LINEAR ISOMETRIES BETWEEN CERTAIN SUBSPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

JUAN J. FONT

Introduction

Throughout this note, X and Y will stand for locally compact Hausdorff spaces, and E and F for Banach spaces. Let $C_0(X, E)$ and $C_0(Y, F)$ be the Banach spaces of continuous E-valued and F-valued functions vanishing at infinity defined on X and Y respectively and endowed with the supremum norm $\|\cdot\|_{\infty}$. Let K denote the field of real or complex numbers. If $E = F = \mathbf{K}$, then we will write $C_0(X)$ and $C_0(Y)$ (C(X) and C(Y) if X, Y are compact).

The classical Banach-Stone theorem states that if there exists a linear isometry T of C(X) onto C(Y), then there is a homeomorphism ψ of Y onto X and a continuous map $a: Y \to \mathbf{K}, |a| \equiv 1$, such that T can be written as a weighted composition map; that is,

 $(Tf)(y) = a(y)f(\psi(y))$ for all $y \in Y$ and all $f \in C(X)$.

An important generalization of the Banach-Stone theorem was given by W. Holsztyński in [9] by considering non-surjective isometries. Namely, he proved that, in this case, there is a closed subset Y_0 of Y where the isometry can still be represented as a weighted composition map. Recently, in [1], the authors have widely generalized this result by studying linear isometries between certain subspaces of $C_0(X)$ and $C_0(Y)$.

In the context of continuous vector-valued functions similar results are available. In [10], M. Jerison investigated the vector analogue of the Banach-Stone theorem: If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space, then every linear isometry T of C(X, E) onto C(Y, E) can be written as a weighted composition map; namely, $(Tf)(y) = \omega(y)(f(\psi(y)))$, for all $f \in C(X, E)$ and all $y \in Y$, where ω is a continuous map from Y into the space of linear isometries from E onto E endowed with the strong operator topology. Furthermore, ψ is a homeomorphism of Y onto X. As in the scalar-valued case, Jerison's results have been extended in many directions (e.g., see [3] or [4]). Among them and in [6], M. Cambern obtained a formulation of Holsztyński's theorem for spaces of continuous vector-valued functions.

Received March 21, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B04, 46E40; Secondary 46J20. Research partially supported by Fundació Castelló (P1B95-18).

^{© 1998} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

In this paper we focus on such direction. In Section 1 we prove, assuming F strictly convex, that a linear isometry T of a certain linear subspace $\mathcal{A}[A]$ (see Definition 2 and Theorem 1) of $C_0(X, E)$ into $C_0(Y, F)$ can be written as a weighted composition map on a subspace Y_0 of Y for every function in $\mathcal{A}[A]$. Furthermore X is shown to be the continuous image of Y_0 . In Section 2, after assuming that both E and F are strictly convex, we prove that X and Y are homeomorphic if T is a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_0(Y, F)$. Let us recall that there are counterexamples (see [5] or [10]) which show that all the above results may not hold if the assumption of strict convexity is not observed.

Preliminaries

For a Banach space *E*, we will denote by $S_E := \{e \in E : ||e|| = 1\}$ its unit sphere and by $\|\cdot\|$ its norm. Recall that a Banach space *E* is said to be *strictly convex* if every element of S_E is an extreme point of the closed unit ball of *E*.

 $X \cup \{\infty\}$ will stand for the Alexandroff compactification of the locally compact space X. For a function $f \in C_0(X, E)$, we will write coz(f) to denote the cozero set of f, this is, $coz(f) := \{x \in X: f(x) \neq 0\}$. If V is a subset of X, we will write cl(V) to denote its closure in X.

Let A be a linear subspace of $C_0(X)$. A point $x_0 \in X$ is said to be a *strong* boundary point for A if for each neighborhood U of x_0 and $\epsilon > 0$, there is a function ξ in A such that $1 = \xi(x_0) = ||\xi||_{\infty}$ and $|\xi(x)| < \epsilon$ for all $x \in X \setminus U$. We will write σA to denote the set of strong boundary points for A (i.e., *the strong boundary* for A).

A subset V of X is said to be a *boundary* for a linear subspace A (resp. \mathcal{A}) of $C_0(X)$ (resp. $C_0(X, E)$) if for every $\xi \in A$ (resp. $f \in \mathcal{A}$), there is $x \in V$ with $|\xi(x)| = ||\xi||_{\infty}$ (resp. $||f(x)|| = ||f||_{\infty}$). ∂A will denote the *Shilov Boundary* for A, that is, the unique closed boundary for A. In [2], the authors show that the strong boundary for a point-separating closed subalgebra A of $C_0(X)$ is dense in ∂A .

