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LINEAR ISOMETRIES BETWEEN CERTAIN SUBSPACES OF
CONTINUOUS VECTOR-VALUED FUNCTIONS

JUAN J. FONT

Introduction

Throughout this note, X and Y will stand for locally compact Hausdorff spaces,
and E and F for Banach spaces. Let C0(X, E) and C0(Y, F) be the Banach spaces of
continuous E-valued and F-valued functions vanishing at infinity defined on X and
Y respectively and endowed with the supremum norm I1"11. Let K denote the field
of real or complex numbers. If E F K, then we will write Co(X) and Co(Y)
(C(X) and C(Y) if X, Y are compact).

The classical Banach-Stone theorem states that if there exists a linear isometry T
of C (X) onto C (Y), then there is a homeomorphism p of Y onto X and a continuous
map a: Y --+ K, lal 1, such that T can be written as a weighted composition map;
that is,

(Tf)(y)--a(y)f(p(y)) for all y Y and all f C(X).

An important generalization of the Banach-Stone theorem was given by W. Hol-
sztyriski in [9] by considering non-surjective isometries. Namely, he proved that, in
this case, there is a closed subset Y0 of Y where the isometry can still be represented
as a weighted composition map. Recently, in [1], the authors have widely general-
ized this result by studying linear isometries between certain subspaces of Co(X) and
Co(Y).

In the context of continuous vector-valued functions similar results are available.
In [10], M. Jerison investigated the vector analogue of the Banach-Stone theorem:
If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space,
then every linear isometry T of C(X, E) onto C(Y, E) can be written as a weighted
composition map; namely, (Tf)(y) co(y)(f (p(y))), for all f C(X, E) and
all y Y, where co is a continuous map from Y into the space of linear isometries
from E onto E endowed with the strong operator topology. Furthermore, p is a
homeomorphism of Y onto X. As in the scalar-valued case, Jerison’s results have
been extended in many directions (e.g., see [.3] or [4]). Among them and in [6],
M. Cambern obtained a formulation ofHolsztyriski’s theorem for spaces ofcontinuous
vector-valued functions.
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In this paper we focus on such direction. In Section we prove, assuming F strictly
convex, that a linear isometry T of a certain linear subspace .A[A] (see Definition 2
and Theorem 1) of C0(X, E) into C0(Y, F) can be written as a weighted composition
map on a subspace Y0 of Y for every function in A[A]. Furthermore X is shown to be
the continuous image of Y0. In Section 2, after assuming that both E and F are strictly
convex, we prove that X and Y are homeomorphic if T is a linear isometry of 4[A]
onto such a subspace/3[B] of Co(Y, F). Let us recall that there are counterexamples
(see [5] or 10]) which show that all the above results may not hold if the assumption
of strict convexity is not observed.

Preliminaries

For a Banach space E, we will denote by SE := {e e E: Ilell its unit sphere
and by II" its norm. Recall that a Banach space E is said to be strictly convex if every
element of SE is an extreme point of the closed unit ball of E.
X U {oo} will stand for the Alexandroff compactification of the locally compact

space X. For a function f 6 C0(X, E), we will write coz(f) to denote the cozero
set of f, this is, coz(f) := {x X: f(x) 0}. If V is a subset of X, we will write
cl(V) to denote its closure in X.

Let A be a linear subspace of Co(X). A point x0 6 X is said to be a strong
boundary point for A if for each neighborhood U of x0 and > 0, there is a function

in A such that (x0) I111 and I(x)l < for all x X \ U. We will write
tr A to denote the set of strong boundary points for A (i.e., the strong boundary for A).
A subset V of X is said to be a boundary for a linear subspace A (resp. 4) of

Co(X) (resp. C0(X, E)) if for every A (resp. f 4), there is x V with
I(x)l--I111 (resp. IIf(x)ll--Ilfll). OA will denote the Shilov Boundary for A,
that is, the unique closed boundary for A. In [2], the authors show that the strong
boundary for a point-separating closed subalgebra A of Co(X) is dense in OA.

Let us finally recall (e.g., see [8, p. 13]) that a linear subspace A of Co(X) is
regular if for each closed subset W of X and each x X \ W, there is A such
that (x) and 0 on W. Indeed, a regular closed subalgebra A of Co(X) can
be proved to be normal (e.g., see [8, p. 3]); that is, for any pair, U and V, of disjoint
compact subsets of X, there exists A such that on U and 0 on V. It is
also well known that the Shilov boundary of a regular closed subalgebra of Co(X) is
X (e.g., see [8, p. 23]).

