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PERTURBATION OF PLANE CURVES
AND SEQUENCES OF INTEGERS

MATI WIERDL

1. Perturbation of a curve

Definition 1.1. The Lebesgue measure on 2 is denoted by m.
Let F" [0, cxz) --+ 2 be a continuous curve. For s > 0 and locally integrable

f. 2Cweset

lfoSM,f(x) M,(F, f)(x) f(x + F(t))dt.
S

(The measurability of M. f(x) is discussed in the appendix.)
Let p > 1. We say that F differentiates LtPo,. if and only if for f Lto,.(2) we

have

lim M,(F, f)(x) f(x)
O

for m-a.e, x
Let < p < x. We say that F is cx-sweeping outfor Lp if and only if there is

f 6 LP (]12) SO that

lira sup M,(F, f)(x)
sO+

for a.e. x 6 2.
We say that the continuous curve A. [0, cxz) 2 is a perturbation of 1-’ if and

only if

lim- I{tl0<t<s, F(t)-7-A(t)]l=0,
s--+0 S

where AI means the one dimensional Lebesgue-measure of the set A.
In the sequel C will denote a "generic" positive constant, which is independent of

those quantities it should be independent of, but it can have different values even in
the same set of inequalities.
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It is an immediate corollary to Lebesgue’s differentiation theorem that the curve
(t, t) differentiates Lto,.. It was shown in 13] that for fixed a > 0 the curve (t, a)
differentiates LlPo. for p > 1. The question whether this curve differentiates L]o is
open. In [7] a large class of convex plane curves, such as (t, t/log(l It)), is proved to
differentiate LIPo., p > 1, and the same was shown in 16] for some oscillating curves
like (t, 2. sin(l/t)).

In [7] the question was raised whether there exists a plane curve that differentiates
Lt2o,., but does not differentiate LPo,. for each p < 2. Our Corollary 1.3 below answers
this question. The main result of this section is Theorem which describes a general
method to obtain curves that differentiate only certain LP-classes. This method,
which we may call perturbation, has its origin in [9].

THEOREM A. Suppose that the curve I’" [0, cx) -- ]2 is of the form I" (t)
(t, ,(t)), where the real continuousfunction 9/is strictly increasing on [0, cx:).

(I) Let < q < cxz. Suppose that F differentiates qLtoc. Then there is a per-
turbation A of I" which is of the same form as FmA(t) (t, 6(t)) with a
strictly increasing 6 it also differentiates qLtoc, but it is o-sweeping outfor
LPifl <p<q.

(II) Let < q < cx. Suppose that I" differentiates L2,.foreach p > q. Then there
is a perturbation A of F which is ofthe sameform as F, it also differentiates
LIPo. for each p > q, but it is cx-sweeping outfor Lq

Remark 1.2. 1. The reader will notice, examining the proof, that if 1-" was
smooth, then its perturbation A can also be smooth. But our method of pertur-
bation does not preserve convexity. For convex curves that differentiate LtPo,.
for certain values of p, but does not differentiate LP for some other values of
p M. Christ [6] has partial results. In particular, he constructs a convex curve
which differentiates LtPo,. for each p > 1, but does not differentiate L Also,
he has an example of a convex curve which differentiates Lt2o. but does not
differentiate Lp for some p, < p < 2.

2. In the above theorem we described the perturbation of curves of a special form,
since then the new curve can have the same form. But it is important to note that
any curve (continuous or not) can be perturbed to get the results in Theorem A.
In particular, the "oscillating" curves described in [16] can also be perturbed.

