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THE NEAR RADON-NIKODYM PROPERTY IN
LEBESGUE-BOCHNER FUNCTION SPACES

NARCISSE RANDRIANANTOANINA AND ELIAS SAAB

1. Introduction

Let X be a Banach space, (f2, E, .) be a finite measure space and < p < o.
We denote by Lp (,k, X) the Banach space of all (classes of) )-measurable func-
tions from f2 to X which are p-Bochner integrable with its usual norm Ilfllp
(f Ilf(w)ll p d)(og)) lip. If X is the scalar field then LP(), X) will be denoted by
LP(X).

The relationship between Radon-Nikodym type properties for Banach spaces and
operators with domain L[0, 1] is classical in theory of vector-measures. Such con-
nections have been investigated by several authors. In [17], Kaufman, Petrakis,
Riddle and Uhl introduced and studied the notion of nearly representable operators
(see definition below). They isolated the class of Banach spaces X for which every
nearly representable operator with range X is representable. Such Banach spaces
are said to have the Near Radon-Nikodym Property (NRNP). It was shown in [17]
that every Banach lattice that does not contain any copy of co has the NRNP; in
particular L -spaces have the NRNE A question that arises naturally from this fact
is whether the Lebesgue-Bochner space L (,, X) has the NRNP whenever X does.
Let us recall that the answers to similar questions about related properties such as the
Radon-Nikodym property (RNP), the Analytic Radon-Nikodym property (ARNP)
and the complete continuity property (CCP) are known for Bochner spaces (see [24],
[9] and [20] respectively). We also remark that Hensgen [14] observed that (as in the
scalar case) L(L, X) has the NRNP if X has the RNE

In this paper, we show that the Near Radon-Nikodym property can indeed be lifted
from a Banach space X to the space L (, X). Our proof relies on a representation of
operators from L into L (k, X) due to Kalton 16] and properties of operator-valued
measurable functions along with some well known characterization of integral and
nuclear operators from L into a given Banach space.

Our notation is standard Banach space terminology as may be found in the books
[6], [7] and [26].
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2. Definitions and preliminary results

Throughout this note, I,,k Sr ) is the sequence of dyadic intervals in [0,
and Zn is the a-algebra generated by the finite sequence (In,k)l<<2,,. The word
operator will always mean linear bounded operator and/(E, F) will stand for the
space of all operators from E into F. For any given Banach space E, its closed unit
ball will be denoted by E.

Definition 1. Let X be a Banach space. An operator T: L 110, 1] -- X is said
to be representable if there is a Bochner integrable function g 6 L([0, 1], X) such
that T(f)=f fg dm for all f in L [0, ].

Definition 2. An operator D: L 110, 1] X is called a Dunford-Pettis operator
if D sends weakly compact sets into norm compact sets.

It is well known [7, Example 5-III-2.11] that all representable operators from
L[0, 1] are Dunford-Pettis; but the converse is not true in general.

Definition 3. An operator T: L[0, 1] X is said to be nearly representable if
for each Dunford-Pettis operator D: L 1[0, L I[0, ], the composition T o D is
representable.

The notion of nearly representable operators was introduced by Kaufman, Petrakis,
Riddle and Uhl in [17]. It should be noted that since the class of Dunford-Pettis
operators from L[0, 1] into L 110, 1] is a Banach lattice [3], if an operator T 6

(L [0, ], X) fails to be nearly representable then one can find a positive Dunford-
Pettis operator D (L[0, ], L 110, ]) such that T o D is not representable.

The following definition isolates the main topic of this paper.

Definition 4. A Banach space X has the Near Radon-Nikodym Property (NRNP)
if every nearly representable operator from L[0, into X is representable.

Examples of Banach spaces with the NRNP are spaces with the RNP, L-spaces,
L/H For more detailed discussion on the NRNP and nearly representable opera-
tors, we refer to ], 11 and 17].
We now collect a few well known facts about operators from L [0, that we will

need in the sequel. Our references for these facts are [2], [3] and [7].
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FACT 1. For a Banach space X, there is a one to one correspondence between
the space of operators from L l[0, 1] into X and all uniformly bounded X-valued
martingales. This correspondence is given by:

(*) T(f) limn_. f n(t)f(t) dt if (n)n is a uniformly bounded martingale.
(**) n(t) 2n Yk=l Xt,,.k(t) T(XI,,.k) ifT /2(Ll[O, 1], X).

FACT 2. A uniformly bounded X-valued martingale is Pettis-Cauchy ifand only
if the corresponding operator T (Ll[0, 1], X) is Dunford-Pettis.

