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DIFFERENTIAL GALOIS THEORY III: SOME
INVERSE PROBLEMS

DAVID MARKER AND ANAND PILLAY2

I. Introduction

In 16], a theory of generalised strongly normal extensions of differential fields
was developed, generalising Kolchin’s theory [8]. It was shown that arbitrary finite-
dimensional differential algebraic groups can arise as differential Galois groups for
this new theory. The fact that our theory is a proper generalisation of Kolchin’s
is due precisely to the existence of finite-dimensional differential algebraic groups
which are not isomorphic to algebraic groups in the constants. In this paper we
initiate a study of the inverse problem for generalised strongly normal extensions.
We will henceforth call generalised strongly normal extensions, differential Galois
extensions. We may as well begin by stating a general conjecture, where notation
will be explained subsequently.

CONJECTURE 1.1. Suppose F is an algebraically closed differential field offi-
nite transcendence degree over its field of constants, and G is a connected finite-
dimensional differential algebraic group defined over F such that G (F) G(F).
Then F has a differential Galois extension K with Galois group G.

A considerable amount of work has been done on this conjecture in the case where
G is an algebraic group in the constants (namely, G is the group of constant-rational
points of an algebraic group defined over the constants). In this case our differential
Galois extensions are exactly Kolchin’s strongly normal extensions. We mention in
particular the papers 10], 11 ], [20], 12] and 15]. In fact the problem is completely
solved in the latter paper.

In this paper we study the situation for some of the "new" finite-dimensional
differential algebraic groups. For an abelian variety A defined over a function field,
Manin [13] constructs a differential algebraic homomorphism from A into some
vector group, with "finite-dimensional" kemel. Such a kernel will be one of the "new"
groups (assuming that A does not descend to the constants). Such homomorphisms
were also constructed by Buium [1 ], by different methods. We will slightly tinker
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with the hypotheses of Conjecture 1.1, assuming on the one hand that the field of
constants of F has infinite transcendence degree, but on the other hand only that
F is the algebraic closure of a differential field F which is finitely generated (as a
differential field) over the constants of F. In this situation we will prove that if A
is either a simple abelian variety or a 1-dimensional algebraic torus defined over F,
and G is the smallest differential algebraic subgroup of A, then F has a differential
Galois extension with Galois group G. Our proof uses model-theoretic methods. We
also give an application (depending on 17]) to the model theory of differential fields
showing that the closure under (Kolchin) strongly normal extensions of a field of
constants of infinite transcendence degree is not superstable.
We will freely use model-theoretic notation. The reader is referred to 16] where

some explanations are given for the non model-theorist, as well as to [5] for general
model theory, [14] for the model theory of differential fields, and [19] for stable
groups. DCFo denotes the theory of differentially closed fields of characteristic 0
(in the language +, -,., 0, 1, ). Recall that this theory is complete, og-stable, with
elimination of quantifiers as well as elimination of imaginaries, b/denotes a very
saturated model of DCFo. Any differential field F of cardinality at most that of
b/will embed in b/. Let F, K denote differential subfields of b/of cardinality
stricty less than that of b/, and let denote (a copy of) the prie model over F
(or differential closure of F). (So F is differentially closed iff F F iff F is an
elementary substructure of L/.) By "definable" we mean definable (with parameters)
in the structure (b/, +, -,., 0, 1, ), unless stated otherwise. If X is an F-definable
set, then X (F) denotes the points ofX every coordinate ofwhich is in F. Let C denote
the constants of b/. From now on a, b, etc. denote (finite) tuples from b/, and F (a)
denotes the differential field generated by F t_J a. We identify the class of differential
algebraic groups (in the sense of [2], [8], or ]) with the class of groups definable in
b/(this identification is proved in 18]). To say that such G is "finite-dimensional" is
the same as saying that it has finite Morley rank in the structure L/. Algebraic groups
(taking b/as a universal domain for algebraic geometry) are special cases of definable
groups; in fact they are precisely the groups definable in U by formulas involving
only the field structure.

