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DEGREE BOUNDS IN MONOMIAL SUBRINGS

WINFRIED BRUNS, WOLMER W. VASCONCELOS AND RAFAEL H. VILLARREAL2

I. Introduction

Let R K[Xl Xn] be a polynomial ring over the field K and let F
f] fq be a finite set of monomials. The monomial subring generated by F is

the K-subalgebra K[F] C R. In general it is difficult to estimate several of the fun-
damental invariants of K[F]--degrees of the generators of its integral closure K[F],
fine details of its Hilbert function (e.g., multiplicity and a-invariant)wor to carry out
basic algebraic manipulations such as those required in Noether normalization.

In this work we study monomial subrings of R generated by monomials (including
Rees algebras). One of the goals is to find bounds for the generators of the normal-
izations of those subrings benefitting from the fact that K[F] is a rational singularity.

Our more specific aim here is to consider some of these issues when F is a set of
squarefree monomials of the same degree k. In this case there are embeddings

K[F] C S c Rk),

where

S K[{xi,...xik < il < < ik < n}],
and Rk) is the kth Veronese subring of R. All the constructions of K[F] take place
inside of one of these algebras. This will be very useful despite the fact that these
embeddings are not rational.
We especially want to present an explicit generating set for the canonical module

cos of S. In particular we fully describe the algebras S with the Gorenstein property
and compute the a-invariant of S. In this setting, our results complement and refine
those of De Negri and Hibi [6] for the class of algebras considered here. Our analysis
will determine the Cohen-Macaulay type of S but also leads to the control of degrees
in K[F].

2. A description of the canonical module

Let us fix some of the notation that will be used throughout this work; for unex-
plained terminology and notation see and [4, Chapter 6]. Our main references for
polyhedral geometry are and 14].
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Let n > 2k > 4 be two integers (this is not an essential restriction; see Re-
mark 2.13). We set

t-- {ei q- q- eik 1 <_ il < < ik <_ n},

where el en are the canonical vectors in ]1n The affine subsemigroup of Nn

generated by 4 will be denoted by C, that is, we have C )-,,ut Ha. The cone
generated by C will be denoted by/t+C; it is defined as

If a n, a 5 0, then the set Ha will denote the hyperplane of ]tn through the origin
with normal vector a. Thus Ha {x n (x, a) 0}, and Ha determines two
closed half-spaces

Ha+={x nl(x,a) >0] and Ha ={x ]nl(x,a) <0].

Let R K[xl Xn] be a polynomial ring over a field K, the K-subring of R
spanned by the set {xa a A} is equal to the affine semigroup ring K[C].

Remark 2.1. Let o be the matrix whose columns are the vectors of 4. By [9,
Proposition 7.4], we obtain that rank(tp) dim K[C] n; in particular the vector
subspace generated by A is equal to ]1n and dim +C n.

The equations ofthe cone

LEMMA 2.2. Set NI {-el -en}, N N1 U N2 and

N2 {-el ei-i + (k 1)ei ei+l e, <_ < n}.

If H is a supporting hyperplane of the cone +C containing a set t9/1 Oln_ of
linearly independent vectors in 4, then H Ha for some a N.

Proof Let a (al an), a :/: O, so that H Ha. Let M be the (n 1) x n
matrix whose rows are the vectors Otl c,_l. First note that if the j-column of
M is equal to zero, then (oti, ej) 0 for all and H Her; on the other hand, if
all the entries of the j-column of M are equal to 1, then H Ha for some a 6 N2.
Therefore we may assume that all the columns of M have some zero entries and also
some entries equal to 1. Set A {i ai > 0}, B {i ai < 0} and e IAI; without
loss of generality we may assume A {al ae }. By symmetry the proof can be
reduced to the following four cases.