1. Into case

Definition 1. Let4be a linear subspace ofC0(X, E) and let T be a linear isometry
of4into C0(Y,F). Ife Se andx X such that there exists f Awith
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f(x) II.fll .e, then we define

I (x, e) := {y E Y: II(Tf)(Y)ll Ilfll for all f e 4 such that f(x) Ilfll .e}.

LEMMA 1. With the same hypothesis as in Definition 1, I (x, e) is nonempty.

Proof. It is clear that

l(x,e) C Mf {y Y" ii(Tf)(Y)ll >_ Ilfll]2
for any f 6 4 such that f(x) Ilfll e. Since l(x, e) is closed and Mf is
compact (because Tf Co(Y, F)), it suffices to check that if fl fn satisfy
f,.(x)--= IIfll .e, then ["l’i’= {Y 6 Y" II(TjS)(Y)II- II.ll} :/: 0.

Let us define fo :-- Yi= j5 and choose a point Yo E Y where Tfo attains its norm
(this point exists since Tfo Co(X, E)). Hence

ll(Tfi (yo)ll > II(Tfo) (yo)ll fo
i=1

>_ lifo(x)

-I]e I1 :,
i=1

Consequently, since T is an isometry, we infer that

11(Tfi (yo)ll g ,
i=1 i=1

Hence II(T.)(Yo)ll IIjll for all/ 1,2 n. That is, Yo ["]i={Y Y
II(Tfi) (y)ll f I1}. [3

Definition 2. Let A be a linear subspace of Co(X). We will denote by 4[A] any
linear subspace of Co(X, E) which contains the set { e: 6 A, e E Se}.

Definition 3. Let A be a regular linear subspace of Co(X) and let T be a linear
isometry of 4[A] into Co(Y, F). For any x 6 cr A, we define ! (x) I,-JeeSE I (x, e).
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In the remainder of this section we will assume that the Banach space F is strictly
convex.

LEMMA 2. Let A be a regular linear subspace of Co(X) and let T be a linear
isometry of,4[A into Co Y, F).

(1) Let y l (x) for some x a A. If we take f ,4[A] such that f (x) O,
then (Tf)(y) O.

(2) l(x) (q l(x2) f3forxl,x2 aA.

Proof. (1) Take x0 6 o-A. From the definition of strong boundary point, we
know that there is 6 A with (x0) I1 I1. As a consequence, by Lemma 1,
I (x0, e) is nonempty for every e 6 SE.

Fixe 6 SE andy0 6 l(x0, e). Let f 6 .A[A] such that f vanishes on some
open neighbourhood U of x0. We claim that (Tf)(yo) 0. To this end, we can
assume, with no loss of generality, that Ilfl[ < 1. Let us choose as above such
that < I111 Ilfll on X \ U. Let us define the functions

g:=f +es.e
and

h -(g+.e).
It is obvious that g(xo) h(xo) (xo) e. Furthermore, II" ell [Igl[
Ilhl[ (xo) 1. Hence, as yo 6 1 (xo, e), we have IIT( e)(y0)[I I[(Tg)(yo)[I

[l(Th)(yo)[[ (x0) 1. Since F is strictly convex, and T( e)(yo), (Tg)(yo)
and (Th)(yo) belong to Se, we infer that T( .e)(yo) and (Tg)(yo) coincide (note that
(Th)(yo) is on the segment whichjoins T( .e)(yo) and (Tg)(yo)). As a consequence,
(Tf)(yo) O.

Let T: 4[A] F and ?0: .A[A] E be the functionals defined by
the requirement that (f) := (Tf)(yo) and 0(f) f(xo), f ,4[A]. It is
straightforward to check that the functions in ,4[A] that vanish on a neighbourhood
of x0 are dense in ker(0) since A is regular. Furthermore, ker(0) is closed since the
functional 0 is continuous (e.g., see [7, p. 77]). Consequently, the above paragraph
yields the inclusion ker(0) C ker(); this is, if f(xo) O, then (Tf)(yo) O, as
was to be proved.

