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SIMPLICIAL CURRENTS

JOHAN L. DUPONT AND HENRIK JUST

0. Introduction

For a smooth manifold X, the deRham theorem provides a quasi-isomorphism
from the complex f2* (X) of differential forms to the complex of (smooth) singular
cochains on X. Furthermore (under this isomorphism) the wedge-product in f2* (X)
induces the cup-product in cohomology; but fZ*(X) has the advantage of being an
associative, graded commutative algebra already on the chain level.

In the dual case the deRham theorem gives a quasi-isomorphism from the complex
of (smooth) singular chains on X to the complex f2,(X) of compactly supported
currents on X. (We use this non-standard notation rather than 79’ (X) or 79’, (X).) The
dual of the wedge-product is a map

/’: f,(x) --. f,(x)f,(x)

(where denotes the completed, projective tensor-product), and this is in the appro-
priate sense an associative and graded commutative coproduct. Furthermore there is
a commutative diagram

H(2,(X))

H(f2,(X))

H(f2,(X)f2,(X))

coproduct
n(f2, (X)) (R) n (f2, (X))

(0.1)

proving that/x’ identifies with the usual coproduct in homology.
The deRham theorem has a natural and frequently used extension to the category

of simplicial manifolds, i.e., simplicial objects in the differentiable category. Here
the complex f2* IlXll of simplicial differential forms, as defined in [5], plays the role
of the differential forms on a manifold. That is, f2* IIXII is an associative, graded
commutative algebra, and the cohomology identifies with the cohomology algebra of
the (fat) realization IIX (see Section 3 for the definitions).

The aim of the following is to introduce a complex f2, x of simplicial currents
on a simplicial manifold X, with properties similar to the complex of currents on
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SIMPLICIAL CURRENTS 355

a manifold. To define the simplicial currents we equip the space *llXII with a
natural Frech6t topology, and as a first definition we let , IIXII be the dual space.
This definition has the advantage that the "simplicial deRham theorem" for * IIX
immediately gives the following corollary.

COROLLARY 0.2 (SIMPLICIAL DERHAM THEOREM FOR CURRENTS).
ural isomorphism

H(K2,11XII) n,(llXll).

There is a nat-

There is however another, more concrete definition of f2, IlXll given as follows:

THEOREM 0.3. There is an isomorphism ofchain complexes

2,11xII ’,(mkxXk)/C{(8 xid),T-(id xe/),T T n(Ak_l XXk)}.
k

We proceed to prove that f2, X posesses a suitable coalgebra structure.

THEOREM 0.4. The dual of the wedge-product

A’: Ka, IIXII Ka, IIXII,IIXII

identifies in homology with the coproduct.

Notice that this coproduct is again associative and graded commutative at the
chain level. This is of interest even for X a discrete simplicial set. In the proof of
this theorem, we shall generalize the constructions to bisimplicial manifolds, and in
passing we obtain Ktinneth formulas for the (co)homology of simplicial forms and
currents. These are used to establish the analogue of the diagram (0.1).

Another construction of a complex of simplicial currents is suggested in [7], in
the case of a discrete simplicial set. We conclude the treatment of simplicial currents
with a proof that this complex embeds in , IIXII as a dense subcomplex with the
same homology. More precisely we extend the complex in [7] to general simplicial
manifolds, which gives a complex

,,An(X ] -.,k-I (Ak) ,-2n_l(Xk)
k=0 1=0

with differential

k

0(o9 (R) S) (-1)/do9 (R) S -I- -(-1) (8i)*o9 ( (ei),S -- (--1)Io9 (R) OS,
i=0

and we prove:
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THEOREM 0.5. There is a quasi-isomorphism t,(X) ff2,llXll, which embeds
(X) as a dense subspace.

Hence in particular our complex f2, I/X can be regarded as a completion ofA, (X)
with a suitable topology.

In a subsequent paper we shall apply these constructions for the study of classifying
spaces.

Another kind of deRham theorem for currents on simplicial sets has been proved
by H. Scheerer, K. Schuch and E. Vogt in their preprint Tame homotopy theory via de
Rham currents, Freie Universitit Berlin, Preprint no. A91-20, Berlin 1991.

I. Some notation

This section is intended to fix the notation for the usual spaces of differential forms
and currents.

Forms and currents. Let M be a smooth manifold ofdimension m. When nothing
else is stated, all manifolds will be second countable. Recall that the differential p-
forms on M are the smooih sections P(M) (AP T’M), while the p-forms
ofcompact support are the sections with compact support 2Pc (M) f2(/p T’M).
In local coordinates X Xm over U

___
M, every p-form can be written in the

form t fldXl, where I (i ip) is a sequence with it < < ip,
dxi dxi, A... A dxip and fI C(U).
Now (cf. [3, chap. 17]) f2p (M) is made into a separable Frech6t space in a standard

fashion, and so are the spaces (K c_ M compact)

2/(M) { 6 f2P(M) supp()

___
K}.

Furthermore P(M) is topologized as the strict inductive limit of the spaces f2 (M).
The p-currents with compact support is the (topological) dual p(M) 2P(M)
and the p-currents (with general support) is the dual space p(M) cp (M)’. The
canonical inclusion p(M) p(M) identifies 2p(M) with the compactly sup-
ported currents. The exterior differentials d in f2* (M) and *(M), define dual differ-
entials 0 d’ in f2, (M) and 2, (M). Note that in the notation of deRham/Schwartz
0 b and

f2*(M) (M) and 2c*(M) 79(M)

f2,(M) ,f’(M) and f2,(M) D’(M)

Unless otherwise specified, the spaces of currents carry the strong dual topology (see
10, Chapter 19]). In this topology the spaces are locally convex, complete. By V W
we denote the completed, projective tensor product of V and W. (We will always use
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the projective topology on tensor products; see [10, Chapter 43]). There are wedge-
and cap-products

A" P(M)2q(M) ff2P+q(M); A: p(M)q(M) -+ p_q(M). (1.1)

Also there is a monomorphism (provided M is orientable)

T" 21o (M) p(M); T() m w. (1.2)

Here oc(M) denotes the locally integrable forms on M. This map presees the
differential up to a sign, 0T (- 1)P Ta. If w has compact suppoa, so has T.