(a) Assume A 0. Using the fact that all the columns of M have at least one
entry equal to we obtain a 0; hence this case cannot occur.
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(b) Assume 2 < e < k 1. We claim that there exist O SO that in the set of the
first e entries of ct there is at least one entry equal to zero and at least one entry equal
to 1. Otherwise, using rank(M) n 1 and row-reducing M to its normal form we
obtain 2, and hence a alel ale2. Setting/3 el + e3 -+- d- ek+l and
y e2 + e3 + + ek+l we get (/3, a) al > 0 and (,, a) -al < 0, which is
impossible because Ha is a supporting hyperplane of JR+C and the proof of the claim
is complete. For simplicity we assume

Otl ei d- ei2 -l- "k- eim + ejl + + ejr,

where

ei =el, m +r =k, 3 < i2 <-.. < im < e < jl < < jr < nandr, m > 1.

Let us show (/3, a) > 0, where/ e + + ee / ej + + ejk_. Note that

(fl, a) > al + a3 + + ae -+- ajl + + ajk_

>_ ai + ai2 + + aim + aj + + aj_ >_ O,

because (a, a) 0. Hence/3 6 .A and (/3, a) > 0, as required. If 2 < [B[ < k 1,
we may apply similar arguments to prove that there is a , 6 4 so that (,, a) < 0,
which contradicts that H is a supporting hyperplane. Therefore we may further
assume that IBI is either equal to 1 or IB] >_ k; in this situation we can rapidly find, ,4 so that (,, a) < 0, which again yields a contradiction.

(c) Assume Ial and IBI > k. Set r [BI and say B {a2 ar+l}. If
r n 1, then using (cti, a) 0 for all we derive that all the entries of the first
column of M are equal to 1, hence H Ha for some a 6 N2. Next we assume
r _< n 2. Let ci be a vector with its first entry equal to zero. Since (oti, a) 0
it follows that the first r + 1 entries of i are equal to zero and n > r + k. Setting
fl el + er+2 +"" + er+i and , =/3 e + ez we obtain (/, a) > 0 and (?’, a) < 0,
which is impossible. The case [AI 1 and [B[ 1 can be treated similarly.

(d) Assume [A[ >_ k and IB[ >_ k. This case cannot occur because one can rapidly
find vectors/, , in .A so that (/3, a) > 0 and (?’, a) < 0.

Remark 2.3. The converse of Lemma 2.2 is also true because we are assuming
n > 2k >_ 4, and this implies n > k + 2. Note that if n 3 and k 2, then the cone

+C has only three facets.

PROPOSITION 2.4. A point x ]n is in IR+C ifand only ifx (x Xn) is a

feasible solution ofthe system oflinear inequalities

-xi < O, n

(k 1)xi Xj < 0, n.
jsi
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Proof Let+C Hb f3... A Hb be the irreducible representation of+C as
an intersection of closed half spaces. By [1, Theorem 8.2] the set Hb fq +C is a
facet of/+C; note that this readily implies that Hb, is generated by a set of vectors in
4. Therefore by Lemma 2.2 one obtains Hb, Ha, for some a 6 N, here N denotes
the set defined in Lemma 2.2. D

A generating setfor the canonical module. Let X be an arbitrary subset of n.
The relative interior of X, denoted relint X, is the interior of X relative to aft X, the
affine hull of X.

LEMMA 2.5. Let a be a vector in C f) relint(]+C) and set A {i ai > 2}. If
IAI >_ k and il ik are distinct integers in A, then a’ a ei eik also
belongs to C relint(+C).

Proof Without loss of generality one may assume a > a2 > > an, ak > 2
and a’ a el e. We claim that a’ relint IR+C. First observe that N+C
has dimension n; thus one has

relint IR+C int IR+C int N Hc- A int Hc- N Hc- \/-/ (1)
cN cN cN

by Proposition 2.4. Hence, using that a relint It+C we readily obtain

(k-1)(ai-1)<-l+ (a)-l)/ aj, for 1 <_i_<k. (2)
I<_j<k k+l<j

On the other hand, if k < < n we have

"aj >_ al -l-(k-1)ai + y aj =al -+-kai + aj > kai +n-k + l.
j=l k+l<j k+<_j

ji

As n > 2k > 4 we obtain Zn
j=l aj > kai + k + 1, or equivalently, one has

k

(k 1)ai <_ -1 -+- y(aj 1) + aj, for k + < < n. (3)
j=l k+-<J

j

Altogether by (1), (2) and (3) we get a’ relintlR+C. By [13] we obtain that K[C]
is a normal domain and therefore C EC C IR+C; since a’ NC we conclude
a’ C. !--1

Let R iC=oR be the standard grading of the polynomial ring R and let Rk)

R)i=0 ki be the kth Veronese subring of R graded by (R(k))i Rki. Notice that K[C]
is a graded subring of Rk) with the normalized grading"

K[C] (K[C])i, where (K[C])i K[C] (R(k))i.
i=0
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We shall always assume that K[C] has the normalized grading.

