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DISCRETIZATION OF LINEAR OPERATORS ON Le()

MARIA J. CARRO

1. Introduction

We say that the boundedness of an operator T: LP(N) LP(N) can be
discretized if we can characterize it by the boundedness of a collection of operators
Tn on ep. Throughout this paper, we shall work under the restriction < p < o.
There are many results of this type in the literature:

(a) Using simple estimates and the density of the simple functions on Lp(N),
one can obtain that the boundedness of a linear operator on Lp() is equivalent to
the boundedness on P of the operators associated to the matrices

uniformly in k 6 Z.
(b) Using Shannon’s sampling theorem (see 3) one can show that the boundedness

of a linear operator on LP (N) is equivalent to the boundedness on ep (ZN) uniformly
in k of the operator associated to the matrix

((T(2kN/Psinc (2k. --n)), 2kN/P’sinc (2. --m)))n,m,

with sinc x Hj sinzrxj

(c) In the context of Wavelet theory (see [M ], [M2]), the boundedness of a linear
operator on L:() is equivalent to the boundedness on g:(Z:) of the operator

(an,:)n,k ( n k
(2kN/PT(qg(2k --n)), 2k’N/P’(2k’ --m))an,)

where 0 and 4 are wavelets. In [M2], they use this result to give a proof of the TI
theorem for singular operators.

(d) A result of de Leeuw and Jodeit (see [D] and [J]) shows that if supp rn C
(-1/2, 1/2)N and / m, then rn is a multiplier in LP(N) if and only if the
sequence (K (n))n gives a convolution kernel on eP.
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(e) Using the properties of the functions of exponential type, the previous result
was extended in [AC] to show that if the function q9 is such that

(1) b is a multiplier on Lp(N),
(2) suppq3C[-R,R]N, R< 1,
(3) for some e > 0, X<_,)N/q3 Mp(lV),

then a convolution kernel K is bounded on LP(N) if and only if the sequence
((Kt * qg)(n))n gives a convolution kernel on P uniformly in > 0.

Our aim in this paper is to show that in fact the three conditions we have just
mentioned on q9 are sufficient to discretize the boundedness of any linear operator
and not only those of convolution type. Moreover, condition (3) can be replaced by
an almost approximation of the identity condition (see Definition 3.1.1).

The paper is organized as follows: In Section 2, we study some necessary con-
ditions so that the discretization result holds. Section 3 contains the main results of
this paper and it is divided in three parts. Section 3.1 concerns the case when tp is an
almost approximation of the identity, Section 3.2 is related to the condition (3) we
have mentioned above (that we shall call the local invertibility property) and Section
3.3 concerns to integral operators. Section 4 presents some applications of our results
and in Section 5 we study some connections of the local invertibility property with
multiresolution analysis (MRA) on Lp (see [M1 ]).
We shall use f g to indicate the existence of two positive constants A and B

such that Af < g < Bf As usual, gt(X t-Ntp(X/t) with N the dimension,
Mp will be the class of Fourier multipliers on Lp (]N) and constants such as C may
change from one occurrence to the next.

Throughout this paper, we shall identify the torus q[,v (_ 1/2, 1/2)v.

2. Preliminaries

Let o and q be two functions in L2.

Definition 2.1. We say that a pair of functions (0, 4) discretize linear operators
if the following condition holds: any linear operator T is bounded on LP(v) if and
only if the operators Tk,k, associated to the matrices (whenever this makes sense)

((2kN/PT(o(2 --n)), 2k’N/P’dp(2’ --m)))n,m,
are bounded on P uniformly in k, k’ 6 Z.

Moreover,

IIT[IL,,(N)L(u) sup
k, k’

For simplicity, we shall write (tp, 4) 6 Dp.
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In the case that the boundedness of T can be characterized by the boundedness of
Tk,k uniformly in k, we shall write (o, ) DDp (Diagonal Discretization result).