3. In this paper we just examine curves with respect to LP-classes but it is possible
to extend the results to other Orlitz-classes. For example, if a curve differen-
tiates L log Lto,., then it has a perturbation which also differentiates L log Lo,.,
but it is cxz-sweeping out for L

COROLLARY 1.3. (I) Let < q < xz. There exists a continuous curve A
of theform A(t) (t, 6(t)) with a strictly increasing 6, which differentiates
Lq but it is cxz-sweeping outfor Lp if < p < q[OC
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(II) Let <_ q < cx. There exists a continuous curve A of the form A(t)
(t, 3(t)) with a strictly increasing 3, which differentiates LcfOr each p > q,
but it is o-sweeping outfor Lq

For the easiest way to obtain this corollary from Theorem A we should take
perturbations of the curve F (t) (t, t). For a more interesting class of examples
perturb 1-’(t) (t, a) with some fixed a > 0 (cf. [7]). As we noted earlier these
curves differentiate LPoc for each p > 1.

ProofofTheorem A. We just prove (I), and we do that only for finite q. We shall
construct a A of the form A(t) (t, 3(t)), where the real continuous function 3 will
differ from , only on a sequence of disjoint intervals Ik

_
[0, c), k 1, 2 For

u 0, let

Au {klk 2u, 2u + 2u+- 1}.

The 3 we construct is not going to be strictly increasing, but the reader will have no
difficulty in modifying our construction to get a strictly increasing 3. Let Ik (ak, bk),
and let

],
j=

Select the positive numbers ak and bk so that:

(i) bk < ak_;

(ii) lim bk=0;
k--- cx

(iii)-b-k---- u-
(iv) l < 2.

,k 6Au;

Note that by (iii) we also have

(v) lim --ak 1,
k--, bk

and hence by (iv) and (v),

(vi)
IJkl ( )/q-<cau- ,kAu.

Proof that A differentiates Ltqo.. Of course, the only fact we can use about A is
that it coincides with F off the intervals Ik. Let f Ltqo.. We can assume f to be
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nonnegative, and also that it has compact support, so in fact, f Lq. We just have
to prove that for a.e. x 6 2,

lim IM.(A, f)(x) M,(F, f)(x)l O.
O

Let 0 < s < a, and let k be such that ak _< s < ak_l. By the choice of k we have

IMp(A, f)(x) M,(F, f)(x)l < 7 fa (f(x + A(t)) + f(x + r(t)))dt

< a" fJ (f(x + A(t)) + f(x + r(t)))dt.

Therefore it is enough to prove that for a.e. x,

lim --1 f (f(x + A(t)) + f(x + r(t)))dt O.
k---oo ak

This would follow from

u=l kAu fk (f(x + A(t)) + f(x + r(t)))dt
ak Lq(dm)

< CIIfllqqdm).

By (vi), for k 6 Au we have

fjk (f (x + A (t)) + f(x + F (t))) dt
ak Lq(dm)

< --I11211flldm
ak

which implies (1) since the cardinality of Au is 2u.

(1.1)

< C IlfllLq(dm),

The actual construction of A. Let us define the function 6 on the intervals Ik.
Denoting by ck the midpoint of Ik we let 6(t) ?’(ak) for ak _< _< ck, and linear
for c, _< _< bk, which means that the graph of for ck < < bk is a straight line
segment connecting the points (ck, ?’ (ck)) and (bk,

Proof that A is o-sweeping outfor Lp, 0 < p < q. So let us fix 0 < p < q.
We would like to use the theorem of Sawyer 12, Corollary 1.1 but to be able to use
it we need to have a finite measure-space. Here is what we are going to do.

Let S denote the square [-1/2, 1/2) x [-1/2, 1/2). We will prove that there is

f0 6 LP, f0 >_ 0, supported on S for which

limsup M.(A, fo)(x) cx for a.e. x 6 S. (1.2)
s0+

Now to get an LP-function f for which

lim sup Ms(A, f (x cx
s--0+
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holds for a.e. x R2, just let

)lipf (x) --’ 21il+lJl
fo(X (i, j)).

(i.j)Z

Let us prove the existence of fo Lp with support in S and satisfying (2). Consider
a "mod S version" of the operators Mr (A, f). In other words, for f with support in
S, consider its periodic extension to R2 defined by

E f(x (i, j)),
(i,j)Z

and define

Ms(A, f)(x) Mr(A, f)(x).