THEOREM 2.6. Set S K[C]. Let cos be the canonical module of S and let
a. satisfying thefollowing conditions:be the set ofmonomials M x Xn

(a) ai >_ and (k 1)ai <_ q- ’j=fii aj, for all i.

(b) Zin=l ai =- 0mod (k).
(c) I{i lai >_ 2}1 < k- 1.

Ifn > 2k > 4, then is a generating setfor ws.

Proof. According to [5, 10] we have

COS ({xa a C Cq relint(IR+C)}).

Taking into account the arguments of the proof of Lemma 2.5 and by a repeated use
of Lemma 2.5 it is enough to prove that C cos. Let M 6 ; without loss of

al ak-Igenerality we may assume M Xl "xk-1Xk Xn, where al > > ak_ > 1.
The monomial N xk_ can be factored as

k-1 / (Xl "’’Xi)ai-ai+l,N H Ni, where Ni I (xl l)ak-IXk-
i=1

ifl <i <k-2
ifi =k-1.

On the other hand, by the properties (a) and (b) it follows that we can write

Xi N’ N, where deg(N) (k i)(ai ai+l),
ak-l,

i=k i=1

ifl < <k-2
ifi =k-l,

and deg(N’)_= 0mod(k). Hence M N’ k-1IIi=l (NiNe) is in K[C], which readily
implies M 6 cos. rq

Consider a polynomial ring over a field K

B K[{Ti...i, < il < < ik < n}],

with one variable Ti,...ik for each monomial xi, ...xik. There is a homomorphism

" B K[C], induced by Ti,...i Xi,’’’Xi.

The ideal P Ker(gr) is called the presentation ideal or toric ideal of K[C].

Definition 2.7. Let B/P be the presentation of K [C]. The Cohen-Macaulay type
of the ring K[C] is the last Betti number in the minimal free resolution of B/P as a
B-module; it will be denoted by type(K[C]).
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Remark 2.8. Set S K[C]. We recall that the type of S is also equal to the
minimal number of generators of the canonical module ogs of S. To compute the type
of S notice that a monomial M x’ .ak-,

"’’xk_ xk’’’Xn is in if and only if for all
<i <k-lonehas

k-1

-aj mk /k-1 and -1, for 2.n ai m some m
j=l

These two conditions imply n/k < m < n 2k + 2. Therefore, by Theorem 2.6, the
computation of the type of S reduces to counting partitions of positive integers.

COROLLARY 2.9. Let ws be the canonical module of S K[C]. Assume k 2
and n > 2k. lfn is odd, then

(’OS ({XI ’’’Xj-1 tXj+l ’’’Xn < j < n, < < (n 3)/2}),

and type(S) n(n 3)/2. Ifn is even, then type(S) (n2 4n + 2)/2.

COROLLARY 2.10. Ifn ="2k + > 5, then the type of K[C] is equal to (

_
1)"

Definition 2.11. Let S be a Cohen-Macaulay positively graded K-algebra over a
field K, and let ms be the canonical module of S. Then

a(S) =-min{i (o)s)i 0}

is the a-invariant of S.

COROLLARY 2.12. Ifn >_ 2k > 4, then the a-invariant of K[C] is given by

a(K[C]) -where Ix] is the least integer greater or equal than x.