First of all, let us observe that using duality and the adjoint operator, Dp Dp,
with p’ the conjugate exponent of p. Then, using interpolation, we get Dp C D2.

Let us now study some necessary conditions for the pair (qg, ) to be in Dp.
If we take T to be the identity operator, then the sequence {P(n) (o )(n)},

is a convolution kemel on P. Similarly, if we take T to be the translation operator
Tf(x) f(x +0), then P (n +0) }n is a convolution kernel on P with norm uniform
in 0. In this case, we write P Up. Observe that Up Up, and Up C Lp N Lp’.

In fact, this Up condition implies that b Mp, since, for every f Lp,

IIf* qll / I(f* q)(n + O)l p dO
ds"- nZN

P

With an analogous argument one can easily see that the Up condition also implies
that q satisfies the following upper Riesz condition, URp"

Ean(’-n)[I <Cllallp,
p

for every sequence a ep. Now, since URp URp, Up also implies URp, and
therefore U R2. Thus, we have the following proposition.

PROPOSITION 2.2.

(a) Up := URp f) URp, := UR2.
(b) 99 Up implies Mp.
(c) (tp, ) Dp implies 99 dp Up.

The converses of the above implications are not true in general. First of all, the
fact that q3 Mp does not imply, in general, that o is well defined at every point and
therefore the Up condition may make no sense. However, if this is not the case, still
the converse of (b) is not true. Take t# to be a function in L such that, for every
n Z, tp(n) 1. Then q3 Mp but o Up.

The URp 0 URp, condition implies that the function has to be in Lp f-) LP’ while
the UR2 condition does not.

However, if we assume that the support of q3 is compact things change.
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Let En be the set of slowly increasing C functions f with supp f C [-R, R]V.
The elements of ER are functions of exponential type R. We recall a well-known
sampling theorem for such functions (see [B]):

If g ER, then

g(x) Z g sinc (2Rx n), (1)
n

and

We also need the following lemma (see [AC]).

LEMMA 2.3. Let tp be in ER such that Mp(v). Then

mZ P

for all sequences a (a (m))m, where C C(p, N); that is, URp.

As a direct consequence of the previous results one can easily show the following
proposition.

PROPOSITION 2.4. If tp ER, then thefollowing conditions are equivalent:

(a) Mp
(b) tp Up.
(C) q9 URp.

Finally, as we shall see later, the fact that q q9, q 6 Up does not imply that
(tp, dp) Dp even in the case of exponential type functions (see Remark 3.5(b)).

3. Equivalence between boundedness of discrete and continuous versions

For the sake of completeness we shall start giving the proof of the well-known
result (b) in the introduction.

THEOREM 3.1. The boundedness ofa linear operator T on LP (IN) is equivalent
to the boundedness on P ofthe operator associated to the matrix

(2kN/p < T(sinc (2k. -n)), 2kN/P’sinc (2k. --m) > )n,m’
with norm uniformly bounded on k.
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Let us assume that T is bounded on Lp (IRN) and let us consider two finiteProof.
sequences (an), and (bm)m. Then, by Lemma 2.3,

(2kN/PT(sinc (2k. --n)), 2N/P’sinc (2. --m)ibman
g/,m

(T(2N/P yansinc (2 --n)),2kN/p’ bmsinc (2t --m))
tl m

<_ IITII 2N/p ansinc (2k. -n) 2kN/P’ bmsinc (2k. -m)
n p rn

_< IITII Ilallpllbllp,.

Conversely, since by (1) and (2) the subspace

Hp {2k/P _ansinc (2 -n); keN, (an)n

is dense in Lp (IR), we only have to check that T is bounded on functions of Hp.
Now, let f Hp and g Hp,; then f 2kN/p Yn ansinc (2. -n) and g

2k’N/P’ Ym bmsinc (2k’ -m). We can assume without loss of generality that the
sequences (an)n and (bm)m are finite.

Now, if we write

V { 2kN/p ansinc (2k --n); (an)n C

weget Vp
C VP+I andhence, if, sayk’ < k, we can always write g 2kN/p’ m Cmsinc (2k.