We just need to prove that there is fo 6 LP, fo >_ 0, with support in S such that for
a.e.x 6S,

lim sup M. (A, f0) (x) cx, (1.3)
s-0+

because for x intS and small enough s we have M, f0 (x) M, f0 (x).
For the rest of the proof we will work on ql"2 which we identify with S in the usual

way, and so everythingfunctions, translation etc.is understood mod S. We also
drop the "bar" notation.
We are going to prove that for each large enough u there is f f, supported on

a narrow rectangle of the form [- 1/2, 1/2) x [0, d,) so that

m max M,, f > > f p

%kA. - (u22U)p/q L,’(’rz) (1.4)

which denies the existence of a weak (p, p) maximal inequality since p < q and u is
arbitrary. To be able to use Sawyer’s theorem we need a mixing family B of measure
preserving transformations on qI’2 which commutes with M. Let us show that B can
be taken to be the set of translations.

Translations (mod S!) certainly commute with each Mr. We are left to show that
given 0 > 1, and measurable sets P, Q of positive measure, there is a so that
rn ((P + t) A Q) < om(P)m(Q). But this follows readily from the observation that,
by Fubini’s theorem,

m((P + t) Q)dt m(P)m(Q).

Now, let

min {3 (ak_ 1) ( (ak) U 3 (a2,,+,_ ,) }.d d,
2 keA,,
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Note that d > 0 since F is strictly increasing and for each k we have 6 (ak) ?’ (ak).
Let f(x) (u22u) l/q on the rectangle R [-1/2, 1/2) [0, d), and let f(x) 0
everywhere else. Then we have

Ilfll p d (u22U) p/qL (’]1"2) (1.5)

For each k 6 Au let Ek R (0, 3 (ak)) (so we just shift R down by the amount
6(ak)), and set E ka,, Ek. Note that by the definition of d the Ek’s, k 6 Au, are
disjoint (provided u is large enough), and m(Ek) m(R). Hence we have

m(E) =d.2u. (1.6)

In order to have (4) we just have to prove, by (5) and (6), that if x 6 Ek for some
k 6 A, then Mbk f > 7" Let x 6 Ek. By the definitions of Ek and 3 for every
satisfying ak < < ck we have x + A (t) 6 R mod S. Hence we can estimate

lf0bkMb, f(x) - f(x + A(t))dt > - f(x + A(t))dt

II1 (u22u)l/q
2 bk 2’

where in the last equality we used property (iii). I--1

2. Perturbation of a sequence

Definitions 2.1. Let 1-" be a strictly increasing sequence of positive integers. The
countingfunction of F is F(n) #{V V F, ?’ < n}. The lower density d(F) of 1"
is

F(n)
d(F) lim inf

n-->o n

Let (X, B, m, U) be a a-finite measure-preserving system. For an a.e. finite f" X -C welet

M.f(x) M.(r’, f)(x)
r’(n) f(UVx)"

vF

Let p > 1. We say that F isgoodfor Lp in (X, B,m, U) ifand only iffor f LP(X)
we have that

lim Mn(F, f)(x)

exists and is finite for a.e. x 6 X. We say that F is universally goodfor LP if it is
good for Lt’ in every a-finite measure preserving system.
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Let < p < cxz. We say that 1" is cxz-sweeping outfor Lp in (X, B, m, U) if and
only if there is f Lp (X) such that

sup M,(F, f)(x) cx
n

for a.e. x 6 X. We say that F is universally cx-sweeping outfor Lp if and only if it
is cxz-sweeping out for LP in every aperiodic (free), probability measure preserving
system. (The "probability" part here means that rn (X) 1).

The strictly increasing sequence of positive integers A is called a perturbation of
F if and only if

lim 0.
n F(n)

Note that if A is a perturbation of F then

A(n)
lira 1. (2.1)
n F(n)

in the sequel, C will denote a "generic" positive constant, which is independent
of those quantities it should be independent of, but it can have different values even
in the same set of inequalities.