As an immediate consequence of Fact 2, we get:

FACT 3. An operator T E(Ll[O, 1], X) is nearly representable ifand only if it
maps uniformly bounded Pettis-Cauchy martingales to Bochner-Cauchy martingales.

Definition 5. Let E and F be Banach spaces and suppose T: E -- F is a bounded
linear operator. The operator T is said to be an absolutely summing operator if there
is a constant C such that for any finite sequence (Xm)l<m<n in E, the following holds:

m--I m--1

The least constant C for the inequality above to hold will be denoted by zrl (T). It is
well known that the class of all absolutely summing operators from E to F is a Banach
space under the norm zrl (T). This Banach space will be denoted by lql (E, F).

Definition 6. We say that an operator T: E F is an integral operator if it
admits a factorization

ioT
E

J
L(#) Ll(#)

where is the inclusion from F into F**, # is a probability measure on a compact
space K, J is the natural inclusion and c and/ are bounded linear operators.

We define the integral norm i(T) inf{llotll. 11111 where the infimum is taken
over all such factorization. We denote by I (E, F) the space of integral operators
from E into F.

If E C(K) where K is a compact Hausdorff space or E L (/z), then it is
well known that T is absolutely summing (equivalently T is integral) if and only if
its representing measure G (see [7], p. 152) is of bounded variation and in this case
zr (T) (T) [GI(K) where GI(K) denotes the total variation of G.
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Definition 7. We say that an operator T: E F is a nuclear operator if there
exist sequences (e*)n in E* and (fn), in F such that, Ilell IIfll < and

T(e) e(e)f
n=l

for all e E.

We define the nuclear norm n(T) inf{Y’= Ile*[I IIfll} where the infimum
* (e) fn for allis taken over all sequences (e,)n and (f,), such that T(e) Yn=l e,

e 6 E. We denote by N(E, F) the space of all nuclear operators from E into F under
the norm n (.).

FACT 4. An operator T /(Ll[0, ], X) is representable if and only if its re-
striction to L[0, 1], Tlt,[o, ll 6/2(L[0, 1], X) is nuclear.

Throughout this paper, we will identify the two function spaces Lp (), Lp (lz, X))
and Lp (. l.t, X) for < p < o (see [10], p. 198).

The following representation theorem of Kalton 16] is essential for the proof of
the main result. We denote by (K) the a-algebra of Borel subsets of K in the
statement of the theorem.

THEOREM (KALTON [16]). Suppose that:

(i) K is a compact metric space and lz is a Radon probability measure on K;
(ii) f2 is a Polish space and ) is a Radon measure on
(iii) X is a separable Banach space;
(iv) T: L(#) L(k, X) is a bounded linear operator.

Then there is a map oo --+ Too (2 FI (C(K), X)) such thatfor everyf e C(K), the
map w --+ Too (f) is Borel measurablefrom 2 into X and:

(t) If #oo is the representing measure of Too then

I/zool(B)d.(w) < IITII/z(B) for every B /(K);

() If f Ll (/z), thenfor ) a.e. w, one has f L(I/zl);
(,) Tf(w) Too(f) for ) a.e. 09 andfor every f L(lz).

The following proposition gives a characterization of representable operators in con-
nection with Theorem 1.
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PROPOSITION [21]. Under the assumptions of Theorem 1, the following two
statements are equivalent:

(i) The operator T is representable;
(ii) For ) a.e. 09, lzo has a Bochner integrable density with respect to lz.

For the next result, we need the following definition.

Definition 8. Let E and F be Banach spaces. A map T" (, E, .) --+ Z(E, F)
is said to be strongly measurable if 09 -- T (09)e is measurable for every e 6 E.

We observe thatif E and F are separable Banach spaces and T: (f2, ,k) Z(E, F)
with suP,o 11T(09)11 < 1, then T is strongly measurable if and only if T-I(B) is Z-
measurable for each Borel subset B of (E, F)1 endowed with the strong operator
topology.

The following selection result will be needed for the proof of the main theorem.

PROPOSITION 2. Let X be a separable Banach space and T" (g2, ,k) --,

/(L 110, 1], X) be a strongly measurable map with"

(1) T (co)II for every co
(2) T(09) is not nearly representablefor o9 A, )(A) > O.

Then one can choose a strongly measurable map D" (f2, ,k) /2(L 110, ], L 110, ])
with thefollowing properties:

(i) D(09)11 < for every 09

(ii) T(09) o D(09) is not representablefor every 09 A;
(iii) D(09) is Dunford-Pettisfor every 09

(iv) D(09) is a positive operatorfor every

We will need several steps for the proof.