The general notion of a "differential Galois extension" was developed in 16].

DEFINITION 1.2. We call K a differential Galois extension of F, if there are an

F-definable group G offinite Morley rank, an F-definable set X, and an F-definable
regular action ofG on X such that:

(i) G(F) G(P),
(ii) for any a X, and g G, tp(a/F t_J G) tp(g. aF t_J G),
(iii) K F(a) for some a X(F).

IfC F) is algebraically closed, andfor some algebraic group H defined over C F)
we have G H(C), then (assuming that (i), (ii) and (iii) hold) we call K a strongly
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normal extension of F. (This agrees with Kolchin’s original definition of strongly
normal extensions.)

FACT 1.3. Let F, K, G, X, a be as in Definition 1.2. Let Aut(X/F U G) be the
group ofpermutations ofX induced by elementary maps whichfix F t2 G pointwise.
Let Aut(K/F) be the group of (differential field) automorphisms of K which fix F
pointwise. Let G* be G with multiplication reversed (also an F-definable group of
finite Morley rank). Then there is an F t2 a-definable regular action of G* on X
and an isomorphism h" Aut(X/F t2 G) G* such thatfor any cr Aut(X/F t_J G)
and b X, or(b) h(r) , b. Moreover the restriction of h to X(F) induces an

isomorphism between Aut(K/F) and G*() (-- G*(F)). We call G* the Galois

group of K over F (with the understanding that the isomorphism is really between
G* (F) and Aut(K/ F).)

The following is proved in [16].

LEMMA 1.4. Suppose F < K < , and F is algebraically closed, and let G be
a connected F-definable group offinite Morley rank, such that G (F) G([Z). Then
thefollowing are equivalent:

(i) K is a differential Galois extension of F with Galois group G.
(ii) There is a connected algebraic group H, defined over F, in which G F-

definably embeds, there is a (H/G)(F), and there is H such that
v(ot) a, K F(c) and the formula v(x) a isolates a complete type
over F.(Here H/G denotes the F-definable set of left cosets of G in H, and
v denotes the canonical F-definable projectionfrom H onto H/G.)

We now recall some stability-theoretic notions and facts.

DEFINITION 1.5. (We work in some saturated model M ofa stable theory.)

(i) The definable set X is said to be strongly minimal if any definable subset of
X isfinite or cofinite (in X).

(ii) Let A be a small set ofparameters, and X, Y, A-definable sets. We say X is
orthogonal to Y iffor any B A, and tuples a from X and b from Y, a is
independentfrom b over B.

(iii) Let D be a strongly minimal set, and X a definable set. We say X is almost
strongly minimal with respect to D iffor some small set ofparameters A over
which both D and X are defined, X c_ acl(D t..J A).

The following elementary piece of commutative finite Morley rank group theory
was proved in [6] (Lemma 4.6).
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FACT 1.6. Again we work in a structure M as in Definition 1.5.
Let A be a small set of parameters, let Dl Dn be strongly minimal sets

defined over A. Let G be a definable connected commutative group contained in
acl(A to DI tO tO Dn). Then A is a finite almost direct product ofconnected defin-
able subgroups, each ofwhich is almost strongly minimal with respect to some Di.

The above applies to H. It should be noted that in this context, independence has
the following characterisation: Let A be a small set, and a, b tuples. Let F be the
algebraic closure of the differential field generated by A. Then a is independent from
b over A iff F(a) is algebraically disjoint from F(b) over F.

If X is an algebraic variety (in the sense of the universal domain H) and k is a
subfield, we say that X descends to k is X is isomorphic (as an algebraic variety) to
one defined over k.

FACT 1.7. (i) Let Gm denote the multiplicative group ofH. Then Gm(C) is the
unique smallest infinite definable subgroup of Gm. Moreover the map taking x to

x’/x is a definable homomorphismfrom Gm onto (the additive group) H, with kernel
Gm(C).