The existence of a sequence of integers with 0 density that is universally good for
L was proved in [2]. In [4], it was proved that the sequence of squares is universally
good for LP, p > 1. That the sequence of primes is universally good for LP, p > 1,
was proved in 14]. Other sequences that are universally good for Lp, p > 1, are
given in [5] and [3]. For example, the sequences ([n3/2]) and ([n log n]), or the
sequence of those integers the decimal expansion of which contain only O’s and l’s,
are universally good for LP, p > 1.

It was shown in that there exists a sequence of integers which is universally
good for, say, L2 but not good for Lp, p < 2. Finally, itwas in [10] (and in [11]) that
the existence of a sequence that is universally good for LP, p > 1, but not good for
L was proved. The method used in [1] and [10] is perturbation. Our purpose is to
describe a more flexible and technically simpler version of the perturbation method,
and to use it to prove a result, Theorem B below, that cannot be improved in the sense
of the first remark after the enunciation of the theorem.

THEOREM B.
d(r) O.

Let F be a strictly increasing sequence of positive integers with

(I) Let < q < cxz. Suppose that F is universally goodfor Lq. Then there is a
perturbation A off which is also universally goodfor Lq but it is universally
cx-sweeping outfor Lp if < p < q.
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(II) Let < q < o. Suppose that F is universally goodfor Lp for each p > q.
Then there is a perturbation A off which is also universally goodfor Lp for
each p > q, but it is universally o-sweeping outfor Lq.

Remark 2.2. 1. Note that if the sequence 1-’ has positive lower density then
the ergodic averages along F satisfy a weak (1,1) inequality. But then any
perturbation A of F will have the same property, hence A will be good for
some irrational rotation of the interval [0, 1).

2. We get interesting instances ofTheorem B ifwe perturb the sequence of squares,
the primes, or the sequence ([n3/2]). As we see our theorem applies to such
irregular sequences as the primes, while the perturbation used in and 11
does not seem to be effective enough to handle these sequences.

3. It is possible, using our method, to construct a sequence of integers that is
universally good for L log L (of course, for finite measure-spaces), but it is o-
sweeping out for L . Specific examples could be perturbations of the sequences
([n3/2]) or ([n log n]), since they are known to be universally good for L log L
(cf. 15]).

Proofof Theorem B. Since we proved part (I) of Theorem A, here we just prove
part (II); the reader will have no difficulty proving the other part.

The idea of the proof is similar to the previous proof’s: the new sequence A is
formed by adding segments of "bad" sequences to F, and we shall do this so that the
cardinality of these "perturbations" is not big enough to effect the good behaviour
in LP, p > q, but the perturbation is strong enough to destroy the (q, q)-maximal
inequality. We will make this more quantitative in a minute, but first let us indicate
what we mean by a "bad" sequence.

There are numerous ways to construct a bad sequence, but probably the easiest
is to give a sequence which is not uniformly distributed among residue classes for
infinitely many modulus. This means that fixing a modulus Q and a residue v, at
one point sufficiently many elements of our sequence will be congruent to v mod Q.

Below we shall define integers nk, k 1,2 For u 0, set

Au {klk 2u, 2 + 2"+- 1}.

The new sequence A will contain F, and is formed by adding to F a certain number
of integers from the interval [nk, 2nk) so that these added integers will be congruent
to k mod 2" if k 6 A. To be specific, the cardinality of these numbers will be

(-u ) l/q
I"(nk), k 6 au. (2.2)

In order to be able to find this many integers in [nk, 2nk), each congruent to
kmod2", we need nk large enough: nk > u /q 2u(l-l/q) ["(nk). We certainly
achieve this if

n > u2. F(nk). (2.3)
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We also have to make sure that these new numbers are numerous enough to destroy
the weak (q, q) maximal inequality, hence we have to make sure that F does not have
many elements in [nk, 2nk). Indeed, we will choose nk so that the number ofelements
of F in [nk, 2nk) will not exceed 21-’(nk).