LEMMA 1. The space /(LI[0, 1], X)l, the closed unit ball of the space
(L1 [0, 1], X) endowed with the strong operator topology is a Polish space.

Proof. Let us consider the Polish space FIn{X2"}. We will show that
/2(L1 [0, 1], X)l is homeomorphic to a closed subspace of FIn{X2" }.

Let C be the following subset of FI,{X2" (x,,k)k<_2,,;N belongs to C if and only
if

(a) xn,k "(Xn+l,2k-I At" XnwI,2k) for all k < 2n and n N,
(b) IIx, _< for all k < 2n and n N.
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It is evident that C is closed in I-I. {X2" }.
Consider the map F: /(LI[0,1],X)I I’In{X2" given by T

(2" T ()ct,,.k ))kz2,,,nr.
The map 1" is clearly continuous, one to one and its range is contained in C. We
claim that I’((L[0, 1],X)) C and I’IS is continuous: to see this claim,
let x (x.,k) 6 C and T 6 /2(Lt[0, 1], X) defined by the martingale .(t)

2"Yk= x.,k)C1,,,k(t). The operator T is well defined (see Fact 1) and T()I,,,)
(l/2")x.,k so F(T) x. Using the fact that the span of {),,,,k <

is dense in L 110, 1], the continuity of 1-" IS follows. The lemma is proved, rl

Consider /(L[0, 1],X)I with the strong operator topology and LI([0, 1],
L[0, ]) with the norm-topology.

The fact that the natural injection from L ([0, ], L [0, ]) into L ([0, ],
L[0, 1]) is a semi-embedding and the unit ball of L([0, 1], Ll[0, 1]) (that we
will denote by Z) is a closed subset of the Polish space L ([0, 1], L[0, 1]) implies
that Z with the relative topology is a Polish space.

The space 2(L [0, 1], X)l x Zr with the product topology is a Polish space.
Let 4 be the subset of (LI[0, 1], X)I x Zr defined as follows.
{T, (.), .4 if and only if:

(i) E(n+/E,,) . for every n 6 N;
(ii) lim.,m SUpgsL,llgll<_l f f(m(t, s) cb.(t, s))g(s) dsl dt 0;
(iii) limj__, sup,,,m>_j f IIT(q.(t) -4)m(t))ll dt > 0;
(iv) 4),, > 0 as an element of the Banach lattice L([0, 1], L[0, 1]).

LEMMA 2. The set 4 is a Borel subset of(L[O, 1], X) Zr.

Proof. (i) Let 4 be the subset of ZN given by 4) (q,), 4 if and only if

E(4),+ / z,) 4), ’n I.

We claim that .A is a Borel subset of Zr: if we denote by P. the nth projec-
tion of Zr and E. the conditional expectation with respect to En, then the map
0,,: L([0, 1], L[0, 1])r L([0, 1], Ll[0, 1]) given by O.(ch) (E. c) P.+t
P,,)(4)) is continuous and therefore 4 [’-].r 0.- ({0}) A Zr is Borel measurable.

(ii) Let g 6 L be fixed. For every m, n 6 N, the map

L ([0, ], L [0, ])r

4----flf(ep,,,(t,s)-ep,,(t,s))g(s)dsldt
is continuous so 4) F,,,m (4)) supg/.llgll_< f If ,,,(t, s) ,(t, s))g(s) dsl dt
is lower semi-continuous and therefore 4) -- 1-’(4)) limj__,o supn,m>_j I".,m()) is
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Borel measurable and

z={q: limn,m g6LZ,IIglI<ISUp flf(CPm(t,s)-4n(t,s))g(s)dsldt=O],ZN
is a Borel measurable subset of Zr.

(iii) For each n and rn in N, the map

On,m: (L[0, 1], X) Ll([0, 1], Ll[0, 1])

(T, dp) -----+ j" ]lT(qbn(t)) T(qbm(t))ll dt

is continuous and then the set/3 {(T, p); limsUPn,m On,m(T, q) > 0} is a Borel
measurable subset of (Ll[0, 1], X)l L([0, 1], L[0, 1])r.

(iv) The set 79 of sequences of positive functions is a closed subspace of ZTM.
Now A =/3A {/2(L[0, 1], X)l (.A A42 AT’)} so 4 is Borel measurable. The

lemma is proved.

ProofofProposition 2. Let U be the restriction on [ of the first projection. The
set U(4) is an analytic subset of (L [0, 1], X) and by Theorem 8.5.3 of [5], there
is a universally measurable map 0: U(4) ZTM such that the graph of 0 is contained
in A.