Forms andcurrents on aproductspace. LetM and N denote smooth manifolds of
dimension m and n respectively. A form q 6 f2k (M x N) is called a (p, q)-form (with
p+q k) ifin local coordinates {xi and {yi it is ofthe form q YI,J fl, jdxl Adyj.
The space of (p, q)-forms is denoted P,q(M x N), and is a closed subspace of
2k (M x M), which in fact is the direct sum

g2k(M x N) i "P’q (M x N). (1.3)
p+q=k

The cross-product

X" 2P(M)q(N) -- P’q(M x N); X lr 7/’M() A 7/’N(1/r (1.4)

is a topological isomorphism. We obtain from (1.3) a bicomplex structure on 2"(M x
N) with (continuous) differentials definedby dM(dp x p) (d4) x and ds (4 x)
(--1)PC x d. Also from (1.3) we get a corresponding decomposition of currents

g2k(M x N) i lp,q(M N), (1.5)
p+q=k

where

’2p,q(M x N) ’2p’q (M x

Z (M N) Zlf2r’s (M N) 0 unless (r, s) (p, q)}.
We let 0t d and 0N dv, imposing a bicomplex structure on f2,(M N) as
well. Using the tensor-product of distributions, one can define the cross-product of
currents, which is the topological isomorphism characterized by

" p(M)f2q(N) - p,q(M N)

(S x T, q x gt) (S, b). (T, gt). (1.6)

The monomorphism (1.2) preserves the cross-product up to a sign, To) x T (- 1)Pq.
T,o. Finally we have the slant product between forms and currents defined by

/: ’P’q (M N)f2p(M) -- q (N)
(1.7)

( x )/T (T, dp). O.
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2. Forms and currents on a geometric simplex

Before giving the definition of simplicial currents in the next section, we need to
study the topological vector spaces offorms and currents on the product of a manifold
and a geometric simplex.

The symbol Ak will denote (a version of) the standard simplex

A={xRlxi<_l; xi>Oi},

that is, the convex hull of the set {e0, el ek c_ R, where e0 0 and {el el
is the standard basis.

In the following, M is a smooth manifold.

Differentialforms on A x M. The smooth p-forms on A x M is the quotient
space

f2P(Ak M) f2P(Rk M)/{ f2P(Rk M) Ilzxk M 0} (2.1)

with the quotient topology derived from the usual Frecht topology on f2t’ (R M).
We shall give a different definition of this topology. First notice:

LEMMA 2.2. f2p (Ak M) is a separable Frecht space. Furthermore it i nu-

clea Montel and in particular reflexive.

Proof. We divide by a closed subspace (it is an intersection of kernels of Dirac
p-currents), hence the first statement follows. Since ’P(Rk x M) is nuclear, this also
implies that 2P(Ai x M) is nuclear [10, Prop. 50.1]. Finally [10, Prop. 50.2, Cor. 3]
and [10, Prop. 33.2, Cor. 1] implies that QP(Ak x M) is a Montel space. [3

Next there is a canonical identification of QP(A x M) as a vector space with

t’(AM)= {: AkM --> AP(RkTM)*I P(RkM)" IAM},
(2.3)

that is the space of extendable p-forms on/ M. We shall give P(A M) the
topology defined by the separating family of semi-norms

()
ph,o,K(qb) sup sup Da (71 o 0 o O h 1)l.

i=0 aI<N Ak xh(K)
(2.4)

Here h" U c__ M Rn is a chart for M, and K c_ U is compact. Also " /
p T*MIU --+

U x C( is a trivialization of/P T*M over U, and 7ri" U x C( -- C denotes the
i-th projection.
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PROPOSITION 2.5. P(Ak x M) is a Frechdt space and the canonical linear

isomorphism "P (Ak M) 2p (Ak x M) is a homeomorphism.

Proof To prove that ’P(Ak X M) is metrizable, we observe that the topology can
be defined by countably many semi-norms ifwe proceed as in [3, Chapter 17.1-17.2].

In order to demonstrate completeness, let us assume for simplicity that p 0 and
M is a point. Note that the topology on (At) is defined by the norms

where IIo denotes the oo-norm on c(Ak), and that the topology is characterized
by the property

fn -+ f D fn - D f uniformly on At for any multi-index

If (fn) is a Cauchy sequence in 0(Ak), it is easy to construct a limit function. In
fact each sequence (D fn) is Cauchy in f2(At), and in particular is convergent. Put

g,, lim D fn C Ak

DuNow gu D go on Ak, since fn converge uniformly, hence

0 0
Da

0
DC ztg lim fn lim fn on

OXi OX n--oo n--oo

whence the assertion follows by induction. We conclude, that DUfn - gu Dgo
on At, and it remains to show, that go 2(At), that is go extends to a smooth
function on Rt. Now Whitney’s extension theorem [3, 16.4, Prop. 6] states that, if
we write

g(x) g+(xo)
(x xo)

lo+l<_N ! + R,,v(x, xo),

then g0 extends if we can show

R,zv(x, xo)/lx xolN 0 for x xo in At.