To sum up, the nk will satisfy:

(i) n, > 2n,_;
(ii) r(,,k_._._A) < k Au;

I1

(iii) F (2nk) < 3F (nk).

As a last requirement on the nk, so A becomes a perturbation of F, we will have

(iv) (7,,) l/q. r(nk) > zikl F(n,), k A,.

The recursive construction of the nk satisfying the above four properties is quite
simple. Since d(F) 0, there is a sequence {mj} of positive integers such that:

F(m.i) 0;(V) limjo ,n;

(vi) r(,,,.j) < r(,,,._) for rn < mj.

Having constructed nt nk-, we just take nk [mj/2] for large enough j. It is
clear that we can choose j so that (i) and (iv) hold. To have (ii), we use (v) and the
estimate

r (nk) r ([mj/21)
< 3

r (mj..__..)
nk [mj/2] mj

Finally, to see that we can choose j to have (iii), use (vi) and estimate

r(mj) r([mj./2])
F(2n,) < F(mj) .mj < .mj

mj [mj/21

< 3F([mj/2]) 3F(nk). Vi

Proof that A is a perturbation of F. Since A is formed by adding new terms to
F we need to prove that

A(n) F(n)
lim 0. (2.4)
,,o F(n)

Let n be arbitrary. Then for some k and u, k 6 Au, we have nk < n < nk+. By
property (iv), we have the following estimate (recall that the cardinality of the new
numbers in the interval [n, nk+) is given in (2)):

A(n) F(n) < 2 F(n).
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Since F(n) > F(nk), we have

A(n)- F(n)< 2(uu) l/q
r(n).

This implies (4) for as n cx so do k and u. I’-I

Proof that A is universally goodfor Lp, p > q. Fix p > q, and the measure-
preserving system (X, B, m, U). Since we have property (1), we just need to prove
that for f 6 LP,

A(n)
Mn(A f)(x) E(Ux)r(n) r(n) ,_,,

converge a.e. Without loss of generality we can assume f > 0. Since F is a good
sequence for LP it is enough to prove that

f(Uax) O.lim,sup F(n) _<

Let n be arbitrary. Then for some k and u, k A,, we have nk < n < nk+l.
Noting that the extra elements of A A [nk, nk+,) are taken from the interval [n, 2nk),
we can estimate , f(Ux) <

F(n) , r’(n) f(U*x) --= Bkf(x).

So we just need to prove that

Bk f (x) -- 0 a.e.

This will follow if we prove

(Bkf(x)) p dm(x) IIBkf (x)ll pL < (X)

k=l k=l

(2.5)

By the triangle inequality and by (iii) we can estimate

,, <_ Ilf (Uax)ll,,
k= = rnk, <__,

-IIf[I p

k=l -<’
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L; F(nk) <_u=l kA. 2.

_< by (iii)

Lt’ E E (7) /q 31-’(n,)

kEA. -(-n-k i

l)fllPL" E2"" 3p -u-’l

Cpl’lfll pLP <

since p > q. Therefore we proved (5). U!

Proof that A is universally cxz-sweeping outfor Lq. Bythelemmabelowwejust
need to disprove the existence of a maximal inequality on Z.

In the rest of the proof for f: Z and integer sequence A we use the notation

M.f(x) Mn(A, f)(x)
A(n) f (x + ).

We also introduce the following definition for f: Z -- :
L

D(f) lim sup E f(x).
L 2L + x=-L

For a set A of integers D(A) will mean D(XA), where XA is the characteristic function
of A.

LEMMA 2.3. Let 0 < q < cxz, and let A be a strictly increasing sequence of
positive integers. Suppose that for every positive K and , there is f: Z ,
D(lflq) < 1, and a finite set ofintegers A with

D {x max M,,(A, f)(x) K}>
Then A is universally cxz-sweeping outfor Lq

We remark that this lemma is inspired by similar results in [8].