(ii) Suppose A to be a simple d-dimensional abelian variety defined over F. Then
A has a unique smallest infinite definable subgroup G say. G hasfinite Morley rank,
is F-definable, and there is an F-definable surjective homomorphism #from A onto
the vector group bla whose kernel is G. If A is defined over C, then G is precisely
A (C). If A does not descend to C then G is strongly minimal, and orthogonal to the

definable set C.

Explanation. (i). Proved by Cassidy [2].
(ii). Buium proves that A has a unique smallest differential algebraic subgroup

G, that G is "finite-dimensional" and that A/G is isomorphic (as a differential al-
gebraic group) to some subgroup L of some Hn. As pointed out in [17], work of
Cassidy [3] together with the fact that L must have monomial U-rank, implies that L
is definably isomorphic to some Hm. The finite-dimensionality of G forces m d.
Also all these definable maps are defined over F. If A is defined over C (so over
C(F)), then A(C) is an infinite definable subgroup of A, which has no proper infinite
definable subgroups, so A(C) G. The remainder of (ii) is due to Hrushovski and
Sokolovic [7].

2. The main result

In this section we prove:

THEOREM 2.1. Suppose F is a differentialfield with the followingfeatures:

(i) C F) has infinite transcendence degree.
(ii) For some finite tuple bfrom F, F is the algebraic closure ofC (F)(b).
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Let A be a simple abelian variety, or a 1-dimensional algebraic torus, defined over
F. Let G the smallest infinite definable subgroup of A. Then F has a differential
Galois extension K with Galois group G.

For the remainder of this section F, b, A and G will be as in the hypotheses
of the theorem. First note that as F is algebraically closed, so is C(F) and thus
C(F) C(’).

Throughout the proof, there will be three different cases to consider: (a) A is a
simple abelian variety which does not descend to C; (b) A is a simple abelian variety
which does descend to C; (c) A is a 1-dimensional algebraic torus. We begin with
some reductions. In case (b) it is clear that A is rationally isomorphic to a simple
abelian...variety B defined over C(/) C(F). Moreover the isomorphism is defined
over F. The image of G under this isomorphism will then be the smallest infinite
definable subgroup of B, which by Fact 1.7 is precisely B(C). Thus we may assume,
in case (b), that A is defined over C(F) and that G A(C). In case (c), it is well
known that A is F-rationally isomorphic to Gm. Again, by Fact 1.7, we may assume
that A Gm and G Gm(C).

By Fact 1.7, A/G can be F-definably identified with b/n (where n dim(A)).
The main job will be to show that the restriction of # to A(F) is not onto Fn. We
may assume that A, G and # are all defined over b. We will need a few lemmas.

LEMMA 2.2. G(F) G([;).

Proof. In cases (b) and (c), G(F) G(C(F)) and the lemma follows because,
as remarked above, C(F) C(/)). So we may assume case (a). In this case
by Fact 1.7, G is strongly minimal. Since G contains Tor(A), and the latter is
contained in acl(F) F, G(F) is infinite. If the lemma were false there would be
ot e G() G(F). tp(ot/F) is isolated by a formula 4) (x). As F is algebraically
closed (in the sense of DCFo too!), (x) has infinitely many solutions, all in G and
none in G(F). As G(F) is infinite, this contradictsthe strong minimality of G.

Now let d be a finite tuple from C(F) such that b is independent from C(F) over
d (in the sense of DCFo). This exists (and is finite) by w-stabiity of DCFo. Let c
(cl cn) be chosen from C(F) to be algebraically independent over d (as C(F)
is assumed to have infinite transcendence degree).We may assume that d is a tuple
of algebraically independent elements. Extend d to a subset D of C(F) such that
D tO {cl Cn} is a transcendence basis for C(F). Let F0 be the algebraic closure
of the differential field generated by D U b. We then have:

FACT 2.3.