Let us finally recall (e.g., see [8, p. 13]) that a linear subspace A of $C_0(X)$ is *regular* if for each closed subset W of X and each $x \in X \setminus W$, there is $\xi \in A$ such that $\xi(x) = 1$ and $\xi \equiv 0$ on W. Indeed, a regular closed subalgebra A of $C_0(X)$ can be proved to be normal (e.g., see [8, p. 3]); that is, for any pair, U and V, of disjoint compact subsets of X, there exists $\xi \in A$ such that $\xi \equiv 1$ on U and $\xi \equiv 0$ on V. It is also well known that the Shilov boundary of a regular closed subalgebra of $C_0(X)$ is X (e.g., see [8, p. 23]).

1. Into case

Definition 1. Let \mathcal{A} be a linear subspace of $C_0(X, E)$ and let T be a linear isometry of \mathcal{A} into $C_0(Y, F)$. If $e \in S_E$ and $x \in X$ such that there exists $f \in \mathcal{A}$ with

 $f(x) = ||f||_{\infty} \cdot e$, then we define

 $I(x, e) := \{ y \in Y \colon ||(Tf)(y)|| = ||f||_{\infty} \text{ for all } f \in \mathcal{A} \text{ such that } f(x) = ||f||_{\infty} \cdot e \}.$

LEMMA 1. With the same hypothesis as in Definition 1, I(x, e) is nonempty.

Proof. It is clear that

$$I(x, e) \subset M_f = \left\{ y \in Y \colon \| (Tf)(y) \| \ge \frac{\|f\|_{\infty}}{2} \right\}$$

for any $f \in \mathcal{A}$ such that $f(x) = ||f||_{\infty} \cdot e$. Since I(x, e) is closed and M_f is compact (because $Tf \in C_0(Y, F)$), it suffices to check that if f_1, \ldots, f_n satisfy $f_i(x) = ||f_i||_{\infty} \cdot e$, then $\bigcap_{i=1}^n \{y \in Y : ||(Tf_i)(y)|| = ||f_i||_{\infty}\} \neq \emptyset$. Let us define $f_0 := \sum_{i=1}^n f_i$ and choose a point $y_0 \in Y$ where Tf_0 attains its norm

(this point exists since $\overline{Tf_0} \in C_0(X, E)$). Hence

$$\sum_{i=1}^{n} \| (Tf_i)(y_0) \| \ge \| (Tf_0)(y_0) \| = \| f_0 \|_{\infty}$$

$$\ge \| f_0(x) \|$$

$$= \left\| \sum_{i=1}^{n} \| f_i \|_{\infty} \cdot e \right\|$$

$$= \left\| e \cdot \sum_{i=1}^{n} \| f_i \|_{\infty} \right\|$$

$$= \sum_{i=1}^{n} \| f_i \|_{\infty}.$$

Consequently, since T is an isometry, we infer that

$$\sum_{i=1}^{n} \|(Tf_i)(y_0)\| = \sum_{i=1}^{n} \|f_i\|_{\infty}.$$

Hence $||(Tf_i)(y_0)|| = ||f_i||_{\infty}$ for all i = 1, 2, ..., n. That is, $y_0 \in \bigcap_{i=1}^n \{y \in Y :$ $||(Tf_i)(y)|| = ||f_i||_{\infty}$.

Definition 2. Let A be a linear subspace of $C_0(X)$. We will denote by $\mathcal{A}[A]$ any linear subspace of $C_0(X, E)$ which contains the set $\{\xi \cdot e : \xi \in A, e \in S_E\}$.

Definition 3. Let A be a regular linear subspace of $C_0(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$. For any $x \in \sigma A$, we define $I(x) := \bigcup_{e \in S_F} I(x, e)$. In the remainder of this section we will assume that the Banach space F is strictly convex.

LEMMA 2. Let A be a regular linear subspace of $C_0(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$.

- (1) Let $y \in I(x)$ for some $x \in \sigma A$. If we take $f \in \mathcal{A}[A]$ such that f(x) = 0, then (Tf)(y) = 0.
- (2) $I(x_1) \cap I(x_2) = \emptyset$ for $x_1, x_2 \in \sigma A$.

