p,(0(F)) = —6(p,(F)).

Proof. 1If y is not among the vertices of F then both sides are zero. Otherwise
F =1y, xi1, ..., xis]. Welet F/ = [x;y, ..., x;s] and suppose that 6 (F') = >_a; F;,
a; =+ — 1. Then p,(6(F)) = p,(F' = Y aily, F])) = =Y a;Fi = —6(F') =
—0(py(F)). O

LEMMA 2. 0—> Bi(A1.,))— Bi(A1) 5 Bi_1(A.y))—>0 is a complex, e is
injective and p, is surjective.

Proof. It is clear that the first map is injective and that the image of e is in the
kernel of p,. To show that p, is surjective it is enough to show that whenever F is
an i face of A(;., then O(F) has a preimage. If F € A,y then [y, Flisani + 1

face of Ay so that py([y, F1) = F and p,(6(—[y, F1)) = 6(F) by the previous
lemma. 0O

LEMMA 3. 0—> Z,'(A(l‘y))—-e—) Z,'(A])ﬁ) Z,'..](A(];y)) is exact.

Proof. Lemma 1 shows that the image of p, consists of cycles. e is clearly
injective and its image is contained in the kernel of p,. Moreover letc¢ = ) a,F,
be an element in the kernel of p,. Suppose that y is a vertex of Fy,..., F; and
Fj=[y,Fjlforj=1,...,s. Since ) a,py(F,) =0,} a;F; =0(j=1,...,5)
andc =a1Fi+---+a,F;, =0. Thusc =e(c—¢). 0O

Whenever the kernel of p, is equal to the image of e (on the first row) and p,
is surjective (on the second row) an easy diagram chase shows that the third row
of our commutative diagram is exact, see also the 3 x 3 Lemma [Ro79]. In this
case if ﬁi(A(,,y)) and I:Ii_l(A(,;y)) are free Z-modules, then H;(A), is also a free
Z-module. The following condition guarantees that the first two rows are exact.

Definition. The simplicial complex A is i-pointed with respect to y if there exists
a vertex z # y with the property that whenever F is an (i — 1)-face of A and F is in
the link of y then z U F is a face of A.

For example the 1-skeleton of a triangle or a square are 1-pointed with respect to
any vertex. The triangulation of the projective plane is not 2-pointed for any vertex.

LEMMA 4. If A is (i + 1)-pointed with respect to y then the top row of the diagram
is exact.

Proof. Letc = Y a,0(F) € B;(A;) be in the kernel of p,. Without loss of
generality we can assume that y is a vertex of Fi, ..., F; and that F, = [y, F/] for
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t = 1,...,s. Let z be the vertex of the definition. Then G, = [z, F}] is a face
of A;. We claim that ¢ = e(}_ a,0(G,)) where G, = [z, F/]fort = 1,...,s and
G, = F, for all other ¢. Indeed if 6(F)) = )_ F,'j then 6(F;) = F) — Y [y, F,’j]
and 0(G,) = F{ — Y [z, F;]. Since py(c) =0, > aF); = 0,33 aly, F;]1=
22 alz, F;] = 0 and } a,0(G,) = 3" a,F) where in this sum ¢ varies from
1,...,s. Finally e(}_a,6(G,)) = Y_a,0(G,) = Y a,0(F). O

LEMMA 5. If A is i-pointed with respect to y then the second row of the diagram
is exact.

Proof. We show that p,(Z;(A1)) = Z;—1(A.y)). The proof is similar to the
previous one. Let ¢’ = ) a,F, be a cycle in Z;_(A(.y) so that F; are (i — 1)
faces in A;.y) and y U F; is in A; for all . Then z U F; is in A;. The element
c=Y aly, F1- Y alz, Flisacyclein Z;(A;),and py(c) =¢. O

COROLLARY 6. If A isi and (i + 1)-pointed with respect to y then
0—> H, () — Hi(AD—> Hi_1(A ;) —0

is short exact.

4. Examples

4.1.  Monomial complete intersections. Let I be an a monomial squarefree
ideal whose generators form an R-sequence. In this case / is a monomial complete
intersection.

Example. 1If I is a squarefree monomial ideal generated by an R-sequence, A
is the corresponding simplicial complex, T is any subset of the vertex set of A then
A /T is i-pointed with respect to any of its vertices.