(2) Suppose that there are x,x2 aA and y 6 Y such that y l(x) 0 l(x2).
Choose 6 A such that (xl) and (x2) 0. Since ( e)(x2) 0 for every
e 6 E, we have, by (1), that T( e)(y) 0 for all e 6 E.

On the other hand, there is e Se such that y I (x, e) and, as x is a strong
boundary point for A, there is a function 0 f 6,4[A] such that f(x) Ilfll .e,
By ), we have (Tf) (y) T(. f(x)) (y) since T is linear and (f . f(x))(x)
0. Besides, by the above paragraph, (Tf)(y) T( f(x))(y) 0. But from the
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definition of the set l(x, el), we know that II(Tf)(y)ll Ilfll =/= 0, which is a
contradiction. U!

LEMMA 3. Let A be a regular linear subspace of Co(X) and let T be a linear
isometry ofe4[A] into Co(Y, F). Letx rA ande SE. Iff (x) efor f .A[A],
then II(Tf)(Y)ll Ilell for all y l (x, e).

Proof Sincex is a strong boundary point, thereiss 6 A with s(x) I111.
Define a function g in 4[A] by g := f se e. The clear fact that g(x) 0 and
Lemma 2(1 yield (Tg)(y) 0. By the linearity of T, we have (Tf)(y) T( .e)(y).
Finally, from the definition of l(x, e), II(Tf)(Y)II [IT(. e)(y)ll I1" ell

Definition 4. Let A be a regular closed subalgebra of Co(X) and let T be a
linear isometry of 4[A] into Co(Y, F). For x 6 X \ o-A, we define I (x) "= {y 6

Y" (Tf)(y) 0 for all f 6 .A[A] such that f(x) 0}.

LEMMA 4. Let A be a regular closed subalgebra of Co(X) and let T be a linear
isometry ofe4[A] into C0(Y, F). Then

For any x X, I (x) is nonempty.
(2) For any pair x X2 X, I (x) fq I (X2) .
Proof. (1) For x 6 o-A, the result can be found in Lemma 1. On the other

hand, let us recall (see the Preliminaries) that rA is dense in 0A X. Hence, for
x0 6 X \ r A, there is a net {x} in cr A converging to x0. Fix e 6 SE. For each
or, there is y,, 6 1 (x, e). Since Y t_J {cx} is compact, we can assume, by taking a
subnet if necessary, that {y} converges to Yo 6 Y U {cx}. Let us take a function

f 6 .A[A] such that f vanishes on some neighbourhood V of x. Then there is c0
such that x,, 6 V for ot > co. By Lemma 2(1), (Tf)(y) 0 for ot > or0 and,
consequently, (Tf)(yo) 0. Now, arguments like those in the last paragraph of the
proof of Lemma 2( show that Yo 6 1 (x0).

Finally, let us check that Y0 #- o. Since A is normal (see the Preliminaries),
we can chooses 6 A such thats on V. Letg := s.e. Sinceg(x) e
for all a > a0, Lemma 3 entails that II(Tg)(y)]l ]leil for all c > d0. That is,
II(Tg)(yo)ll Ilell : 0, which shows that Y0

(2) If either x or x2 is a strong boundary point for A, then the result follows from
the same arguments as in Lemma 2(2).

Assume that there exists y l(x) f3 I(x2) with x,x2 X \ aA. Let V and
V2 be open neighbourhoods of x and x2 respectively with disjoint closures. By (1),
there exist e, e2 6 Se, and two nets {x} and {x/} in aA converging to x and x2
respectively, such that both the nets {y,} C l(x, e) and {y} C l(x, e2) converge
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to y. Choose 6 A such that e on V and vanishes on V2. If we define g := . e,
then, as in (1), it is apparent that II(Tg)(Y)ll Ilell - 0. But there is/30 such that
(Tg)(yt) 0 for/3 > /50. Hence (Tg)(y) 0. This contradiction shows that
I (x) fq I (X2) J. I’-]

Remark 1. Let us now introduce a linear map of E into F which will allow us to
obtain a multiplicative representation of T. Note first that if 6 A and e 6 E, then. e ( Ilell),e- 4[A].

Definition. With the same hypothesis as in Lemma 2 (resp. Lemma 4), let y 6

I (x) for some x 6 cr A (resp. x 6 X) and let 6 A such that (x) 1. Then we
define a linear map w(y) of E into F as follows" o(y)(e) := T( e)(y) for all
eE.