(i) c is a generic point ofCn over Fo (in the sense of DC Fo).
(ii) F is the algebraic closure of Fo(c).
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Proof. (ii) is clear. For (i), first note that c is a generic point of Cn over 13. By the
choice of d, b is independent from c over D. By symmetry, c is independent from
D U b over D. But c is independent from D over 13. Thus c is independent from
D U b and so also from F0 over 13. Together with the first sentence, this shows that c
is a generic point of Cn over F0. D

PROPOSITION 2.4. There is no ot E A(F) such that Ix(a) c

Proof Suppose by way of contradiction that there is such c. Let G Ix- (Cn).
It is clear that G is F0-definable, and connected.

Claim. Gl c_ acl(F0 U G U C).

Proofofclaim. Let/3 be a generic point of G over F0. Let e Ix(/). It is clear
that e is a generic point of C over F0. So by Fact 2.3 (i), tp(e/Fo) tp(c/Fo). Thus
there is ?’ E G such that tp(,, e/F0) tp(ot, c/Fo). In particular (using Fact 2.3
(ii)), , 6 acl(F0, e). As Ix(),) Ix(/3), there is e 6 G such that/3 y.e. Thus
/3 6 acl(F0, G, C). Now any element of G is a product of generic elements. Thus
GI _c acl(F0 t_J G t_J C), proving the claim.
We now separate into the three cases again.
Case (a). By Fact 1.7, G is strongly minimal and orthogonal to C. Also note that

C is strongly minimal. By the Claim above, and Fact 1.6, we can write G as an
almost direct product G2 G3 where G2 is almost strongly minimal with respect to
G and G3 is almost strongly minimal with respect to C. As G is orthogonal to C,
G is a subgroup of G and C is a quotient of G1, it follows that G can neither be
almost strongly minimal with respect to G nor almost strongly minimal with respect
to C. Thus neither G2 nor G3 can be trivial. But then we easily contradict the fact
(contained in 1.7) that A has a unique minimal infinite definable subgroup,

Case (b). Here, clearly Gi c_ acl(F0 U C). A basic result in stable groups implies
that for some finite normal subgroup N of G 1, (G1 IN) dcl(Fo C). We will
assume for now that N is trivial, get a contradiction, and then justify the assumption.
By separation of parameters, and the fact that C with all the structure induced from
/g is an algebraically closed field without additional structure, there is a group G2
definable in the structure (C, +, .) and a definable (in/g) isomorphism of G with
G2. So (by Theorem 4.13 of [19]) we may assume G2 to be an algebraic group in
the sense of the universal domain C (namely an algebraic group in the constants).
Note that G2 is connected as an algebraic group (as G is connected as a definable
group). Now f induces an isomorphism between G and some definable subgroup G3
of G2. As G A(C) is also an algebraic group in the constants, and by separation
of parameters, f is definable by a formula with parameters in C, actually f must be
an isomorphism of algebraic groups in the sense of the universal domain C. Thus G3
is an abelian variety in the sense of C. But it is well known that any abelian variety
which is a subgroup of an commutative algebraic group has a complement; namely,
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there is an algebraic subgroup G4 of G2 (in the sense of C) such that G2 is an almost
direct product of G3 and G4. Pulling back G4 to G by f, we again contradict the
fact that G is the unique smallest infinite definable subgroup of A. So we have a
contradiction in this case, assuming N to be trivial. In general, N is clearly a finite
subgroup of Tor(G), and G/N is also an abelian variety in the sense of the constants.
The argument above goes through with G !N in place of G and G/N in place of G,
and we still get a contradiction after pulling back G4 and lifting from G/N to G.