Proof. Let T be a subset of the vertex set of A and consider the subcomplex
A’ = A/T. Let I be the associated ideal of A’. I’ is generated by a subset of the
generators of / and is a monomial complete intersection.

Let y = x; be a variable that divides a generator of I’. We can take z to be any
other vertex of A that divides the same generator of I as x;. Let F be in the link of
y. If zmp is in I then a monomial generator r of I divides zmp. Since mp does not
involve y, y does not divide r and r must divide m, a contradiction. O

If x; is a vertex of A, then (I : x;) and (I, x;) are ideals which are generated by
R-sequences. An easy induction on the total degree of the generators implies that
H;(A;/T) is a free Z-module.
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4.2. Shifted complexes. Let A be a simplicial complex. We write the subsets of
Va in an ascending order of indices: F = {x;,,...,x;} where ij < iy < --- < .
We give the i-faces of A apartial order: F = {x;,,...,x,,} <G = {xj,,...,%,,]
iffly < ji, b2 < jas oo livl < i

Definition. A is a shifted simplicial complex if whenever F € A and G < F
then G € A.

Shifted complexes were considered by Kalai [Ka93]. The corresponding ideals are
squarefree strongly stable ideals and their minimal resolution is given in [ArHeHi95]
(see also cite ChEv93).

We remark the following:

(i) If A is a shifted simplicial complex and T is any subset of the vertex set of A
then A/ T is a shifted simplicial complex,

(ii) If A is a shifted simplicial complex with vertex set {xi, ..., x,} then the link
of x, is also a shifted complex.

Theorem 7. Let A be a shifted simplicial complex, T any subset of the vertex set
of A. Then A/ T isi-pointed for all i.

Proof. Let I be the squarefree ideal associated to A. Since A /T is also a shifted
complex it is enough to prove the claim for A. We choose y to be the vertex of highest
index in the vertex set of A and z to be the vertex of A of immediate lower index.
Let F be a cycle in the link of y. Since F U {y} € A and z has index greater than
or equal to any of the indices that appear in F it follows that either F U {z} = F or
FU{z} < FU{y}). Inbothcases F U {z}isin A. 0O

As in the previous examples, it follows by induction that IZ(A/ T) is a free Z-
module.

4.3. Polarizations of ideals. We recall a technique that associates to every mono-
mial ideal a squarefree ideal.

Let J be an ideal of S = k[xj,...,x,] minimally generated by monomials
m; = ]_]x;‘”. For each variable x; we let b; be the largest exponent such that
x;j/m; for some i. We will replace each occurence of x; by new variables x;; in a
systematic way. For this we consider the ring R = k[xy1, ..., Xip,, X215 - - . , Xnp, I-
For each m; we consider its polarization pm; = []; [T/, xj. By the polarization
of J we mean the ideal / of R generated by the monomials pm;. For example
the polarization of the ideal J of k[xi, xp, x3] where J = (x}, x%x,, x1x3, x3) is
the ideal I = (x11x12%13, X11X12%21, X11X21X22X23, X31) and the underlying ring is
klxi1, x12, X13, X21, X22, X23, X31].
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The two ideals J and its polarization / are intimately related; see for example
[Fr82]. The betti numbers of 1 and J are the same: one can get the minimal resolution
of J from the minimal resolution of I by substituting the value x; for each appearance
of the variable x;;. Thus the dimensions of the homology groups of A and A /T where
A is the simplicial complex that corresponds to I determine the betti numbers of J.
With the notation as above we have:

THEOREM 8. Let J be a monomial ideal such that x? divides m;. If I is the
polarization of J then A is i-pointed with respect to x;,.

Proof. Let z be the vertex x;;. Suppose that x;) U F € A;. If x;;mp € 1 it has
to be divisible by one of the generators of . The polarization technique guarantees
that none of the generators of I can be divisible by x, unless it is also divisible by

x11. It follows that mp is divisible by a generator of I so that F € A; whichis a
contradiction. [

COROLLARY 9. Let {m;} be a collection of monomials such that x}( 7 |m; and let
J be the ideal generated by the m;. If I is the polarization of J and T is any subset
of the vertex set of A then A;/T is i-pointed with respect to some vertex x;.