By assumption, T: (f2, ,k) --+ /2(L1 ([0, 1], X) is measurable for the strong oper-
ator topology and T (o9) 6 U([) for every co 6 A. So the map

L([0, 1], L[0, 1])r

w-----+ {00(T(co))ifcoAotherwise

is well defined. The above map is the composition of the measurable map T (.) with
the universally measurable map 0 (.) so it is .-measurable. Moreover for every w A,
T (w), 0 (T (w)) belongs to 4.
For every n 6 N, let Qn be the nth projection from Zr onto Z and set pn(w)

Q, (0 (T(w)). By construction, the sequence (Pn (co))n is a uniformly bounded
L [0, ]-valued martingale so it defines an operator from L [0, into L[0, by

D(w)(f) lim f p(w)(t)f(t) dt.
n---o J

Notice that for every f 6 L [0, ], the map Mr: Z L ([0, ], L [0, ]) defined by
Mrs(h) f.h is continuous and D(w)(f) lim,__, f Mf(Qn(O(T(CO))) dt. The
measurability of the map O(T(.)) and the continuity of My and Q, show that the
map w -- D(co)(f) (f2 -- L[0, 1]) is measurable. Now condition (iii) implies that
T (co) o D(w) is not representable for co 6 A and condition (iv) insures that D(co) > 0
for every co f2. rl
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The following proposition is crucial for the proof of our main result and could be
of independent interest.

PROPOSITION 3. Let o9 --+ D(og) (f2 -+ /(LI[0, 1], LI[0, 1])l) be a strongly
measurable map such that D(og) is positive and Dunford-Pettis for every o9 E . If
we denote by 0(09) the restriction of D(og) on L[0, 1], then o9 0(o9) is norm-
measurable as a mapfrom f2 into I(L[0, 1], Ll[0, l]).

We will begin by proving the following simple lemma.

LEMMA 3. Let D: L 1[0, - L l[0, be a positive Dunford-Pettis operator
and 0 DILl. Then 0 is compact integral and is weak* to weakly continuous.
Moreover (0)

Proof. The fact that 0 is compact integral is trivial. For the weak* to weak
continuity, we observe that 0*(L[0, 1]) C L[0, 1]. For the identity of the norms,
we will use the fact that (0) is equal to the total variation of the representing measure
of 0.

Let G be the representing measure of 0 and zr be a finite measurable partition of
[0, ]. We have

G(A) L, O(XA)II
Arr Azr

_< [DI(xA)
Azr

Azr

f IOl(Xa)(t) dt
Ar

f 101(to,)(/)dt <_ 101

where IDI and 101 denote the modulus of D and 0 respectively (see 18]). So by taking
the supremum over all finite measurable partitions of [0,1 ], we get (0) < 101 and
since 0 is a positive operator, 101 0. The lemma is proved. I--1

Proof of Proposition 3. Notice that 0(o9) E Kw.(L[O, 1], LI[0, 1]) for every
o9. f2 where Kw. (L[0, ], L 1[0, ]) denotes the space of compact operators from
L[0, into L 1[0, that are weak* to weakly continuous. So o9 -- 0(o9) is strongly
measurable and is separably valued (K0.(L[0, 1], LI[0, 1]) Ll[0, 1]LI[0, 1]
where , is the injective tensor product). By the Pettis measurability theorem (see
Theorem II-1.2 of [7]), the map to -+ 0(o9) is measurable for the norm operator
topology.
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For each n ll, let ]En be the conditional expectation operator with respect to
En. The sequence (]n)n satisfies the following properties: (En)n is a sequence
of finite rank operators in (Ll[0, 1], L[0, l])l, ]En > 0 for every n 11 and
(En)n converges to the identity operator I for the strong operator topology. Consider

Sn En /X I. Since Sn < En and En is integral (it is of finite rank), one can deduce
from Grothendieck’s characterization of integral operators with values in L [0,
(for instance, see [7], p. 258) that Sn is also integral.

SUBLEMMA. For each n I1, there exists gn conv Sn, Sn+ such that the
sequence (gn)n converges to I for the strong operator topology.