--m), with c 6 eP’.
Thus,

{Tf, g) lT(2V/Psinc(2.-n)),2v/p’sinc(2.-m))Cman
n,m

< Cllallpllcl[p,<C -ansinc(.-n)]] ycmsinc(.-m)
n p rn p’

where we are using the fact that

]]allp-- n ansinc (. n)
p

We see from the proof that the conditions on the function sinc that we have used
are the following" Let q p or p’; then

(i) Hq is dense in Lq.
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(ii) For every a (an)n E eq, [lallq . ansinc (. n)llq.

(iii) Vff C V, with k < k’.

If p 2, this is equivalent to saying that the function sinc is the scaling function
of a MRA (see [M ]). The same argument proves the result (a) in the introduction.

Hence, the first question we want to consider is the following: Given o, when is
it true that the space

is dense in LP(RN)?
After this problem is solved we shall see that (ii) and (iii) are too restrictive for

our purpose and that the discretization result holds under weaker conditions.
In this paper, we shall restrict our attention to the case q3 E Mp(v) such that

0 Eg. Since, by Proposition 2.4, we know that then the URp holds, we will be
interested in the opposite inequality, that we call the I Rp condition (Inferior Riesz
condition).

3.1. Almost approximations ofthe identity

Definition 3.1.1. We say that q0 is an almost approximation of the identity in LP
if there exist an invertible and bounded operator S in Lp and a sequence (nk)k such
that q92-,,k f converges to Sf in LP, for every f 6 LP.

For this case, we need the condition q9 6 El
THEOREM 3.1.2. Let Mp(IN) be such that supp q3 C (-1/2, 1/2)N. Then,

if q9 is an almost approximation of the identity in Lp, H is dense in Lp (IV).

Proof Let us define

Y (t#2-q * s-lf)(2-qn)tp(2qxAq f(x) n),

where 4 sinc and q E N. We have Aq f H.
Let us consider Hqf -n()2-q * f)(2-qn)dp(2qx --n) ([#2--q f)(x). We

know that Hq f converges to f in the LP norm. Now, since o q9,4,



DISCRETIZATION OF LINEAR OPERATORS ON Lp (rn) 7

Therefore,

IIAq f flip < IIAq f -,J92-q * S-I flip "4-IlCp2-q * S-If flip

11992- * (nqs-l f S-1 f)llp / IlgO2-q * S-If flip
< Np(r)llnq S-If S- flip -F IlgO2-q * S-f flip.

Taking q nk, we see that the above expression converges to zero whenever k tends
to infinity.

For our purpose, we see that we do not need the I Rp condition to hold for every
sequence a eP but only for those sequences that appear in the definition of Aq. That
is, let us consider the set Ap of all sequences (an)n such that there exist q (nk),
and f

_
Lp satisfying

an 2-qN/p()2-q * S-1 f)(2-qn),

and such that f p 2 Aq f p. Then, what we have shown above is that the set

.A { 2*N/P Z angO(2k --n); keN, (an)n .Ap },
is dense in LP.

Moreover, if a 4p, then

Ilallp 112-qN/p((/)2-q*S-lf)(2-qn)
p

112-q * S-l flIp< Cllfllp< Cl]nangO(.-n
Thus, following the same steps of Theorem 3.1, we can show the following result.

THEOREM 3.1.3. Let , . El such that and
_
Mp(N). Ifo and are

almost approximations ofthe identity in Lp and Lp’ respectively, then (o, ) Dp.

We cannot prove that under the hypothesis ofthe previous theorem, (o, ) DDp,
since, in general, if

V { 2kN/P anqg(2k --n); (an)n - eP },
we do not have Vff C V,, for some k’ > k. This will be solved in the following
subsection.
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3.2. The local invertibility condition
If we want to study (ii), we note that under the conditions we have assumed on

(ii) is equivalent to having q3 bounded from below by a constant C > 0 (see [M1 ]).
Let us now consider a somehow weaker condition than this one.