We already know, that this is true for x0 in the interior by Taylor’s theorem. In general
we can adapt the proof of Taylor’s theorem to this situation. With x0 Ak and x e

Ak, define ," [0, 1] -- Ak, y(t) (1 t) "Xo + t. X. Put G ga, then

k!G(t)(t) -. ?’(t) g(?’(t)). (,)
I+l_<k
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In fact this is true for ]0, 1] by the chain rule, and in general by continuity. By
the Taylor Theorem in one variable,

N 1 flGu(1) .. G(f)(e) +
(N + 1)’ Je (1 t)N-I(G(aN)(t G(N)(e))dt.

k--0

By continuity this is also true if e O. Using this formula together with (*) we find

NV
R N(X, Xo)/lX XoIN < max Ig=+ (Y (t)) g+(x0)l

t[0,1]
lu+l=N ""which finally (using continuity) yields the desired property.

For the second claim of the proposition, notice that is trivially continuous" Indeed
it follows readily from the definitions of the seminorms that the restriction map
f2p (Rk x M) P(Ak x M) is continuous, and is the induced map f2p (Ak x M)
p(Ak x M). Finally the open mapping theorem implies, that is a homeomor-

phism.

In the following we will identify "P(Ak X M) and (2p (Ak x M).

Currents on At x M. The p-currents (with compact support) on Ak M is
defined as the dual space

’p(Ak X M) ,p(/k x M)’, (2.6)

with the strong dual topology.

LEMMA 2.7. Qp(Ak x M) is a complete, nuclear, Montel and in particular a

reflexive vector space.

Proof. [10, Theorem 32.2, Cor. 2], [10, Prop. 50.6] and [10, Prop. 36.10].

The currents on At x M are more conveniently described by the following propo-
sition, which gives an alternative definition of 2p(Ak x M).

PROPOSITION 2.8. There is a natural isomorphism ofvector spaces

p(Ak M)" IT p(Rk M) supp(T)

_
Ak M}.

Proof. The projection g2P(Rt x M) - ’P(Ak >(M) induces by transposition
a (continuous), injective map : p(Ak X M) -- p(Rk X M), which satisfies
supp (T) c_ At x M. On the other hand consider T
Ak x M and 6 "P (Rt x M) with IAt x M 0. We claim that (T, ) 0. Using
a suitable partition of unity, we can assume that M Rn. Writing _,i fldXt we
get D fllAk x M 0 for all multi-indices or, and this implies [8, Theorem 2.3.3] that
(T, fldXl) T/x dXl, fl 0. So (T, ) 0 as we claimed, and consequently T
defines an element " 6 2p(Ak X M), with
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The properties offorms and currents on Ak M. We observe that *(Ak M)
and f2.(Ak M) has natural structures of bicomplexes. The differentials will be
denoted d,x and dx, respectively 0A and Ox. The total differentials are d dzx + dx
and 0 0A + OX. The isomorphisms in Proposition 2.5 and Proposition 2.8 provides
two alternative definitions of these bicomplex structures.
A map f: Ak X M A X N which extends to a smooth map f: Rk x M --R N induces the maps of forms and currents

f*" f2p (A X N) -- P(Ak M) and f." "p(Ak M) ’p(A N), (2.9)

which are independent of the extension f. Also there are well-defined wedge- and
cap-products

/: ’2P(Ak M)(R) q(Ak M) "- P+q(Ak M)
A’. 2p(Ak M)(R) "]q(Ak M) "- p_q(Ak x M),

(2.10)

as well as cross-products

x: P(Ak) (R) q(M) --+ ff2P+q(Ak x M)
x: ’p(Ak) (R) q(M) -- p+q(Ak M).

(2.11)

(For the second one use Proposition 2.8 together with the property that supp(S T) c_
supp(S) x supp(T).)

LEMMA 2.12. The cross-products (2.11) induce topological isomorphisms

" "P(Ak)’q (M) - ’P’q (Ak M),

" ’2p(Ak)’q(M) -- ’p,q(Ak M).

Proof We already know that "P(Ak) and q(M) are nuclear. The map

x: P(Ak) x "q (M) P’q (Ak M)

is continuous, because : P(Rk) ’q (M) - P’q (l{k M) is continuous. Pro-
ceeding as in the proof of 10, theorem 51.6] it remains to show that

x: P(Ak) (R) q(M) -- ’P’q(Ak M)

is injective with a dense image. The image is dense because : "P (Rk) (R) "q (M) --"P’q (Rk M) has a dense image. To prove injectivity we refer to Proposition 2.5,
which implies that can be identified with a restriction of the cross-product

. p(k) (R) q(M) "2P’q(k M),

which is injective.
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By duality we get a topological isomorphism

x’ Ak’2p,q( )< M) ’p(Ak)’q(M).

It follows (using the proof of proposition 2.8) that x’ o x id, and thus also x is a
topological isomorphism. 12]

Finally let us recall the monomorphism

and consider the canonical inclusion

T(q) fa, Ao,

"2k-p (Ak) "cp (Rk), [09] - zxk 09.