Proof Set S K[C] and m []. It follows from Remark 2.8 that the degree
of the generators in least degree of ogs is at least m. To complete the proof we exhibit
some generators of os living in degree m. Write n qk + r, 0 < r < k; note q > 2.
If r > 1, observe that the monomials

Xl
2 2 2 2 2

Xk_rXk-r+l Xk lXk Xn and Xl Xn_k+rXn_k+r+ ’’Xn_lXn

belong to (O)s)m. In particular, S cannot be a Gorenstein ring in this case. If r 0,
then the monomial M Xl...xn satisfies M
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Remark 2.13. Let R K[xl Xn be a polynomial ring over the field K, and
k an integer such that < k < n 1. Consider

Sn,k K[{xil "’’Xik < il < < ik <_ n}],

the K-subring of R spanned by the xi... Xi’S. Observe that there is a graded iso-
morphism of K-algebras of degree zero:

0". an, k an,n_k, induced by p(xil xi) xj Xjn_k

where {jl jn-k n \ {i ik }. In particular if n < 2k, then

In n 1a(Sn,k) a(Sn,n-k)
k

Because of this duality one may always assume that n > 2k.

The next corollary was shown independently by De Negri and Hibi [6] using
different methods.

COROLLARY 2.14. Sn,k is a Gorenstein ring ifand only ifk 6 1, n- 1 or n 2k.

Proof. By duality one may assume n > 2k > 4. Set S Sn,k. If S is Gorenstein,
then by the proof of Corollary 2.12 we may assume n qk. If q > 3, then
Xl Xn and 3 2 2

XX2...Xk_lXk...Xn belong to (oOs)q and (WS)q+l respectively, which
is impossible. Therefore q 2, as required.

Conversely assume n 2k. Let 3 be as in Theorem 2.6. Take a monomial
M in 3; it suffices to verify that M is equal to xl""Xn. One may assume that

al ak-IM x ...x_1Xk "’’Xn, where ai > ai+l > 1. By hypothesis one has

k-1

-’aj =k(m- 1)- 1,
j=l

(4)

for some m > 2. On the other hand one has

k-1

kai < k -t- aj, for all < < k- 1.
j=l

(5)

Next we combine (4) and (5) to obtain ai < m for all i; therefore using (4)
again we rapidly derive k(m- 1)- < (k- 1)(m- 1), which yields m < 2. As a
consequence ai for all i, as required. I1
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3. Degrees of the generators of normalizations

Let A be an affine domain over the field K and denote by A its normalization. When
A is graded, it is rarely possible to have estimates of the degrees of the generators of
A unless there are very circumscribed situations. Here we discuss one of these when
A is generated by monomials permitting a sharp regrading.
We begin with a general statement on degrees valid when A and A are both Cohen-

Macaulay.

PROPOSITION 3.1. Let A be a standard graded algebra and let M C N befinitely
generated graded A-modules of the same dimension d and multiplicity e. IfM and
N are Cohen-Macaulay and

f(t) g(t)
Ht(t) Hlv(t)

(1 t)d’ (1 t)d

are their Hilbert series, then deg f (t) > deg g(t).

Proof Consider the exact sequence

of graded modules. If M N, P is a module of dimension < d since M and N have
the same multiplicity. Since M and N are Cohen-Macaulay, standard depth chasing
implies that P is Cohen-Macaulay of dimension d 1.
We have the equality of Hilbert series,

g(t) f(t) h(t)+
(1 t)a (1 t)a (1 t)d-’

and therefore

g(t) f (t) (1 --t)h(t).

The assertion follows since the h-vectors of these two modules are positive (see [4,
Corollary 4.1. 0]). []

COROLLARY 3.2. If K[F] is a Cohen-Macaulay monomial subring generated by
a finite set F ofmonomials over afield K, then a(K[F]) < a(K[F]).

An interesting class of monomial subrings is that of Rees algebras of monomial
ideals. Next we present some bounds for the generators of the normalizations of those
algebras.

Let R K[x xn] be a polynomial ring over an arbitrary field K, let F be a
finite set of monomials in R, and F0 the subset of those elements of F that have lowest
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total degree. For any monomial f we denote the exponent vector of f by log f, and
log M is the set of exponent vectors of the monomials contained in a subset M of R.