To see that oo(y) is well defined, suppose that there is another function ’ 6 A
such that ’(x) 1. Hence, since ( e ’. e)(x) 0 for all e 6 E, Lemma 2(1)
(resp. Definition 4) entails that T( e)(y) T(’. e)(y) for all e 6 E.

Definition 5. Let A be a regular linear subspace (resp. closed subalgebra) of
Co(X). For a linear isometry T of 4[A] into C0(Y, F), we define the set Y0 "=

UxEcra l(x) (resp. Yo JxEx l(x)) and a mapping ap of Y0 (resp. 3;0) onto rrA
(resp. X) by t(y) :-- x, where y 6 1 (x).

THEOREM 1. Let T be a linear isometry ofA[A] into Co(Y, F).

IfA is a regular linear subspace ofCo(X) such that cr A 5 f3, then " Yo ----+
era is a well defined surjective continuous mapping and (Tf)(y)
w(y)(f (p(y))) for all y Yo and all f ,A[A].

(2) If A is a closed regular subalgebra of Co(X), then Or" 320 X is a well

defined surjective continuous mapping and (Tf)(y) o(y)(f(Ct(y))) for
all y 3;o and all f .A[A]. Furthermore, w is a continuous mappingfrom
Yo into the space ofbounded operators of E into F, when this latter space is
given its strong operator topology.

If, in addition, rrA is a boundary for .A[A], then Yo (resp. 3)o) is a boundary for
T(A[A]).

Proof (1) By Lemma 2(2), p is a well defined mapping. To check the continuity
of 7z, let {y be a net convergent to y in Y0. Assume, contrary to what we claim,
that {p (y,)} does not converge to (y). By taking a subnet if necessary, we can
consider that {Tz (y)} converges to an x in the compact space X U {cxz}. Let U and
V be disjoint neighborhoods of x and (y) in X U {c}, respectively. There exist an
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c0 such that (y) 6 U, for all ct > ct0, and, since A is regular, a function f 6 A[A]
such that coz(f) C V and II(Tf)(Y)ll O. For ot > or0, p(y) ’ coz(f). Hence,
by Lemma 2(1), (Tf)(y) 0, for all y > ct0. Consequently {(Tf)(y)} does not
converge to (Tf)(y) O, which contradicts the continuity of Tf.

Finally, to obtain the multiplicative representation of T, let x 6 tr A and y 6 I (x).
Choose any function 6 A such that (x) 1. For every f 6 4[A], the function

f f(x) vanishes at x. Thus, by Lemma 2(1), we infer that (Tf)(y) T(
f(x))(y) w(y)(f(x)) for every f 6 4[A].

(2) By Lemma 4(2), is a well defined mapping. The results now follows from
Lemma 4(1) and from the same arguments as in (1).

To prove the continuity of w, let {y be a net convergent to y in 3;0. Fix e 6

E and define afunction f 6 4[A] by f "= .e, where on acertain
neighbourhood of p (y). Since p is continuous, there is a or0 such that, for all ct > or0,

Ilw(y=)e -w(y)ell Ilw(y=)f (P(y=)) -w(y)f((y))ll I](Tf)(y=) (Tf)(y)ll.
Since {(Tf)(y)} converges to (Tf)(y), the continuity of w is thus verified.

Assume now that rA is a boundary for A[A]. Take g 6 T(A[A]) and f 6 A[A1
such that Tf g. We can find x 6 rA and e 6 Se with f(x) [If[l e. By
Lemma 1, there exists y l(x, e) c_ l(x) Yo (resp. 3;0) such that IIg(Y)ll
II(Tf)(y)ll IlTfll Ilgll, that is, Y0 (resp. 3;0) is a boundary for T(A[A]). U!

Remark 2. Theorem generalizes the main result of [6] by taking X compact
and A[A] C(X).

2. Surjective case

In this section we will assume that both E and F are strictly convex Banach spaces.

THEOREM 2. Let T be a linear isometry of4[A] onto such a subspace 13[B] of
Co(Y, F), where A and B are regular closed subalgebras of Co(X) and Co(Y) re-

spectively. Then is a homeomorphism ofY onto X and (Tf)(y) co(y)(f((y)))
for all y Y and all f A[A]. Furthermore, if y I (x) for some x trA, then
w(y) is a linear isometry of E into F.