Proposition 2.8 implies, that the composed mapping yields a monomorphism

T: ’k-P(Ak) p(Ak). (2.13)

In particular the constant function ak is regarded as a k-current, and is just integration
over Ak. This map does not preserve the differential, an explicit formula (which will
enter in Section 5) can be derived from Stokes’ theorem:

LEMMA 2.14.

k

i=0

Proof. With 09 ’-k-p (Ak) and ,p-1 (Ak) we have

k

(--1)P(Td’ () + (--1)i fA (i)* A (i)’09
i=0

k

(-)e(Ta, /+ (-) ((),T,,,, /.
i=0

Remarks 2.15.

(1) Notice that all the preceding immediately generalize to the case, where Ak is
replaced by the convex hull of k + points {x0 xk} in general position.
Once a bijection {e0 e} --+ {x0 xk} is chosen, this yields spaces
which are canonically isomorphic to the above.



SIMPLICIAL CURRENTS 363

(2) Observe that the "Poincar6 lemma" operators

hj" ’n(Ak X M) - f2n-l(Ak x M), 0 k, (2.16)

as defined in [5] for example, are continuous; in particular 2.(Ak x M) is chain
homotopic to .(M), and thus has the correct homology groups.

3. Simplicial deRham theory

With the definitions of Section 2, we are ready to introduce the extended sim-
plicial deRham theory. Let A denote the simplicial category of ordered sequences
[n] {0, 1, 2 n} with weakly increasing functions f: [n] [m] as morphisms.
Also let z0 denote the category with morphisms restricted to the strictly increasing
functions. A simplicial manifold is a functor X: Ap .A4, where is the cate-

gory of smooth manifolds, while a A-manifold is a functor X" Ap -- A4. In both
cases X is determined by a sequence X0, X1, X2 of manifolds together with face
maps ei: Xk Xk-l, and, in the case of a simplicial manifold, also degeneracy
maps Oi: Xk Xk+l satisfying the usual relations (see e.g. [6, Def. 2.5]).

In the following X will denote a A-manifold (or the underlying A-manifold of a
simplicial manifold), .but the constructions, except when otherwise stated, has "nor-
mal" (in the phraseology of [6]) counterparts for simplicial manifolds.

Simplicialforms and currents. As in [5] (with a minor change of notation) define
the simplicial n-forms as the space

f2nllxlJ-- { H ’n(Ak X Xk)[(E X id)*(k) (id Xe/)*t(k-1)}. (3.1)
k

This should be thought of as the space of forms on the (fat) realization

IIXII LI Ak Xk/(i (t), x)’ (t, ei(x)).
k

If X is a simplicial manifold, the corresponding "normal" space is to be denoted
f2n IX I, and can be regarded as the space of forms on the "geometric" realization
of X. We endow n X with the topology induced from the product topology on the
space I-Ik f2n (A x Xk).

LEMMA 3.2. ,’n X is a separable Frechdt space, which is also nuclear, Montel
and hence reflexive.

Proof. That K2 X is a Frech6t space follows from Lemma 2.2, since a countable
product of Frech6t spaces is a Frech6t space, and 2n x is a closed subspace of

I-Ik fn(Ak x Xk) (it is the intersection of the kernels of the operators (e x id)*
(id xei)*). The other properties follows as in the proof of Lemma 2.2. El
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Definition 3.3. The space of simplicial n-currents is the dual space f2n X
f2n IIXII with the strong dual topology.

LEMMA 3.4.
ive.

n X is complete, nuclear Montel space; in particular it is reflex-

Proof. As for Lemma 2.7.

Clearly f2n I1" and n I1" are functorial with respect to smooth simplicial maps.
Also observe that the Hahn-Banach theorem implies that the evaluation pairing

(,)" K2pllXll @ K2PlIXII - C (3.5)

is non-degenerate.
We now give an alternative, more suggestive definition of fin X as the following

quotient space.

DEFINITION 3.6.

2nllXII K2(Ak Xk)/C{(e xid),T-(id xei),T T fl(Ak- xXk)}
k

with the quotient topology.

Here we can take the weak or strong closure indifferently, since ) n(mk X Xk)
is reflexive; see [10, Prop. 36.2]. We shall now see, that llxll and llxll can be
identified.

THEOREM 3.7. There is a natural, continuous isomorphism 2n X -- K2 X II.

Proof. Consider the inclusion K2IIXII - I-I 2n(AkxXg),andthetranspsed
map i’: ]) n(A x Xk) -- 2llXII. This map is onto (by the Hahn-Banach
theorem), while keri’ f IIXII, the polar of llXII (cf. [10, Chap. 19]). Put

llXII spanc{(e x id),T (id xi),T T ’n(Ak_l >(Xk) 1.

We want to prove, that llXII keri’. Since llXII keri’, there is an induced
map

i’: ] ’n(Ak X Xk)/AfllXll - 2llXll.
k

We have to show that i’ is one-to-one. For this proof let us put the weak topology
on the dual spaces. It suffices to prove, that the weak transposed i" is onto [10,
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Prop. 35.4]. There is a commutative diagram

nllXIl’ (ik "2n(Ak x x:)/A/,,IIXII)’

2llXll AfnllXll

Here j is the canonical isomorphism defined by j (40(T) (T, 4), and jl is induced

by the similar isomorphism jl" 1-Ik f2n(Ak x Xk) --> ()k f2n(Ak x Xk))’; in fact
the induced map is clearly well defined and injective. It is also surjective, indeed let

A:, IIXII , then there exists a form q I-Ik ’n(mk X Xk) with jl (4) . This is
actually a simplicial form since

(T, (8 id)*q (id xei)*q) (jl(b), (8 X id),T (id xsi),T) 0

and ’n(Ak-1 X Xk) separates points in "n(Ak-1 X Xk). Finally zr’ is induced by the
projection

" ’n(A
k X Xk) "> "n(Ak X X)/AfnllXll.

k k

zr’ is an isomorphism by [10, prop. 35.5]. That r’ o i" o j j is seen as follows"

(zr’o i"o j (), T) (j (q), i’o zr(T)) (i’o yr(T), b) (T, q) (j (q), T).