Then the integral closure of I FR is generated by all those monomials g such
that log g belongs to the convex hull conv(log I) of log I in/n. Especially, if I is
integrally closed, then the following condition is satisfied:

cony(log F0) N %n log F0.

Condition (79) says that log F0 is the set of all lattice points in the convex polytope
spanned by itself. We may interpret it as asserting that the integral closedness of I is
not violated in the lowest possible degree. If F0 consists of squarefree monomials,
then 79 is certainly satisfied.

For use below we denote by F1 the set of monomials f such that log f 6

conv(log F0). Then 79 is equivalent to F0 F1.

THEOREM 3.3. Let I and Io be the ideals generated by F and F0, respectively,
in R K[xl xn]. Suppose that I is integral over Io. Let R liT C R[T]
and Ro ] IT C R[T] denote the Rees algebras of I and Io.

(a) Then the normalization 7 ofR is generated as an Ro-module, and thus as an
k-algebra, by elements g R[T] of T-degree at most n.

(b) If Io is integrally closed or, more generally, if the condition (79) holds, then n
can be replaced by n in (a).

Proof. Since R and R0 have the same field of fractions and since 7. is integral
overR0 by hypothesis, we can replace F by F0 throughout. LetR be the Rees algebra
of Ii FIR. Then R1 is also integral over R0 and has the same normalization.

The monomials fl fm F have constant total degree k. We introduce a
new grading 6 on R[T] by setting 6(xi) and 3(T) -(k 1). Then we map
R[T] into R[T, U, U-] by the K-linear extension of the assignment f w- fU(f)

for each monomial f. Under this K-algebra homomorphism Rl is isomorphic to the
K-algebra

S1 K[xl U xnU f TU fm TU] C R[T, U],

and 7".0 is isomorphic to a subalgebra So of S1 in a natural way; furthermore 0
is mapped onto a monomial subalgebra of R[T, U]. We grade R[T, U] by setting
degU 1, degxi 0, n, anddegT 0. Under this grading both
S1 and So are generated by their elements of degree 1, and So contains a Noether
normalization S-1 of Sl generated by degree elements.

Let P be the convex polytope spanned by the unit vectors el en 6 n+ and
the vectors vj (log j, 1) 6 n+l. Suppose z 6 n+l is an integral point of P.
Then, writing P as a convex linear combination of the ei and the vj we see that z is
either one of the ei or belongs to the convex hull P’ of the set vl Vm }. However,
by construction of F, P’ ( Zn+l {v Vm}. It follows that S is generated
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by all the monomials corresponding to the integral points of P. In the notation of
Bruns, Gubeladze, and Trung [3], S - K[Sp] is the semigroup ring associated with
the polytope P. By virtue of [3, Corollary 1.3.4], the Sl-module 70 is generated
by elements of degree at most n as an Sl-module. (Note that P is in fact an n-
dimensional lattice polytope embedded into n+l; its elements lie in the hyperplane
in=l Zi -- (1 k)Zn+l 1, because the 3 have all the same total degree.)

This covers part (b) because condition 79 just says that F1 F0. Furthermore
note that the T-degree of each element of 70 is at most its U-degree. (This shows
that the proof gives a slightly stronger result than asserted in the theorem.) For part
(a) we use the argument in the proof of [3, Theorem 1.3.3], demonstrating that R0 is
generated as an S_l-module by elements of degree at most n. [:]

We give a variant of the previous theorem for the subalgebra generated by mono-
mials of the same degree k. A homogeneous polynomial of degree k is said to have
normalized degree i.

THEOREM 3.4. Suppose that F consists ofmonomials ofthe same degree k, and
let A K[F] C R K[Xl Xn be the monomial subring generated by F.

(a) Then the normalization A of A is generated as an A-module, and thus as an
A-algebra, by elements g R ofnormalized degree at most dim A 1.

(b) Ifcondition (79) holds, then dim A can be replaced by dim A 2 in (a).

Proof. Both A and are contained in the kth Veronese subalgebra Rk) of the
polynomial ring R. We embed Rk into R[U] by sending a homogeneous element
f of normalized degree to fU Then we are essentially in the same situation as in
the previous proof, except that the dimension of the polytope is now dim A 1. E!