For this, we first observe that (Sn(f))n converges weakly to f for every f
Ll[0, 1];infact, iff > 0andn e llthenSn(f) inf{En(g)+(f -g); 0 < g < f}.
Choose 0 < gn < f such that [[Sn(f) (]n(gn) + (f gn))[[l < 1/n. Since [0, f]
is weakly compact, we can assume (by taking a subsequence if necessary) that (gn)n
converges weakly to a function g. To conclude that Sn (f) converges weakly, notice
that if tp L[0, 1] then limn En* (qg) q9 a.e. (E,] En). So for every n ll,
I(S,(f) f, tp}l < 1/n + I(E,,(g,) gn, tp)l and

I(-,n(gn) gn, )1 I(gn, -n(q3) )l (L IEn(gO)

By the Lebesgue dominated convergence theorem, we have lim,,__., (E,, (gn)-gn, tp)
0. Now fix (f,)k, a countable dense subset of the closed unit ball of L[0, 1].
For k 1, by Mazur’s theorem<we can choose a sequence (S(n))n with Sn
conv{S,, S+ for every n N and such that limno IlSn(1)(f) fl 0. By
induction, one can use the same argument to construct Sn(k+l) "-’n+l’ "}
such that lim,__, IlS,(k/l)(j) jll 0 for every j <_ (k + 1). From Lemma
of [23], one can fix a sequence (Kn)n such that for every k 6 1, there exists
n/< 1 such that for n > nk, Kn conv{Sn(k) .’(k)

.,+ }. From this, it is clear
that limn IlKn(f) All 0 for every k 6 1 and since (f)k is dense and

SUPn Kn -< 1, (Kn)n verifies the requirements of the sublemma.
To complete the proof of the proposition, let (Kn)n be as in the above sublemma

and consider Cn: Kw,(L[O, 1], Ll[0, 1]) ---> I(L[0, 1], L[0, 1])(T --> Kn o T).
Since K, is integral, the map Cn is well defined and is clearly continuous. Therefore
co --> K, c>0(co) is measurable for the integral norm. Since (K,) converges to I for the
strong operator topology and 0 (co) is compact, then limn-_, K, 0 (co) 0 (co) 0.
Observe that Kn o 0 (co) < 0 (co) for every co . f2 and for every n 11. We conclude
from Lemma 3 that i(O(co) gn o 0(co)) II0(o) Kn o 0(o)11 and hence for a.e.

lim (0 (co) K, 0 (co)) O.
n--- oo

Since the Kn 0(.)’s are measurable so is 0(.), and the proposition is proved.
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The following proposition is probably known but we do not know of any specific
reference.

PROPOSITION 4. Let X be a Banach space and S: (, ,) -- E(Ll[0, 1], X) be
a strongly measurable map with sup IIS(o)ll _< 1. Then thefollowing assertions are
equivalent:

(a) The operator H: Ll(f2 x [0, 1],k (R) m) --+ X given by

H(f) f S(o9)(f (og, .)) d.(og)

is representable;
(b) The operator K: L[0, 1] -- LI(., X) given by K(g) S(.)g is repre-

sentable;
(c) S(o9) is representablefor a.e. o9

Proof. (a) = (b) If H is representable, then we can find an essentially bounded
measurable map : f2 x [0, 1] X that represents H. The map ’: [0, 1] --L(, X) given by t(., t) belongs to L([0, 1], L(,k, X)); in fact IlaP’(t)ll
f IIP(w, t)ll d.(og) for every 6 [0, 1]. Hence II’ll _< I111 and we claim that

’ represents K. For each g 6 LI[0, 1], {f ’(t)g(t) dt}(og) f (o9, t)g(t) dt for
a.e. o9. For every measurable subset A of

a
Kg(og) d.(og) H(XA (R) g)

=ff,p(o,t)g(t)Xa(oo)dtd(oo)
fa { f T’(t)g(t) dt } (co) d(oo)

which shows that Kg f ’(t)g(t) dt.
(b) (c) Let #,o 6 M([0, 1], X) be the representing measure for S(og) (i.e.,

S(Og)(XA) #o(A)). It is well known that S(og) is representable if and only if z,o
has a Bochner densitY with respect to dr. Notice now that K (g)(og) S(og)(g)

f g(t) d#o(t). Hence, by the uniqueness of the representation of Theorem (see
[16], p. 316), the family (/zo)o represents K. Apply now Proposition to conclude
the equivalence.

(b) =, (a) If ’: [0, 1] L(., X) represents K, then there is a map 1-’: f2 x
[0, 1] -- X so that F 6 Ll(,k (R)m,X) and F(., t) p’(t) for a.e. 6 [0, 1] (see
[10], p. 198). We claim that F 6 L(. (R) m, X) and represents H. To prove this
claim, fix A a measurable subset of f2 and I a measurable subset of [0, ]. We have
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the following:

H(XA (R) Zt) f2 K()(.t))(.A d.(og)

=fa(fP’(t) dm(t))(oo)d(o)

=ffAI [’(og, t) d(.(R)m)(og, t).