Proof. Fix x 6 X and let y 6 1 (x). We first claim that x 6 1 (y). Suppose
that x I (y). Then, since T-I: /3[B] 4[A] is a linear isometry, Lemma 4(1)
entails that there exists x’ 6 X, x’ :/: x, such that x’ 6 1 (y). Choose f 6 4[A] such
that f(x) 0. By Lemma 2(1) and Definition 4, we infer that both (Tf)(y) 0
and T- (Tf)(x’) f(x’) 0. This means that x and x’ cannot be separated with
functions of 4[A], which contradicts the regularity of A.

Let us now suppose that I (x) contains two elements, y and y’. By the above
paragraph, x 6 1 (y) f3 1 (y’). Since T(c4[A]) separates the points of Y, there is a
function f 6 4[a] such that (Tf)(y) and (Tf)(y’) 0. From Lemma 2(1)
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and Definition 4, we have T- (Tf)(x) f(x) 0 and, hence, (Tf)(y) 0. This
contradiction shows that I (x) is a singleton.

As a straightforward consequence of the above two paragraphs and Theorem 1, we
infer that Yo Y and that gr: y -----> X is a continuous bijection. Furthermore (see
Definition 5) T- induces a continuous bijection of X onto Y which can be easily
checked to be the inverse of gr, which is to say that X and Y are homeomorphic.

Finally, take Yo 6 Y such Y0 I (xo) for some xo 6 aA. To see that w(yo) is a
linear isometry of E into F, choose eo Se and s A such that (x0) I1 I1.
It suffices to check that IIw(Yo)(eo)ll 1. Let us first note that, by Lemma 1, it
is apparent (see also the proof of Lemma 2(1)) that I (xo, e) -: 13 for all e SE.
Hence, since I (x0) is a singleton, Y0 [")eSe I (x0, e). In particular, Y0 I (x0, e0).
Consequently,

IIw(Yo)(eo)ll IIT(" e0)(Yo)ll I1" eolloo 1.

Remark 3. Theorems and 2 generalize the main result of [10] by taking X, Y
compact, and .A[A] C(X) and B[B] C(Y).

Definition 6. Let .A be linear subspace of C0(X, E). We say that x0 6 X is a
strong boundary point for A if for each neighborhood U of xo, there is a function

f 6 .A such that Ilf(x0)ll Ilfll and Ilf(x)ll < Ilfll for all x 6 X \ U. We
define the strong boundary for A, aA, to be the set of all strong boundary points for
A.

It is a routine matter to verify that a A c_ ae4[A] for any linear subspace A of
Co(X).

THEOREM 3. Let T be a linear isometry of 4[A] onto such a subspace /3[B]
of Co(Y, F), where A and B are regular closed subalgebras of Co(X) and Co(Y)
respectively. If we assume that cr4[A] aA and a 13[B] a B, then the strong
boundariesfor 4[A andfor 13[B are homeomorphic.

Proof Let xo 6 a4[A] aA. By Theorem 2, l(xo) is a singleton. Let
Y0 I (xo).

Next we claim that I (xo) c_ al3[B]. Fix eo SE and let V be a neighbourhood of
yo. Recall, as in the proof of Theorem 2, that Yo eSe I (xo, e). If y V, then,
from the definition of I (xo), there is a function fy ,A[A] such that

f. xo) e0

and
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For each y 6 (Y U {oe}) \ V, we may take an open neighborhood V., of y such
that II(Tfy)(y’)ll < Ilfyll for all y’ Vv. Since (Y U {cx}) \ V is compact, there
exist {y yn} C (Y {cxz}) \ V such that (Y {cx}) \ V C [.-Ji= V.’i. Now, let
us define the map

It is clear that

which implies that [Ig(x0)l[ Ilgl[. Hence, since Y0 l(x0), we infer that
II(Tg)(Yo)ll [Igll. Moreover, for every y 6 Y \ V we have

i=1 i=1

As a consequence, Y0 e rB[B].
In like manner we prove that, if Yo rl3[B] cr B, then I (Y0) 6 cr4[A]. That

is, , which is a homeomorphism of Y onto X (see Theorem 2), sends aB[BI onto
crA[Al. [21
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