ProofofLemma 2.3. Let (X, B, m, U) be an aperiodic, probability measure pre-
serving system. By the assumption of the lemma, and using Rokhlin’s tower construc-
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tion, we conclude that for each positive K and e, there is " X /IL [lllq <Lq(X)
with

where

{m x lsupMn(A,f)(x) >K > 1-,
n

Mn(A, f)(x)
A(n) Ef(U’x)"d<n

It then follows that for each positive integer N there is g gu" X N with

]]]]q < 2-NLq(x)

and

Let us set

/ }m x lsupMn(A, )(x) > N >
n N

Then

SO 0 E Lq (X). Let

o(x) sup gN (x).
N

/ /EN x lsup Mn(A,’)(X) >_ N

and set

J---1 N=J

It is clear that m (E) 1, and also that if x E E then

sup Mn(A, 0)(x) o<9. ["1

Let us now fix u, and assume it is large--large enough to satisfy (2.9) below.
Define f: Z N as follows:

2u/q, if 2" x;
f(x) 0, otherwise.
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Clearly,

We are going to show that

O(lf[q) 1.

,llmax M2nk (A, f)(x) > .Tbl
1/q %,

kEA.
(2.6)

which, by the lemma, would finish the proof.
Let x 6 Z. Then for some k 6 A, we have x -k mod 2". Recall, from (2), that

there are

(-u ) l/q
F(nk)

numbers in A N [nk, 2n) that are congruent to k mod 2". Let us denote the set of
these numbers by (R). So we have

U )l/q#(R) - F (n,), (2.7)

and

f(x + 3) 2"/q for (R), (2.8)

since 2" x + 6. By property (iii) and since A is a perturbation of 1", we have, for
large enough u,

A(2n,) < 41-’(n,). (2.9)

We can now estimate as

MZnk (A, f)(x) Zf(x+3 >
A (2nk) _,

by (9)

) f(x +)
4F (n,) aE(.)

by(8)

2"/q by (7)
41-’ (n) .
2u/q

()l/q. r’(m,)
4F(n) 4

l/q

which proves (6).
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Appendix

Here we just want to reprove the following result from 13, Lemma 8.1 ]:

PROPOSITION. Let " [0, OO) ---> 2 be a continuous curve, and let f" 2 __>

be a locally (Lebesgue) integrablefunction.
Then the 2 I -- Ifunction f(x + 1-’(t)) is measurable. Also,for almost every

x E 2 the -- Ifunction f(x + F(t)) is locally integrable (in t).

The proof of this proposition appears in 13], but the proof contains a minor gap
which we wish to fill here.

Proof. The main step is to show that the ]12 X ]1 ---> I2 map F defined by
F(x, t) x + F(t) is measurable. This means that we have to show that for each
Lebesgue measurable U

_
]12 the set

F-t(U) {(x, t) (x, t) E ]12 I[, F(X, t) U}

is Lebesgue measurable. Let us write U V t3 W where V is a Borel set and W
is a set of Lebesgue measure 0. Since F is clearly Borel measurable (being the sum
of two Borel measurable maps) we have that F-I(v) is Borel measurable. So we
just have to show that F-t (W) is measurable. Because of the completeness of the
Lebesgue measure, it is sufficient to show that F-t (W) is ofLebesgue measure 0. Let
X W be Borel measurable and of measure 0. Then F-t(X) is (Borel) measurable,
and we can use Fubini’s theorem to conclude that F-t (X) is of measure 0. As a
consequence, F-l (W) is of measure 0.
Now that the measurability of the map F is established, the measurability of the

Iz I function f(x + F(t)) follows readily. The fact that the function
f(x + l-’(t)) is locally integrable in for almost every x 6 Ii2 follows now from
Fubini’s theorem.
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