This implies that H(Xv) I ].. I’(o9, t) d(;k (R) m)(og, t) for every Borel subset V of

f2 x [0, ]. Apply now Lemma 4-111 of [7] to conclude that H is representable.

3. Main result

THEOREM 2. Let X be a Banach space and (f2, E, k) a finite measure space.
Then L (., X) has the NRNP ifand only ifX does.

For the proof, let us assume without loss of generality that X is separable, f2 is a
compact metric space and . is a Radon measure in the Borel a-algebra E of f2. For
what follows, Jx denotes the natural inclusion from L (,k, X) into L l(,k, X).
We will begin with the proof of the following special case.

PROPOSITION 5. Let X be a Banach space with the NRNP and let T: L [0, -+

L(), X) be a bounded linear operator. Then Jx o T is representable ifand only if
it is nearly representable.

Proof. Let T: L [0, L (,k, X) be a bounded operator with IIT 1.
By Lemma of [20], there exists a strongly measurable map o9 T(og) (f2
E(L l[0, ], X)) such that Tf (.) T (.) f for every f E L 1[0, ].

Assume that Jx T is nearly representable but not representable. Proposition 4
asserts that there exists a measurable subset A of f2 with ,k(A) > 0 and such that T
is not representable for each o9 A. Since X has the NRNP, the operator T (o9) is not
nearly representable for each o9 A. Using our selection result (Proposition 2), one
can choose a strongly measurable map co --+ D(og) (g2 E(L[0, 1], LI[0, 1]))
such that D(og) is positive, Dunford-Pettis for every o9 6 f2 and T(og) D(og) is not
representable for every o9 6 A. It should be noted that if D 6 E(L[0, 1], Ll[0, 1])
is a Dunford-Pettis operator, and since Jx T is nearly representable, T(og) D is
representable for a.e. co 6 2 (see Proposition 4). However the exceptional set may
depend on the operator D.

As before, let 0(o9) D(og)ltoo. We deduce from Proposition 3 that the map
o9-- 0(09) (f2 I(L[0, 1], LI[0, 1]))is norm-measurable.
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Let (l"ln)neN be a sequence of finite measurable partition of g2 such that FIn+l is
finer than Fin for every n N and E is generated by I,,Jnr{B B l"ln }.

For each B E, we denote by DB the operator defined by

and let

DB(f) D(w)(f) d.(w) for every f 6 L 110, 11

DBDn (09) XB (09).
,k(B)BFIn

The operator Dn is a Dunford-Pettis operator for each B E (see [25] Theorem 1.3)
and therefore Dn (09) is Dunford-Pettis for each n N and 09

Claim. The operator T (09) o Dn (09) is representable for a.e. 09 ft.

To see this claim, notice that T(09) o Dn is representable for a.e. 09 f2. Fix
a set N with Z(Nn) 0 and such that T(09) o DB is representable for co Nn.
Let N UnN UBFIn NB. Clearly .(N) 0 and for 09 q N, T(09) o Dn(09)

T(w)oDBY’en,, x(t) X(09) is representable.
Now if we denote by On (resp. OB) the restriction on L[O, 1] of Dn (resp. Dn),

we have

On
On(m) _,

B FI

for each 09 6 f2, and since 0(.) is measurable for the integral norm (see Proposition 3),
we have

Z Bochner- fn O(s) d,(s)
0n(09)

n,, (B)

It is well known (for instance, see [7], Corollary V-2) that 0n (.) converges (for the
integral norm) to 0(.) a.e. Now since T (09) o Dn(09) is representable for a.e. 09, the
operator T (09) o On (09) is nuclear for a.e. 09 and since On (09) converges a.e. to 0 (09) for
the integral norm, we have

lim (T (09) o On (09) T (co) o 0 (09)) 0 for a.e.
n---o

As a result, the representing measure of the operator T (co) o 0(09) is the limit for
the total variation norm of a sequence of measures with Bochner integrable densities
hence T(09) o 0(09) is nuclear for a.e. o e f and this is equivalent to T(09) o D(09)
being representable for a.e. 09 ft. Contradiction. I-I

For the general case, let T: L 1[0, -- L ()., X) be a nearly representable operator
and fix a strongly Borel measurable map 09 -+ To) (f2 -+ rll(C[0, 11, x)) as in
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Theorem 1. Let us denote by/zo the representing measure of To. Our goal is to show
that for . a.e. to, /zo has a Bochner integrable density with respect to the Lebesgue
measure m in [0, ]. This will imply that T is representable by Proposition 1. To do
that, we need to establish several steps:

LEMMA 4. For ) a.e. to in 92, we have Io1 m.