Proof. The generators of the associated ideal of A;/T form a subset of the
generating set of Aj, so one can apply the previous theorem. O

For example it is well known that the betti numbers of I = (abe, abf, acf, acd,
ade, bce, bed, bdf, def, cef) depend on the characteristic of k, (I corresponds to
the triangulation of the projective plane). Consider now the ideals I} = (abe, a’bf,
a’cf, a’cd, a’de, bce, bed, bdf, def, cef) and I, = (a’be, a’bf, a’cf, a’*cd,
a’de, b’ce, b*cd, b*df, d’ef, c’ef). With the notation as before, the polarization of
I, is i-pointed for all i with respect to a;; and the associated ideal of the link of a;;
is 1. It follows that the betti numbers of I, also depend on the characteristic. On the
other hand one can see that the betti numbers of I, are independent of characteristic by
using Theorem 8 recursively until the associated ideals involve less than 6 variables.

Our final application examines the ideals which are the polarizations of stable
ideals. First we recall the definitions of stable ideals.

Definition. Let J be a monomial ideal of k[xy, ..., x,]. J is a stable ideal if for
all monomials m € J, then ;”—kx,- € J forall i <k where x; is the variable of largest
index that divides m.

In [ElKe90], Eliahou and Kervaire described the minimal resolution of stable
ideals. Theorem 10 explains from a topological point of view why the betti numbers
of these ideals do not depend on p. First we remark that if J = (m;,...,my) is
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a stable ideal of R and J contains the variable x; then J must contain all variables

of index less than ¢ and J = (xy, ..., X;, Msy1, ..., ms) Where m; is a monomial in
klxs1s -5 xp). BJ' = (M4, ..., my), I isthe polarization of J, I’ the polarization
of J' then J' is stable in k[x;11,...,x,] and Ap = Ay.

THEOREM 10. If I is an ideal which is the polarization of a stable ideal J, A
is the corresponding simplicial complex, T is any subset of the vertex set of A and
H;(A;/T) # 0, then A;/T is i-pointed with respect to some vertex x,1.

Proof. By the previous remark we can assume that / is the associated ideal of
A;. We can also assume that the sum of the degrees of the generators of [ is strictly
bigger than 2.

We first treat the case T = @. Since J is stable, x; must appear to a power of at
least2in J and x; is also a vertex of A;. By Theorem 8, A is i-pointed with respect
to x;;.

Let T now be a nonempty subset of the vertex set of A; and consider the subcom-
plex A’ = A/T. We can assume that A’ consists of more than one vertex. Let L
be the associated ideal. If the vertex set Vo of A’ contains some vertex xs; where
s > 2 but not x; for some / < s then A’ is a cone with respect to xs,. Indeed if F
is in A’ then x¢;m r cannot be in L, since none of the generators of L is divisible by
Xg5 but not by x7;. Thus the homology of A’ is zero for all i. So we can assume that
if xps € Vo then xy; € Vo, VI < 5. Let r be the smallest index such that x,; is in
Var. We claim that A’ with respect to y = x,; is i-pointed. Indeed if x,, € V for
t > 1 then we let z = x,, and the proof is the same as in Theorem 8. Suppose that
V- does not contain x,, for any ¢ > 1. Let z be the vertex x;; with the property that
if x; is any other vertex of V. then either/ > hor! = hand s > k. Let F be a face
of A’ which is in the link of x,;. If zU F ¢ A’ then x;;mp € I and x;;mp = mb
for some generator m of I. Since mp is not in I it follows that m is divisible by x;,.
Suppose that m is the polarization of the generator . Since J is stable, ﬁxr isin J
and the polarization of that element i”—x,l is in I, (notice that x, does not d1v1de w.
Therefore Tx" =x,mr€l,a contradlctlon since F is in the link of x,;. O

Remarks. An easy induction on the total degree of the generators of the associated
ideals implies that H;(A;/T)is afree Z-module. Note that if I is a squarefree mono-
mial ideal which is the polarization of J, then the polarization of (J : x;)is¢(({ : x;1))
where ¢ is the isomorphism k[xyy ..., Xif, ..., Xnp,] —>k[X11 -+, Xibys - -+ Xnb, ]
such that ¢ (xj;) = x;; if j # i and ¢ (xyy) = xig-1), { =2,...,b;). One can also
show using the same techniques that a basis for the cycle space of C;(A;) consists

of elements of the form 6(G) where G is an i + 1-simplex, (not necessarily a face
of A 1).
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