We conclude that i", and hence also i’ is an isomorphism, r-]

Next observe, that the bigradings pass to the simplicial forms and currents, pre-
cisely let

’2P’qilxll (H"2P’q(Ak x Xk))f’)’2nllxll’k
p,qllXll 2P’qllxll’ {T 2nllXll T(2r’sllxll) 0 unless (r,s) (p, q)}.
These are closed subspaces. It is easy to see, that we get bicomplexes (2"* x II, dzx, d)
and (S2**IIXII, Ozx, Ox) with total complexes (2*IIXII, d) and (f,llXII, ). We can
also define a bicomplex structure on f2, IIXII, compatible with the isomorphism in
Theorem 3.7. Finally there are well-defined wedge- and cap products

/. s2p x (R) ’2q x --> 2p+q x II; /v p x (R) q x ---> S2p_q x (3.8)

obeying the usual relations.
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Homology. We proceed to observe that our complex f2, IIXII has the desired
homology groups. This is in fact an easy corollary to the simplicial deRham theorem
in [5].

There is another kind of deRham double complex (A** (X), 3, dx) associated with
X. Namely AP’q(x) "2q(Xp) with dx (-1)Pd and 3 Z..,i=0’q+l(--1)ie" The
total complex is denoted by (A*(X), d). Let (A**(X), 3, Ox) denote the dual double
complex with total complex (A,(X), 0).

PROPOSITION 3.9. There are natural isomorphisms H(A*(X), d) H*(IIXII)
and dually H(A,(X), O) - H,(IIXII). Under these identifications, the evaluation
pairing A,(X) (R) A*(X) C induces the Kroneckerproduct H,(IIXII) (R) H*(IIXII)
-+ C.

Proof This is a standard fact with forms and currents on Xp replaced by the
singular cochains and chains. Hence this version follows from the deRham theo-
rem(s). q

We quote from [5]:

THEOREM 3.10 (SIMPLICIAL DERHAM THEOREM). Foreachq the chain complexes
(f2*,q]lxl], d/x) and (A*’q (X), 3) are naturally chain homotopy equivalent. In fact
there are natural maps ofbicomplexes

J: 2**llXll- A**(X), : A**(X) f**llXll
such that ff o id, and chain homotopies s: f2p,q IIXII - 2p-’q IIXII such that

g o ,]" id sdA +dAs,

These maps are defined by

,ff (qb) qb(P) /1Ap
y (o).(O9) (k) p!. a x /z

sdx dxs.

( - P’q X

09 . Ap’q (X) (k > p)

s()(k) Ill!’al A hl(t); qb K2P’qllxll.
O<[ll<p

Here I (i0, iltl) denotes a sequence of integers such that 0 < i0 < <

iltl < k. Also

hi hill o hio and/zt ejk_ll ej,

where 0 < Jk-ltl < < jl < k is the complementary sequence to I. Finally at is
the form

III
at E(-1)Jtijdtio A...A/ A..’A dti,,,.

j=0
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The notation is from [5]. We now observe, that all the operators if, and s are
continuous, so by the first definition (3.3) of simplicial currents we immediately get

COROLLARY 3.11 (SIMPLICIAL DERHAM THEOREM FOR CURRENTS). For each q
the chain complexes (g2,,q IIXII, Ozx) and (A,,q (X), 3) are naturally chain homotopy
equivalent. In fact there are natural maps ofbicomplexes

,7’: A** (X) f2** x II, ’: f** x A** (X)

such that ’ o ,7’ id, and chain homotopies s’: ’p,q X 2p/,q X such that

,,7’o U- id S’OA + ASt, S’X xS’.

Proof. The pairing (3.5) is non-degenerate.

by
In terms of the second definition of simplicial currents (3.6) these maps are defined

J’(T) lap T; T Ap,q(X)

g’(T) p!.

_
(t;tl),(T A o/i); T "p,q(Ak X Xk) (k P)

II1=1)

s’(T) [II! h’t(T A
0<lll<p

T "p,q(Ak x Xk).

ADDENDUM 3.12. Underthe resultingisomorphisms H*(IIXll) H*(*IIXll, d)
and n,(llXII) H, (2, IIX II, 0) the cup- and cap-products are induced by the wedge-
product as in (3.8).

Proof That the cohomology isomorphism is multiplicative is shown in [5]. This
implies, that also the cap-product is preserved, as follows from Proposition 3.9.

Remarks 3.13.