Definition 3.2.1. We say that q9 satisfies the local invertibility condition in LP if
for some e > 0, X_,)N/q3 Mp(N).

The following theorem shows that the local invertibility condition is enough to
have condition (i).

THEOREM 3.2.2. Let q9 ER with R < 1, q3 Mp(N and such that o satisfies
the local invertibility condition in LP. Then the space H is dense in Lp (N).

Proof Let f 6 L2(N) f3 E2k and let k0 be such that 2-k < min(e, R).
Then, if () j;(2+0), g 6 E2-ko and therefore, if h X_2-0,2-k0)N, we obtain

h(’)

Now, since q9 6 ER with R < 2-k, we have () (k P( + k))(). Let
us write -,k P( + k) Yrn amezrim, where

f h()e2rimd-- [(h)
v

]am -- - * g m

h)v hSince ( g is of exponential type and

(am)m .P and

< Mp(h/)llgllp, we get

Ilallp Mp(h/)llgllp 2-(+k)N/P’Mp(h/)llfllp.

Moreover, from (3), we get g Ym amtp(" m) and hence,

f 2N2N amtp(2k+k --m), (4)
m

with (am)m ep. Therefore, f 6 Hff. Since L2 q t.J E2) is dense in Lp, we are
done.

Again, as in Theorem 3.1.2, we observe that we have shown more. In fact, if
we write bm 2(k+k)N/P’am then every f 6 L2 N E2 can be written as f
2kN/P2kN/p Ym bm(2k+k --m), with Ilbllp _< Mp(h/f)llfllp.



DISCRETIZATION OF LINEAR OPERATORS ON Lp (rn) 9

Moreover, if f m amq)(2k --m), then f 6 L2 f’l E2k and therefore, we see
from the proof of Theorem 3.2.2 that Vff C Vff+ko.

This implies that, given k and k’ we can find k" such that both V and V, are
subsets of Vk,, and hence, we get the following result which is fundamental for the
applications.

THEOREM 3.2.3. Let and be in Mp (Iu) and such that o and qb are in ER with
R < 1. If q9 and qb satisfy the local invertibility condition in Lp and Lp’ respectively,
then (o, 4)) DDp.

Remark 3.2. If we apply Theorem 3.2.2 to the function q) 4(R) where (R)
X(_,)N with R < 1, we obtain, by (4), that if f L2 C’I Ezk,

( n ) (2k+kof-- f 2k+k
(g) .-n),

with 2-k < min(R, R). (Observe that the formula above is of the same type that
(1).)

Now, let us assume that in Theorem 3.1.2, o 6 ER with R < 1. If we define

Aq f(x) Z(dp:z-q * S-1 f)(2-(q+)n)q)(2q+x n),

and

Hqf (t2-q * f)(2-(q+k)n)(R)(2q+kX --n) (q2-q * f)(x),
n

then Hq converges to f in Lp and, since, tp*qR) t#, we get Aq f 2-q *Hq S-1 f
Therefore, Theorem 3.1.2 remains true under the hypothesis tp 6 E with R < I.

As a consequence of this and Theorems 3.1.3 and 3.2.3, we obtain:

THEOREM 3.3. Let and be in Mp ([N) and such that tp and are in ER with
R < 1. Ifq9 satisfies the local invertibility condition in Lp and either the same holds
for in Lp’ or qb is an almost approximation ofthe identity in Lp’, then (tp, q) DDp.

Remark 3.4. Now, let us see if there is some connection between the local in-
vertibility property and the almost approximation of the identity condition. We shall
work, for simplicity, with p 2.