Proof Note that for each x* 6 X*, the map to -- x*/z,o (92 M[0, 1]) is
weak* measurable so it defines an operator TX*: L l[0, 1] -- L l(.). The operator
Tx* is nearly representable; in fact it is the composition of the nearly representable
operator T with the operator VX*: Ll(Z, X) --+ Ll() (f x’f). Since Ll(.) has
the NRNP, the operator Tx* is a representable operator and therefore Ix*/z,o] << m
for . a.e. to Proposition of 2]).

Now, using the same argument as in Lemma 2 of [20], we have the conclusion of
the lemma. U

As a consequence of Lemma 4, there exists a measurable subset, 92’, of f2 with
)(92 \ f2’) 0 and such that for each to 6 f2’, I/z,ol << m. Let g,o 6 L 110, 1] be
the Radon-Nikodym density of I/z,ol with respect to m for to 6 92’ and g,o 0 for
to 6 92 \ 92’. By (c) of Theorem 1, we have the following: for every I measurable
subset of [0, 1], the map to I/z,ol(1) fl g,o(t) dt is measurable so one can
deduce from the Pettis-measurability theorem that to -- g,o (92 -+ L [0, ]) is norm-
measurable. Moreover, f Ilg,o]l d.(to) < IITI]. From this, one can find a function
F L(L (R) m) with 1-’ (to, .) g,o for . a.e. to 92.

Let Vn be the measurable subset of g2 x [0, given by

Vn {(W, t); n- _< r(a,, t) < n}.

The Vn’s are clearly disjoint and f2 x [0, 1] [_J, V,.
Notice that for to 6 92, Xv,(to, .)l"(to, .) 6 L[0, 1] and therefore for every

h 6 Ll[0, 1], Xv,,(to,.)h(.)l-’(to,.) 6 Ll[0, 1]; that is, Xv,, (to, .)h(’) Ll(l/zol).
Hence the following map is well defined:

kn" 92 .(L 1[0, ], X)

kn(to)(h) f Xv,, (to, t)h(t)dlzo(t)
to ---- 0

It is clear that I]kn (to)II n for every to.

Claim. The map to kn (to) is strongly measurable.

Since X is separable, it is enough to show that for every f 6 L [0, and x* 6 X*,
the map to --+ (kn(to)(f), x*) is measurable.
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Let h,o: [0, 1] X** be a weak*-density of #o with respect to rn for co 6

’ and 0 otherwise. The map co (ho(.),x*) belongs to L(), L[0, 1]). Let
hx* 6 L(f2 x [0, 1]) so that for a.e. co 6 92, hx* (co, .) (ho)(.), x*). Now the
map (co, t) Xv,, (co, t)hx* (co, t) (f2 x [0, 1] IR) is measurable and for every
f Ll[0, 1],

(kn(co)(f), x*) ft Xv,, (co, t)(ho(t), x*) dt ft Xv,, (co, t)hX*(co, t)f (t) dt.

This shows that co -- (kn (co)(f), x*) is measurable.
Letus now define an operator T(n): LI[0, 1] LC()., X) by T(n)(f) kn(.)(f)

for every f L[0, 1].

LEMMA 5. For every n 1, the operator Jx o T (n) is nearly representable.

Proof. Fix a Dunford Pettis operator D and let /(kn) 2=1 fj,k (R) hj,k be an

approximating sequence for Xv,, in L(92 x L[0, ]) with 0 _< ?,(n) < Xv,, for every
k 11 (see [10], p. 198). Consider the sequence of operators T(n)" Ll[0, 1]
L(Z, X) defined by

T(kn)(f)(co) f /k(n)(co, t)f (t) dlZo(t).

We claim that the operator T() is nearly representable. Indeed, if we denote by Mf.j.
and Mh.,., the multiplication by fj,k and hj,k respectively, we have T(kn) ELI Mfj.k o
T o Mh... For that, let f 6 L l[0, ]; for a.e. co 6 92,

Mf. o T o M.,. (f)(co) E J’k(co) T(hj,k.f)(co)
\j=l j=l

jk

f hj,l(t)f(t) dtto (t)
j=l

f t)f(t)

Now since for every j < jk, Mf.. o T o Mhi. o D is representable, so is T") o D. To
conclude the proof of the lemma, let co vk,o and co --+ Voo be the representation
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given by Theorem of Tn)
o D and Jx o T(’) o D respectively. We have

l vk,o d,k(co)

2

] sup IIO Ok,(ll,m)
lN m=l

2

ff x,(w, t)] Io](x[0,1])(t)F(w,t)dt dZ(w)

where [D[ is the modulus of D (see [18]). Notice that since 0 V")
X,, we have

[Yn)(w,t) Xv,,(,t)[ IDl(xt0,1)(t) F(w, t) 2 x,(w,t)IDl(xtO, ll)(t) F(w, t)

2n[Dl(xto,l)(t).