(1) In the next section we shall prove a similar result for the coproduct.
(2) Inspired by the above one might consider using the complex f2, IIX II0 defined

by

( a,(A x X)/spanc{(e x id),T- (id xei),TIT "n(/k_l X Xk) }.
k

as a definition of simplicial currents. There is a projection (2, x II0 , x II.
We do not know if this is an isomorphism, but at least it is a quasi-isomorphism.
Indeed there are well-defined maps ,7’: A,(X) --+ 2,11xII0, ’: 2,11XII0 -+
A,(X) ands’: ,llXII0 (,llXII0, defined as the maps above; and one proves
directly that g’ o J’ id, 3" o g’- id s’OA + OAS’ and s’Ox Oxs’.
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(3) Consider in particular a discrete simplicial set S. If S is uncountable, e.g.,
as the singular complex Sp Map(AP; X) of a space X, then the properties
of Lemma 3.2 fails. However we still have local convexity, and this means
that Corollary 3.11 is still valid, because we only need that the pairing (3.5) is
non-degenerate.

4. Kiinneth Theorems and the coproduct

We now turn to the material needed for Theorem 0.4.

Bisimplicial manifolds. The theory in Section 3 easily extends to bisimplicial
manifolds. We leave the details to the reader, but let us briefly describe the construc-
tions. If (X**, e, ej’) is a bisimplicial manifold, the proper definitions are

"llXll { VI,z 2n(A x A x X)

, (k-l,/)(t x id x id)*tp (k’t) (id x id xei) 4) and

(id e id)*tp (k’t) (id x id ej’)*b(k’/-1) } (4.1)

2,,llXII-- nllXIl’ ’-n(Ak X A X Xkl)/
k,l

spanc{(e x id x id),T- (id x id xe),TIT ’n(Ak-’ x l x Xkl)}
U{(id xej x id),T (id x id xe’),T T fln(A x At-1 x Xt)]. (4.2)

These spaces are graded over Z with differentials d, d and d in fl* X respec-
tively O, O and O in fl, ]X]], with the obvious notation. The simplicial deRham
theorems generalizes to show, that the (co)homology of these groups is the singular
(co)homology of the realization ]IX ]]. As in Section 3, this goes through a suitable
complex A*(X).

This extension is useful for studying products. Thus if X and Y are simplicial
manifolds, X x Y denotes the bisimplicial product. For a bisimplicial manifold Z,
the coesponding (diagonal) simplicial manifold is denoted 8 Z. There is a natural
continuous map

: *llZII *llZll; 8()() ()*((,)), (4.3)

where 8: A x Z A x A x Z is the obvious map. The latter also induces
a map : IIZII IIZII, and it is standard, that this induce an isomohism in
homology. Fuahermore these maps are compatible with the deRham isomohisms.
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(To see this, use the description of the deRham isomorphism on the chain level used
in [5, proof of Theorem 2.14]; see also 1 ].) For technical reasons we also need the
following construction: From the simplicial manifold X we can construct bisimplicial
manifolds LX X x, and RX x X, where denotes the simplicial manifold
with *k point for all k. There are natural continuous maps rrL: IILXII --> IlXll and
zr: RX --> IIX II, and these induce isomorphisms in homology. Clearly we also
have natural continuous maps

*" f2* g2* *" f2* f2*rrL IlXll--> IILXII and rrR IIXII--* IIRXII (4.4)

and again the maps are compatible under the deRham isomorphisms. All this applies
to A-manifolds as well, except that for these it may not be true, that 8, ZrL and rrR
induce isomorphisms in homology.

Cross-products and Kiinneth formulas.
formulas for simplicial manifolds. To this end we introduce the cross-products

defined by

We shall now prove suitable Ktinneth

x: K2mllXll (R) 2nllYII m+nllx x Eli,

xa: K2mlIXII K2IIYII 2m+n[l(X x Y)ll

(4.5)

(4.6)

(4.10)

A

2llXll O+Z=n kllXll2llXll

s2,11(x x X)ll 2llX x Xll.

(( X l/t) (k’i) ((k) X 1/r(l); ( X 1/t 7[’X(() A

Here rrx and rr), denotes the obvious projections (note that these are simplicial maps).
With A: X ---> 6(X x X) denoting the diagonal map of X, we obtain the usual relation

4)/x p A* (4) x ap). (4.7)

The two cross-products are related by

’(O x )= O x, . (4.8)

There is a cross-product of currents, defined similar to (4.5):

X: "2m X (R) ’n Y --> m+n X x Y II. (4.9)

Indeed it follows from (4.2) that the cross-product

X" (m(Ak x Xk)) (n(Al x El)) ’2m+n(mk X Al x Xk x El)
k k,l

induces a map as in (4.9). The analogue of (4.7) for currents is the commutative
diagram
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Here 3’ and, as we shall see, also x are quasi-isomorphisms, and this will lead to
Theorem 0.4. First we need the following Ktinneth formulas:

PROPOSITION 4.11. For A-manifolds X, Y there are commutative diagrams

and

H(2*IIXII) @ H(K2*IIYII) .> H(K2*IIX x Eli)

H*(IIXII) (R)H*(IIYII) H*(IIX x Eli)

(*)

X

H(K2,11XII) b H(K2,11YII) H(K2,11X x Eli)

T T (**)

n,(llXll) (R) n,(llYII) n,(llX YII).
In particular the cross-products (4.5) and (4.9) are quasi-isomorphisms, where in the
case of(4.5) it is assumed that either n,(llXll) or H,(IIYII) is offinite type.