First, q3 6 M2 implies that (t/92-,, * f)n is a uniformly bounded family in L2 and
therefore, there exists a sequence (nk) such that (q)2-’,, * f)k converges in the weak
topology to a function in L2 that we call Sf. Obviously the operator S is bounded
in L2 and, in fact, it is a convolution operator, and hence, there exists m such that
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’(’) m()f(). Moreover, by Plancherel’s Theorem, there exists a subsequence
(n,) such that

lim q3(2-nk) m(), a.e. . (5)
k

Conversely, if (5) holds, then 992-,,k * f converges to Sf in L2. That is, the almost
approximation condition in L2 is equivalent to (5), with m L and Im ()l > C > 0,
a.e. .

Now, if 99 satisfies the local invertibility condition, then one can easily see that
q9 f converges weakly to an invertible operator, but the limit in (5) does not exist
in general: Take q3() sin(1/) + 3. Therefore, the local invertibility condition in
L2 does not imply the almost approximation condition.

Conversely, let (n) be defined by n and n+l (k + 1) + n. Let us
consider Ij (2-(j+l), 2-j and define

ifx Ij, j q (n)q3(x)= 0 elsewhere.

Then 99 does not satisfy the local invertibility property but, for every x, q3(x/2n)
converges to when k tends to infinity; that is, 99 is an almost approximation of the
identity.

Hence, both concepts, are independent.

Remark 3.5. (a) If the operator T is given by a convolution kernel K, then,

(2kN/p (T(99(2:" -n)), 2tcN/P’qb(21. --m))) (K2, * 99 * 4)(n, m).

Thus:
(1) If 99 satisfies the hypotheses in Theorem 3.2.3 and 4 6 S(/Rv) such that

q() in [-R, R]u then K2 99 4 K2 99 and, as a consequence, we get the
results in [AC].

(2) If 99 and 4 satisfy the hypothesis in Theorem 3.1.3 with q3 in supp 4, then
K is a convolution operator in LP if and only if (K2k q) (n) is a convolution sequence
on eP uniformly in k; that is, the condition of local invertibility can be changed by an
almost approximation of the identity condition.

(b) As shown in [AC], the condition R < in Theorem 3.2.3 is sharp in the sense
that if R the result does not hold. Namely, if we take q3() X[-I,II() then
for K(x) p.V.x, (K2k * f)(x) H(f)(x) is the Hilbert transform of f while

K2k * 99(n) 0, for every n and therefore (o, 99) Dp. In this case, the space Hp is
not dense in Le.

3.2. Integral operators. The discretization results for convolution operators
studied in [AC] have been recently extended to the case of Hardy spaces H’ with
0 < p < (see [BC]). The extension of the results of this paper to Hardy spaces does
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not seem easy because we have used the duality Lp and Lp’ everywhere. However, if
the operator T is an integral operator, we can give another proof (of a particular case
of Theorem 3.3) that does not use duality.

Let

f f(y)K(x, y) dy.Tf(x)
N

To avoid technicalities and to have a direct definition ofthe operator T, we shall assume
that K (x, .) L2 with K (x, .)112 C and K (., y) L2 with g (., y)112 _< C.

THEOREM 3.3.1. Let < p < o and R <_ 1/2. Assume that 9 and qb satisfy:

(a) Mp,
(b) tp andcp ER,
(c) tp satisfies the local invertibility property,
(d) q L and f 1.

Then T is bounded on LP() if and only if the operators associated to the
matrices

((2N/PT((2k --n)), 2ku/P’(2k" --m)))n.m,
(whenever this makes sense) are bounded on eP uniformly in k Z.

Proof. The necessary condition is clear.
To prove that T is bounded, it is enough to show, by density and rescaling, that,

for every f S(IRu) satisfying supp f C [-8, ]u with small, we have [ITs flip <_
C f p uniformly in s > 0, where T. is the integral operator associated to the kernel
s-u K(x/s, y/s).