Case (c). In this case n 1, A is the multiplicative group ofH and G is the mul-
tiplicative group of the constants. As in case (b), we obtain a definable isomorphism
f ofG with an algebraic group in the constants Ge. Again the image G3 of G under
f must be a l-dimensional algebraic torus. On the other hand, as G/G is definably
identified with the additive group of C, we see, for the same reason, that G!G3 is
unipotent, in particular linear. Thus Ge is a commutative linear algebraic group in
the sense of C, and G3 is a maximal algebraic torus in G. It is again well known
(see [4]) that G2 is an almost direct product G3 G4 for some unipotent algebraic
subgroup G4 of G2. Pulling back G4 to G again contradicts G being the unique
smallest infinite definable subgroup of A.

The proposition is proved. UI

REMARK 2.5. The proposition above generalises, by a similar style ofproof, to
the situation where A is an arbitrary semi-abelian variety defined over F, G is the
smallest definable subgroup of A containing Tor(A), and # is the homomorphism
from A onto some suitable [m with kernel G.

We can now complete the proof of Theorem 2.1. Let ot 6 A(), ot ’ A(F) be
such that/z(c) c. By Proposition 2.4, ot A(F). Let K _F(ot). By Lemmas
1.4 and 2.2, K will be a differential Galois extension of F with Galois group G once
we have shown that the formula #(x) c isolates a complete type over F. Let
4 (x) be a formula over F which does isolate tp(ot/F). Then q (x) has infinitely many
solutions in/ (as F is algebraically closed), all satisfying/z(x) c. So for each such
solution/3 there is g 6 G (F) such that ot g =/. Remember that G (/) G (F).
Thus {g 6 G(/) tp(ot g/F) tp(ot/F)} is a infinite definable subgroup of G.
But in case (a), we know G is strongly minimal, so has no proper infinite definable
subgroups, whereas in cases (b) and (c), G is either a simple abelian variety or a
l-dimensional torus, in the sense of the constants, so has no proper infinite definable
subgroups. As G() acts transitively on the set of solutions of #(x) c it follows
that all solutions of #(x) c have the same type over F, which is what we had to
prove.

3. An application

There has been some interest in the question of whether any (nontrivial) differ-
ential fields other than differentially closed fields can be superstable. In [17] it was
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shown that a nontrivial superstable differential field has no proper differential Ga-
lois extension (moreover it is known that any superstable field must be algebraically
closed). On the other hand, it had also been asked whether the closure under algebraic
and strongly normal extensions of a field of constants, could be superstable. Using
Theorem 2.1, we will give a negative answer to this question, at least if the field of
constants in question has infinite transcendence degree.

DEFINITION 3.1. Let F be a differential field. By the strongly normal closure of
F (inside ) we mean the smallest differential subfield K of F which contains F, is
algebraically closed, and has no proper strongly normal extension (inside ).

REMARK 3.2. It is not difficult to see that the strongly normal closure of F,
which we can think ofas its "Kolchin hull" exists. It can also be described model-
theoretically as {a F tp(a/F) is C-analysable}.

THEOREM 3.3. Let Fo be a field of constants of infinite transcendence degree.
Let F be the strongly normal closure of Fo. Then Th(F is not superstable.

Proof. We may assume F0to be algebraically closed. Let 6 0 be such that
6(t) 1. Then Fo(t) (= Fo(t)) is a strongly normal extension of F0 (whose Galois
group is the additive group of the constants). Let F acl(F0(t)). Then F c_ Fl.
Let A be the elliptic curve y2z x(x z)(x tz). Then A is defined over F but is
not rationally isomorphic to an elliptic curve defined over C. Let G be the smallest
infinite definable subgroup of A. Theorem 2.1 applies to this situation, yielding a
differential Galois extension F(ot) of F with Galois group G (where c A, and
#(or) F). tp(u/F) is the generic type of a translate of G, and hence, by Fact 1.7,
is orthogonal to the definable set C. On the other hand, Remark 3.2 implies that ot

is independent from F over F, in particular ot A (FI). It is then easy to see that
FI () is a differential Galois extension of FI with Galois group G. By [17], Th(Fl)
is not superstable. [21
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