Andby the Lebesgue dominated convergence theorem,lim f Iv o,-v dZ()
0 and hence by passing to a subsequence (if necessary), we may assume that
lim Iv vl 0 for a.e.k,w

Fix BoasubsetofwithZ(B0) 0 and for every w B0,1imk Iv o
k,--v =0.

Since Zn) o D is representable, one can find a subset B of with k(Bk) 0 and such
that for each w Bk v has a Bochner integrable density. We can conclude that
for w =0 Bk, the measure v is the limit for the variation no of a sequence of
measures with Bochner integrable densities and therefore it has a Bochner integrable
density. Now using Proposition 1, the operator Jx o T(n) o D is representable. The
lemma is proved.

We are now ready to complete the proof of the theorem. By Proposition 5, the
operator Jx o T (n) is representable and therefore the operator Kn: L (f2 x [0, ]) -- Xgiven by Kn(f) f k,(w)(f(w, .)) dZ(w) is representable (see Proposition 4).

Let 4n" f2 x [0, --+ X be a representation of Kn and consider o ZnC=l (/)n XV,,.
We claim that o belongs to L(f2 x [0, 1], X).

For that, fix Co: [0, X** a weak*- density of/z,o with respect to I/z,ol(see [8]
or [15]). The map ot,o satisfies:

(1) Ilco(t)[I- I#ol a.e.;
(2) For every x* X*, (x*, f f d/z,o) f(x*, ao(t))f(t) dl/ol(t).

It follows that for all Z (R) m-measurable subsets V,

weak* ff Xv,, (co, t)co(t) I"(o9, t) dt dX(o).Kn(XV)
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Since Kn is represented by 4n, we have

Kn(Xv)=ffv4n(OO,t)dZ(w)dt.
So if we denote by Gn the representing measure of the operator Kn, we have

114nll IGnl( [0, 1])= ff Xv,,(oo, t)F(oo, t)d. (R) m(,t).

From this it follows that is Bochner integrable.
For every @ m-measurable subset V, we get

d(t) dk(w) Xv,, (w, t) d#(t) dk(w)
n=l

Kn(XV) Kn(XV.Xv,,)
n=l n=l

n(m, t)Xv,, (, t) dt dX(m)
n=l

=ffv(W,t)dtdZ().
In paicular, for every A 6 Em and B 6 Ex,

which shows that (A) fa (w, t) dt for a.e.w. The theorem is proved.

Before stating the next extension, let us recall (as in [23]) that, if E is a K6the
function space on (, E, ) (in the sense of [18]) and X is a Banach space then E(X)
will be the space of all (classes oD measurable map f: X so that w
belongs to E.

COROLLARY. IfE does not contain a copy ofco and X has the NRNP, then E(
has the NRNP.

Proof. Without loss of generality, we may assume that E is order continuous,
(, E, Z) is a separable probability space (see [18]) and the Banach space X is
separable. By a result of Lotz, Peck and Poaa 19], the inclusion map from E into
L (Z) is a semi-embedding. The same is true for the inclusion Jx: E(X) L (, X)
(see [21 ], Lemma 3). Now let T: L [0, 1] E(X) be a nearly representable
operator. The operator Jx T is also nearly representable and hence representable
(by Theorem 2). So the operator T must be representable (see [4]).
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4. Concluding remarks

If X and Y are Banach spaces with the NRNP, thenXY( is the projective
tensor product) need not satisfy the NRNP. This can be seen from Pisier’s famous
example that L1/Hd L1/H contains co (hence failing the NRNP) while LI/H
has the NRNP.

If X is a Banach space and (f2, E) is a measure space, we denote by M(g2, X*)
the space of X*-valued a-additive measures of bounded variation with the usual total
variation norm. In light of Theorem 2, one can ask the following question" Does
M(f2, X*) have the NRNP whenever X* does? It should be noted that for non-dual
space, the answer is negative: the space E constructed by Talagand in [22] is a Banach
lattice that does not contain co (so it has the NRNP) but M(f2, E) contains co.

Finally, since L-spaces are the primary examples of Banach spaces with the
NRNP, the following question arises" Do non-commutative L l-spaces have the
NRNP? Note that since Cl (the trace class operators) has the RNP, it has the NRNP;
however it is still unknown ifCe has the NRNP ifE is a symmetric sequence space that
does not contain co. We remark that non-commutative L -spaces have the ARNP 13].
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