To see this we shall prove that, for small, the function t/g * Ts f Lp with

[[t/g * Tsf[[p _< C[[f[[p and C independent of and s, where, as usual, (x)
(-x). Then, using (d) we can deduce that Ts f p _< C f p as desired.
By condition (b),

supp ()t/R Tsf) C [-R2/t, R2/t]N C [-R/(2t), R/(2t)]u

and therefore, by (2),

Ilqbtlg * Ts f llp (t’R : rsf)() p) l/p

Now,

L tn_ (L(,,R * Tsf)() u t/R(-’ X) u
Ks(x, y)f(y)dy dx
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where *l denotes the convolution with respect to the first variable and" denotes the
Fourier transform with respect to the second variable.

If we choose < (eR)/8, with e > 0 and such that if h X(_,), h/ Mp,
we can write

,1()

Therefore,

where

Pt() Y (f R(t+k))h( + k) )( + k)

defines a 1-periodic function, whose Fourier coefficients are

t(m) frt. f(-)h()() e-2rim d,
and thus

I’t(m)l p ---) eim d
l/p
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CtN Ifg(tm)l p

lip

On the other hand,

and therefore, choosing such that Rs/t 2k, we get

tn t ) -N N(K * Jt/R) -, R (T(2kN/pqg(2k --m)), 2kN/p’(2k --n)),

and hence

4. Applications

First of all since the theory generalizes the case of convolution operators, we get
those studied in Examples I and II of [AC] as an application.

Example 1. Singular Integrals. We first consider the Hilbert transform on
whose multiplier is m(x) -i sgn(x). By choosing a smooth and even t# as above,
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we can explicitly compute K2 go(m) and we obtain

K:zk * go(m) L -i sgn(2kes )(es )e2rim des

2 q3() sin (2rm)d (1)
Thus, (K2k * go)(n) 1/n + E,,, where En is an operator bounded on all eP.

Therefore, the boundedness of H is equivalent to the boundedness of the discrete
Hilbert transform. Similar results can be obtained in dimension N (see [AC]).

Example 2. Convolution operators with compactly supported multipliers. If/ has
compact support, then K2 go reduces to Kz for k large, if q3 is in a neighborhood
of 0. Thus, as a consequence of our results we get that for < p <

IlK* flip < CIIfllp,

is equivalent to

Z K2k (m)a (n m)
rn

uniformly in k (see [AC]).

< Cllall,

Example 3. Let

H(x, y) E gol (x n)go2(y n).
nEZv

We want to study when the linear operator associated to this kernel is bounded on
Lp. As we show in Section 3.3, the operators k are given by (H, J)(n, m) where
J(x, y) go(x)q(y) and

Hk (x, y) 2-kvH(x/2k, y/2k).

Now, if we take go and q in S appropriately, we obtain

(HI J)(n, m)

2kN E. flN fN gol (x j)go2(y j)go(n 2kx)4(m 2y) dxdy

2-/N E(gol * go2-k)(2-kn j)(go:Z * q2-k)(2-km j),

that, in the particular case k 0, is a convolution operator.
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Example 4. Let us consider T to be the directional Hilbert transform; that is,

dt
Tf(x) f(x t) --,

where x Iv, (x t) (x xN t).
From our results, with appropriate o (o oN) and ( CN) the

well-known boundedness on Lp of T is equivalent to the boundedness on P of the
convolution operators associated to the matrices

dt
A n H cpj C/)(t nj -J

In particular, taking tpj S fq E/2 satisfying the hypotheses of Theorem 3.2.3 and
j sinc we have

a(n) I-I tpj(t nj)
dt

Now, if we define A(x) f I-Ij tpj(t xj) -, we get A Ell2 and therefore,
the boundedness of the above matrix is equivalent to the fact that A is a convolution
kernel on Lp (see [D]).

Hence, we have shown that the boundedness on Lp of T is equivalent to the
existence of a function tp 6 EI/2 such that Tip Mp.