PROPOSITION 3.5. Let F be a finite set of squarefree monomials of degree k in
R, and let A K[F] be the K-subring of R spanned by F. Ifdim A n, then

a(A) < a(K[C]),

where A is the normalization of A and C is the subsemigroup of 1n generated by
t {ei +’’’ + eik < i < < i < n}.

Proof. Let C and CF be the subsemigroups of Nn generated by 4 and log F
respectively. Set S K[C]. Since S is normal [13], we obtain A C S. Let

M1 {Xa a CF [’l relint(+CF)} and M2 {xa a C 3 relint(+C)},

where CF T/CFO][+CF. Notice,+CF ]I+CF andaff(+CF) n. Therefore
the relative interior of +CF equals its interior in n. For similar reasons we have
relint(+C) (+C). Hence relint(+CF) C relint(+C). Altogether we obtain
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Ml C Ma. Let xb be an element of minimal degree in M1 so that deg(xb) -a().
Set r -a(). Since xb is in Ma and xb "r C Sr, we conclude

-a(S) min{deg(xa) a Ma} < r -a(A).

Hence a (A) < a (S), as required. [21

COROLLARY 3.6. Let R K[xl Xn] be a polynomial ring over a field K,
and F afinite set ofsquarefree monomials ofdegree k. Ifdim K[F] n, then

/ rr ! 1
ifn>2k

a(K[F]) <

n -’k ifn < 2k, n T k.

Remark 3.7. It is not hard to see that a(R(k)) -Fl, where R(k) is the kth
Veronese subring of R. Let K[C] be the subring generated by the squarefree mono-
mials of degree k. Notice that a(K[C]) <_ a(R(k)); for n 5 and k 3 we have
a(K[C]) -3 < -2 a(R(k)). Because of this, to keep better control of the
a-invariant, it is preferable to embed K[F] into K[C], instead of R().

COROLLARY 3.8. Let R g[xl Xn] be a polynomial ring over a field K,
and F a finite set of squarefree monomials of degree k in R. If dim KIF] n and
n > 2k > 4, then K[F] is generated as a K-algebra by elements of normalized
degree less or equal than n ].

Proof.
lary 3.6.

Use the argument in the proof of [3, Theorem 1.3.3], together with Corol-

Example 3.9. Let K[F] be the subring of R K[Xl x8] spanned by the
monomials of R defining the edges of the graph shown below.

XI -X2 fl X1X2,

f2 X2X3,

X3 f3 XIX3,

f4 X3X4,

X4 f5 X4X5,

f6 X5X6,

f7 X6X7

f8 x5x7,

x8 x6 f9 X7X8,

fl0 xsx8,

f X6X8,

fl2--XlX2X3X5X6X8,
f13 XlX2X3X6X7X8,

fl4--XlX2X3X5X6X7,
fl5--XlX2X3X5X7X8.

F := {fl flli,

K[F]-- K[F][fl2, f13, f14, f15].

The generators of K[F] can be computed using [2]; see also [12, Section 7.3]. A
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Noether normalization for K[F] is given by

Ao K[hl h8] - K[F] K[F],

where

hi =fl, h3= f8- fll, h5---- f2- f3,

h2 f6, h4 f9- flo, h6=f3-f5,

h7= f5- f7- f9- fll,

Since K[F] is Cohen-Macaulay we obtain a decomposition

K[F] Aol Aof7 Aoflo aofll
(Aof72 ( Aof?o I Aoflofll t AofTfll

2Aof73 AofT fll Aof310 Aofiofll
Aofl:z Aofl3 Aofl4 Aofl5 Aof310fll.

Therefore the Hilbert series of K[F] is equal to

H(K[F],z)
+ 3z + 4z2 + 8z3 + Z4

(1 -z)8
and a(K[F])=-4.

Altogether K[F] is generated as an A0-module by monomials of normalized degree
less or equal than dim R + a(K[F]) 4. However, as a K-algebra it is generated
by squarefree monomials of normalized degree at most 3.
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