Proof. (1) Take $x_0 \in \sigma A$. From the definition of strong boundary point, we know that there is $\xi \in A$ with $1 = \xi(x_0) = \|\xi\|_{\infty}$. As a consequence, by Lemma 1, $I(x_0, e)$ is nonempty for every $e \in S_E$.

Fix $e \in S_E$ and $y_0 \in I(x_0, e)$. Let $f \in \mathcal{A}[A]$ such that f vanishes on some open neighbourhood U of x_0 . We claim that $(Tf)(y_0) = 0$. To this end, we can assume, with no loss of generality, that $||f||_{\infty} < 1$. Let us choose ξ as above such that $\xi < ||\xi||_{\infty} - ||f||_{\infty}$ on $X \setminus U$. Let us define the functions

$$g := f + \xi \cdot e$$

and

$$h := \frac{1}{2}(g + \xi \cdot e).$$

It is obvious that $g(x_0) = h(x_0) = \xi(x_0) \cdot e$. Furthermore, $\|\xi \cdot e\|_{\infty} = \|g\|_{\infty} = \|h\|_{\infty} = \xi(x_0) = 1$. Hence, as $y_0 \in I(x_0, e)$, we have $\|T(\xi \cdot e)(y_0)\| = \|(Tg)(y_0)\| = \|(Tg)(y_0)\| = \|(Th)(y_0)\| = \xi(x_0) = 1$. Since *F* is strictly convex, and $T(\xi \cdot e)(y_0)$, $(Tg)(y_0)$ and $(Th)(y_0)$ belong to S_E , we infer that $T(\xi \cdot e)(y_0)$ and $(Tg)(y_0)$ coincide (note that $(Th)(y_0)$ is on the segment which joins $T(\xi \cdot e)(y_0)$ and $(Tg)(y_0)$). As a consequence, $(Tf)(y_0) = 0$.

Let $\hat{T} \, \widehat{y_0}$: $\mathcal{A}[A] \longrightarrow F$ and $\hat{x_0}$: $\mathcal{A}[A] \longrightarrow E$ be the functionals defined by the requirement that $\hat{T} \, \widehat{y_0}(f) := (Tf)(y_0)$ and $\hat{x_0}(f) := f(x_0), f \in \mathcal{A}[A]$. It is straightforward to check that the functions in $\mathcal{A}[A]$ that vanish on a neighbourhood of x_0 are dense in ker $(\widehat{x_0})$ since A is regular. Furthermore, ker $(\widehat{x_0})$ is closed since the functional $\widehat{x_0}$ is continuous (e.g., see [7, p. 77]). Consequently, the above paragraph yields the inclusion ker $(\widehat{x_0}) \subset \text{ker}(\widehat{T} \, \widehat{y_0})$; this is, if $f(x_0) = 0$, then $(Tf)(y_0) = 0$, as was to be proved.

(2) Suppose that there are $x_1, x_2 \in \sigma A$ and $y \in Y$ such that $y \in I(x_1) \cap I(x_2)$. Choose $\xi \in A$ such that $\xi(x_1) = 1$ and $\xi(x_2) = 0$. Since $(\xi \cdot e)(x_2) = 0$ for every $e \in E$, we have, by (1), that $T(\xi \cdot e)(y) = 0$ for all $e \in E$.

On the other hand, there is $e_1 \in S_E$ such that $y \in I(x_1, e_1)$ and, as x_1 is a strong boundary point for A, there is a function $0 \neq f \in \mathcal{A}[A]$ such that $f(x_1) = ||f||_{\infty} \cdot e_1$. By (1), we have $(Tf)(y) = T(\xi \cdot f(x_1))(y)$ since T is linear and $(f - \xi \cdot f(x_1))(x_1) =$ 0. Besides, by the above paragraph, $(Tf)(y) = T(\xi \cdot f(x_1))(y) = 0$. But from the definition of the set $I(x_1, e_1)$, we know that $||(Tf)(y)|| = ||f||_{\infty} \neq 0$, which is a contradiction. \Box

LEMMA 3. Let A be a regular linear subspace of $C_0(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$. Let $x \in \sigma A$ and $e \in S_E$. If f(x) = e for $f \in \mathcal{A}[A]$, then $\|(Tf)(y)\| = \|e\|$ for all $y \in I(x, e)$.