Example 5. Now let us consider the case where T is the Hilbert transform along
a curve (see [NRW]),

[ f(x y(t)) dt
Tf(x)

where x N and y(t) (’l(t) ’N(t)) is a curve.
Then, with appropriate tp (tp tpN) and (1 CN), the boundedness

on Lp of T is equivalent to the boundedness on P of the convolution operators
associated to the matrices

Ak(n) f H(qgj Cj)(2yj(t) nj) at,
j

uniformly in k.
Again, taking oj S satisfying the hypotheses of Theorem 3.2.3 and Cj sinc

we have

Ak(n) fH tpJ(2kyj(t) nj) dt.
j
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Example 6. Let b be a BMO function and let H be the Hilbert transform. It is
known that the commutator

[H, b]: Lp(H) LP(N)

is bounded. This commutator operator can be defined as the linear operator T such
that, for every f Lp and every g Lp’, (T(f), g) (b, fH(g) + gH(f)).
Hence, the boundedness of T is equivalent to the boundedness on P of the operator
associated to the matrix

(b, o(. n)H((. m)) + (. m)H(o(. n))),

which is equivalent to having, for every (an)n P and (bm)m .P’, the function

F(x) anbm (qg(x n)H((x m)) 4- (x m)H(qg(x n))
n m

is the Hardy space H with IIFIIH, < Cllallpllbllp,.
Now, taking o sinc x, the previous result follows by simple computations.

5. Multiresolution analysis on Le

In this section, we shall study the connection between the local invertibility prop-
erty and Multiresolution Analysis (MRA).

Let us recall that a MRA in L2 (see [M ], [HW]) is a sequence of closed subspaces
Vj (j Z) such that

(i) Vj C Vj+I, j e,
(ii) f (x) e V if and only if f (2x) e Vj+l,
(iii) fqVj 0,
(iv) tJj Vj L2, and
(v) them exist o Vo such that {o(. n), n e Z} is a Riesz basis for Vo.

The function o is called the scaling function. Although this is the original definition
ofMRA, it turns out that condition (iii) is redundant (see [HW]). Let us now consider
the following definition.

Definition 5.1. A Multiresolution Analysis (MRA) in LP of order k is a sequence
of closed subspaces of LP, Vj (j Z) such that

(i’) Vj C Vj+, j e Z,
(ii’) f(x) e Vj if and only if f(2’x) e Vj+I,
(iii’) t2jVj Lp, and
(iv’) there exists p e Vo such that {qg(. n), n e Z} is a Riesz basis for Vo.
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The function q9 will be called the scaling function of order k. Our aim is to give
sufficient conditions on a function q9 to be a scaling function of order k. We shall
restrict ourselves to the case supp q3 C (-1, 1)u.

It is clear that if tp and 4 are scaling functions of order k, then (o, 4) DDp. It
is well known (see [M1]) that a necessary and sufficient condition on a function q9 to
have (v) hold is

Iq3( + 2nzr)l 2 1, (6)
n

for almost every . Hence, if the function q3 is supported in (-1/2, 1/2)v, this
condition implies )-l/2.1/2)N/q3 6 M2.

Moreover, under this assumption on the support, condition (iv’) is equivalent to
saying that the convolution operator 0(n), is an invertible and bounded operator in g.P

and hence in ep’ and the inverse operator is given by (X-I/2./2)N/q3)v (n)*. Hence,

X(_l/2,1/2)u/ mp. (7)

The next result is implicit in the proof of Theorem 3.2.2 and the comment after it.

THEOREM 5.2.
such that

Let o ER such that Mp and satisfying (iv’). Then, if k is

(a) R < 1- 2-k and
(b) X(_Z-,,Z-k)u/q mp,

then q9 is a scalingfunction on LP oforder k.

Finally, if 0 satisfies (7), a (a,,) is a finite sequence and 4 (x) sinc x,

p p

ane2rin" x (-1/2,1/2)v (’)
n

p

ane2Zrin’x-l/2,1/2)u(’)

and therefore q9 I Rp. From this and Proposition 2.4 we obtain:
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THEOREM 5.3. Let o ER Mp and X(_l/2,1/2)v/q3 Mp. Then o is a
scalingfunction oforder k N where

R<l-2-k.

Observe that R < implicitly and if k 1, then R 1/2.
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