Proof. We observe, that the diagram (*) can be composed of two diagrams as
follows:

7rTrR X

H(f*llXll)(R)H(2*llYII) H(*IILXlI)(R)H(2*IIRYll)

LR
H([X[[)H([Y[[) H([[LX[)H([[RY[)

where the cross-products are defined by

and where x" X x LX and r" X x R are the projections (note that
these are in fact bisimplicial maps). We already know, that the left square commutes.
The right square commutes by naturality and multiplicativity ofthe simplicial deRham
isomohisms.

If we assume that H ([X [) is of finite type, so that the horizontal maps in () are
isomohisms, we can easily show the commutativity of (). Indeed we have the
relation

<s x T, x ) <s, ). <r, ),
and since the Kronecker pairing is preserved by the simplicial deRham isomowhisms,
the commutativity of (*) implies, that also (**) is commutative.

H(K2*IIX Eli)

H*(IIX YII)
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In the general case, we apply Lemma 4.1 2 below, and use the fact that homology
commutes with direct limits, l-I

LEMMA 4.1 2. We have isomorphisms ofchain complexes:

(1) K2, X lim g2, U and 92, X x Y lim g, U x Y II.
u u

(2) C,(llXll) lim C,(IIUII) and C,(]lX YII) lim C,(IIU Eli).
u u

Here the direct limit is taken over the open, A-submanifolds offinite type, ordered by
inclusion. (C, denotes the singular chain complexfunctor.)

Proof. Since the other statements are completely analogous, we shall restrict
ourselves to prove that 92, X lim 92, U II, This will follow, if we can show, that

u
every T e 92n x is in the image of one of the injective maps i,: 92n U S2 X
where i" U --> X is the inclusion and U is a A-submanifold of the above type.

Consider T e 92nllXll, represented by Tk 92n(Ak Xk)’, k > O. We use the
identification in Proposition 2.8. Define the compact sets Ck zrk(supp(T)), where
7rk" A x Xk ---> Xk is the projection. We shall apply the following property of a
manifold M:

For any compact K c_ M there is an open neighborhood V c_ M of K
such that V is a compact manifold with boundary in X.

This follows from a small variation of [2, Lemma 7.1 ]; indeed one can easily adapt
the proof to construct a smooth, proper map f" M ---> R+ such that f lK =-- O. We
can then choose V f- ([0, aD, where a is a regular value. We can now construct
a suitable A-submanifold U c__ X as follows: Since Ck 13 if k is greater than, say,
N, we choose Uk 13 if k > N. Now choose a neighborhood UN CN of the above
type. Then Uk is defined inductively as similar neighborhoods:

Uk

_
e0(/)+l) tO... tO e+(fJk+) U C; k N O.

Clearly U {Uk is a A-submanifold.
Since supp(Tk) _c Ak x Ck

___
Ak x Uk, there are well-defined restrictions

T,IA’ x U, e ,,(A’ x U,),

with supp(TklAk x Uk) supp Tk. It follows readily, that i,(TklAk x U) T.
To see this choose a smooth function " Xk ---> [0, 1] with supp()

___
Uk, but

lCk 1, and use (TIAk x Uk, 4) (Tk, ( o zrk). 4) for all 92n(Ak x Uk).
It remains to show that H, (11U II) is of finite type. By the construction, H, (Uk) is of

finite type. Consider the double complex A** (U); for one ofthe spectral sequences we
have Ep,q nq (Up), and since this is finite dimensional, Ep,q is finite dimensional
for all r >_ 1. Since the spectral sequence converges to H,(IIUll), we are done.
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Remark 4.13. There is no obvious way to construct U in this proofin the "normal"
case, i.e., such that U is stable with respect to the degeneracy maps, and it may not be
true that f2 XI lim 2, UI Nevertheless the analogue of Proposition 4.11 is valid,

U
because the cross-products are compatible with the projections f2, I1" 2, I" I,
respectively I1" I" I.

Coproduct. We shall see that the dual to the wedge-product

A’: 2,11Xll---> f,llXll2,11Xll

induces the coproduct in homology in the following sense"

THEOREM 4.14. There is a commutative diagram

Hd2,11Xll)

H(,IIXII)

A

H(,IIXII,IIXII)

coproduct
H(f,llXll) (R) H(2,11XII).

Proof. Consider the diagram

The upper right square commutes by definition. The lower right square commutes
by prop. 4.11. The "exterior" diagram commutes by (4.10) and the definition of the
coproduct. Lemma 4.15 below implies that x" H(2,11XIIf,IIXII) --> H(S2,11X x
X II) is an isomorphism.
We conclude that the rectangle on the left commutes, and this ends the proof. El

LEMMA 4.15. The maps

x. 2*llXllf*llYII--> 2*llX x Eli,
x. 2,11Xll2,11YII--> 2,11x x Eli

are quasi-isomorphisms.
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Proof.
is a commutative diagram

2*llXllf*llYII f*llX Eli

iJJ iJ
A*(X)A*(Y) A*(X x Y).

This follows from a comparison with the complexes A*(.). Indeed there

(It is clear how to define the cross-product between the spaces A*(.), and also that
this is a topological isomorphism.) Since ffff and J are quasi-isomorphisms we
are done.

The proof for currents is similar. Ci

Remark 4.16. It is very likely, that the maps in Lemma 4.15 are in fact (topolog-
ical) isomorphisms, but we can only prove, that they are injective (which is trivial).