Proof. Since x is a strong boundary point, there is $\xi \in A$ with $1 = \xi(x) = \|\xi\|_{\infty}$. Define a function g in $\mathcal{A}[A]$ by $g := f - \xi \cdot e$. The clear fact that g(x) = 0 and Lemma 2(1) yield (Tg)(y) = 0. By the linearity of T, we have $(Tf)(y) = T(\xi \cdot e)(y)$. Finally, from the definition of I(x, e), $\|(Tf)(y)\| = \|T(\xi \cdot e)(y)\| = \|\xi \cdot e\|_{\infty} = \|e\|$. \Box

Definition 4. Let A be a regular closed subalgebra of $C_0(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$. For $x \in X \setminus \sigma A$, we define $I(x) := \{y \in Y: (Tf)(y) = 0 \text{ for all } f \in \mathcal{A}[A] \text{ such that } f(x) = 0\}.$

LEMMA 4. Let A be a regular closed subalgebra of $C_0(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$. Then

- (1) For any $x \in X$, I(x) is nonempty.
- (2) For any pair $x_1, x_2 \in X$, $I(x_1) \cap I(x_2) = \emptyset$.

Proof. (1) For $x \in \sigma A$, the result can be found in Lemma 1. On the other hand, let us recall (see the Preliminaries) that σA is dense in $\partial A = X$. Hence, for $x_0 \in X \setminus \sigma A$, there is a net $\{x_\alpha\}$ in σA converging to x_0 . Fix $e \in S_E$. For each α , there is $y_\alpha \in I(x_\alpha, e)$. Since $Y \cup \{\infty\}$ is compact, we can assume, by taking a subnet if necessary, that $\{y_\alpha\}$ converges to $y_0 \in Y \cup \{\infty\}$. Let us take a function $f \in \mathcal{A}[A]$ such that f vanishes on some neighbourhood V of x. Then there is α_0 such that $x_\alpha \in V$ for $\alpha > \alpha_0$. By Lemma 2(1), $(Tf)(y_\alpha) = 0$ for $\alpha > \alpha_0$ and, consequently, $(Tf)(y_0) = 0$. Now, arguments like those in the last paragraph of the proof of Lemma 2(1) show that $y_0 \in I(x_0)$.

Finally, let us check that $y_0 \neq \infty$. Since *A* is normal (see the Preliminaries), we can choose $\xi \in A$ such that $\xi \equiv 1$ on *V*. Let $g := \xi \cdot e$. Since $g(x_\alpha) = e$ for all $\alpha > \alpha_0$, Lemma 3 entails that $||(Tg)(y_\alpha)|| = ||e||$ for all $\alpha > \alpha_0$. That is, $||(Tg)(y_0)|| = ||e|| \neq 0$, which shows that $y_0 \neq \infty$.

(2) If either x_1 or x_2 is a strong boundary point for A, then the result follows from the same arguments as in Lemma 2(2).

Assume that there exists $y \in I(x_1) \cap I(x_2)$ with $x_1, x_2 \in X \setminus \sigma A$. Let V_1 and V_2 be open neighbourhoods of x_1 and x_2 respectively with disjoint closures. By (1), there exist $e_1, e_2 \in S_E$, and two nets $\{x_\alpha\}$ and $\{x_\beta\}$ in σA converging to x_1 and x_2 respectively, such that both the nets $\{y_\alpha\} \subset I(x_\alpha, e_1)$ and $\{y_\beta\} \subset I(x_\beta, e_2)$ converge

to y. Choose $\xi \in A$ such that $\xi \equiv 1$ on V_1 and vanishes on V_2 . If we define $g := \xi \cdot e_1$, then, as in (1), it is apparent that $||(Tg)(y)|| = ||e_1|| \neq 0$. But there is β_0 such that $(Tg)(y_\beta) = 0$ for $\beta > \beta_0$. Hence (Tg)(y) = 0. This contradiction shows that $I(x_1) \cap I(x_2) = \emptyset$. \Box

Remark 1. Let us now introduce a linear map of *E* into *F* which will allow us to obtain a multiplicative representation of *T*. Note first that if $\xi \in A$ and $e \in E$, then $\xi \cdot e = (\xi \cdot ||e||) \frac{e}{||e||} \in \mathcal{A}[A]$.

Definition. With the same hypothesis as in Lemma 2 (resp. Lemma 4), let $y \in I(x)$ for some $x \in \sigma A$ (resp. $x \in X$) and let $\xi \in A$ such that $\xi(x) = 1$. Then we define a linear map $\omega(y)$ of E into F as follows: $\omega(y)(e) := T(\xi \cdot e)(y)$ for all $e \in E$.