5. Another complex of simplicial currents

In [7], another complex of simplicial currents is defined. A straightforward gen-
eralization to arbitrary A-manifolds is the complex

with differential

tn(X) .-,k-I (Ak) ( n_l(Xk)
k=0 1=0

(5.1)

k

0(w(R) S) (-1)ldw (R) S + (-1)i(Ei)*o)@ (Ei),S -- (--1)lo) () OS. (5.2)
i=0

We are going to compare A,(X) to 2,11XII. There are maps

I: An(X) --> .An(X); I(S) lzxk (R) S, S E n-t(Xt)
: An(X) -’-’> 2nllXll; (o (R) S) To x S.

Clearly o I 27, and furthermore I and are chain maps, as follows from
straightforward calculations (use 2.14 for ).

THEOREM 5.3. (1) is a quasi-isomorphism.
(2) is injective.
(3) Im is a dense subset of2n X II.
(4) The pairing

A,(X) ff2nllxll --> C; (T, ) ((T), )

is non-degenerate.
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Proof. (1) We prove the equivalent statement that I is a quasi-isomorphism.
Introduce the following bicomplexes:

.Ap,q -P(Ak) "q(Xk) p < 0, q >_ 0
k=0

0’(o9 (R) S) (- 1)P+kdo9 (R) S
k

O"(W(R) S) (-1)i(ei)*o9 (F,i),S @ (-1)P+/O9 (R) OS
i=0

and

Aq(X) if p 0
Apq 0 otherwise

O’ O, O"=d.

Then I induces a map I" A** .,4** of bicomplexes. Let us recall that

H(*(Ak), d) - C

in degree 0, generated by 1/xk. Using this, it is straightforward to see that the induced
map

I: H(A,q, ’) -- H(t,q,
identifies with the identity on Aq (X), which by a spectral sequence argument proves
our claim.

N(2) Assume that (k=0 ck) 0, where ck )=0 "k-l(Ak) ( "2n-l(Xk)" Let
k C= "n Ak )< Xk) denote the image of Ck under the map o9 (R) S T,o x S.

Assume inductively that ?k 0 ifk > p. We claim that also p 0. It is sufficient

to show that .plAp Xp 0, since ?p is smooth in AP (for this use the isomorphism
,(AP Xp) ,(AP; ,(Xp)), which follows from Lemma 2.12 together with

[10, prop. 50.5]). Thus consider 6 n(Ap Xp) with suppq c_ AP Xp. We
Ncan extend q to a simplicial form by Lemma 5.5 below. Since k=0 k annihilates

fn X (of, the proof of Prop. 3.7), we get

k=0 k=0

We conclude that Op 0 and hence Ck 0 for all k.
(3) In fact .An(X) is dense in ]k ’n(Ak X Xk). This follows easily, combining

the isomorphism Lemma 2.12 with the fact that the image of k-l(Ak) is dense
in /(Ak). This implies that .An(X) is dense in (nllXII, But the surjective map
n X - fn x is continuous.

(4) Follows immediately from (2) and (3), since (3.5) is non-degenerate.
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Remark 5.4. Observe that we have proved that .An (X) is dense in f2n X as well
as in n X II. In particular we can regard g2n X and 2 X as completions of
An x in suitable topologies.

LEMMA 5.5. Consider e n(Ak X Xk). If supp
_
Ak Xk, then 49 extends

to a simplicial n-form b E fn IIXll such that b(t) and b(p) 0 if p < k.

Proof. First some notation, following [6, Chapter 2]. For a sequence I
(i0 i) of integers satisfying 0 < i0 < < i < p we introduce

where p > j > > j > 0 is the complementary sequence to I. Also define (in
barycentric coordinates)

A {(to tp) mp ::Z]s: tis > 0}
AP {(to tp) . mp tio tik 0}.

That is, we subtract the p k 1-dimensional face opposite to the k-
dimensional face represented by 1. We then define a projection

(tio tik).tel At; -+ AI :rrl(to tp)
2.., tis

Note that if f2*(Ak), the pullback zr’() will usually not extend to a smooth
form on Ap. To remedy this, we shall multiply zr’() by a (suitably chosen) function
u C(AP), which is 0 near the face we subtract. To define u consider a smooth
function : [0, 1] --> [0, 1] such that ap _= 0 near 0, but (1) 1. We define

Ul(to tp) (yti).

Put fit u x., we may then define

((P) { -I (7(I X ]ZI)* /I if p >_ k
0 ifp <k.

It is easy to see that q extends 4; since uoi...k(to tk) (-s tL) (1)
we get

q3) (rr01...k x/z0...k)*q, fi01...k id*(q). 4.
We shall verify that

(i X id)*q(p) (id xi)*(p-l).
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This is trivial if p < k, so assume p > k. We then have to prove that

E(E X id)*((rrl /Zl)*t /I) (id xi)*((7"t’j x/zj)*t, lj),
j

which can be rewritten as

E((TI’I O ei) X /Zl)* (Ei X id)*tt E(zrj x (/zj o ci))*t (id XEi)*/j.
J

To see this, we need some more notation: For each 0... p, let e (I) denote the
sequence

el(l) (io is, is+ + ik + 1); where is < < is+.

It is straightforward to verify the following relations"

(1) ei(1) I 0

(2) ei(1) 0 8 7"t’l,

(3) zrt o ei(Ap-)
___
OAk ifi I,

(4) (ei)*ue(1) Ul.

Using these, we can finish the proof. The point is that J - ei(j) gives a 1-
correspondence between the sequences J and the sequences I, which does not

contain i. Applying (1)-(4) then immediately gives the result (note in particular that
(3) implies ((Tt" o ei) X /ZI)* 0 if I).
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