To see that $\omega(y)$ is well defined, suppose that there is another function $\xi' \in A$ such that $\xi'(x) = 1$. Hence, since $(\xi \cdot e - \xi' \cdot e)(x) = 0$ for all $e \in E$, Lemma 2(1) (resp. Definition 4) entails that $T(\xi \cdot e)(y) = T(\xi' \cdot e)(y)$ for all $e \in E$.

Definition 5. Let A be a regular linear subspace (resp. closed subalgebra) of $C_0(X)$. For a linear isometry T of $\mathcal{A}[A]$ into $C_0(Y, F)$, we define the set $Y_0 := \bigcup_{x \in \mathcal{A}} I(x)$ (resp. $\mathcal{Y}_0 := \bigcup_{x \in \mathcal{X}} I(x)$) and a mapping ψ of Y_0 (resp. \mathcal{Y}_0) onto σA (resp. X) by $\psi(y) := x$, where $y \in I(x)$.

THEOREM 1. Let T be a linear isometry of $\mathcal{A}[A]$ into $C_0(Y, F)$.

- (1) If A is a regular linear subspace of $C_0(X)$ such that $\sigma A \neq \emptyset$, then $\psi: Y_0 \longrightarrow \sigma A$ is a well defined surjective continuous mapping and $(Tf)(y) = \omega(y)(f(\psi(y)))$ for all $y \in Y_0$ and all $f \in \mathcal{A}[A]$.
- (2) If A is a closed regular subalgebra of C₀(X), then ψ: Y₀ → X is a well defined surjective continuous mapping and (Tf)(y) = ω(y)(f(ψ(y))) for all y ∈ Y₀ and all f ∈ A[A]. Furthermore, ω is a continuous mapping from Y₀ into the space of bounded operators of E into F, when this latter space is given its strong operator topology.

If, in addition, σA is a boundary for $\mathcal{A}[A]$, then Y_0 (resp. \mathcal{Y}_0) is a boundary for $T(\mathcal{A}[A])$.

Proof. (1) By Lemma 2(2), ψ is a well defined mapping. To check the continuity of ψ , let $\{y_{\alpha}\}$ be a net convergent to y in Y_0 . Assume, contrary to what we claim, that $\{\psi(y_{\alpha})\}$ does not converge to $\psi(y)$. By taking a subnet if necessary, we can consider that $\{\psi(y_{\alpha})\}$ converges to an x in the compact space $X \cup \{\infty\}$. Let U and V be disjoint neighborhoods of x and $\psi(y)$ in $X \cup \{\infty\}$, respectively. There exist an

 α_0 such that $\psi(y_\alpha) \in U$, for all $\alpha \ge \alpha_0$, and, since A is regular, a function $f \in \mathcal{A}[A]$ such that $\cos(f) \subset V$ and $||(Tf)(y)|| \ne 0$. For $\alpha \ge \alpha_0$, $\psi(y_\alpha) \notin \cos(f)$. Hence, by Lemma 2(1), $(Tf)(y_\alpha) = 0$, for all $y_\alpha \ge \alpha_0$. Consequently $\{(Tf)(y_\alpha)\}$ does not converge to $(Tf)(y) \ne 0$, which contradicts the continuity of Tf.

Finally, to obtain the multiplicative representation of T, let $x \in \sigma A$ and $y \in I(x)$. Choose any function $\xi \in A$ such that $\xi(x) = 1$. For every $f \in \mathcal{A}[A]$, the function $f - \xi \cdot f(x)$ vanishes at x. Thus, by Lemma 2(1), we infer that $(Tf)(y) = T(\xi \cdot f(x))(y) = \omega(y)(f(x))$ for every $f \in \mathcal{A}[A]$.

(2) By Lemma 4(2), ψ is a well defined mapping. The results now follows from Lemma 4(1) and from the same arguments as in (1).

To prove the continuity of ω , let $\{y_{\alpha}\}$ be a net convergent to y in \mathcal{Y}_0 . Fix $e \in E$ and define a function $f \in \mathcal{A}[A]$ by $f := \xi \cdot e$, where $\xi \equiv 1$ on a certain neighbourhood of $\psi(y)$. Since ψ is continuous, there is a α_0 such that, for all $\alpha \ge \alpha_0$, $\|\omega(y_{\alpha})e - \omega(y)e\| = \|\omega(y_{\alpha})f(\psi(y_{\alpha})) - \omega(y)f(\psi(y))\| = \|(Tf)(y_{\alpha}) - (Tf)(y)\|$. Since $\{(Tf)(y_{\alpha})\}$ converges to (Tf)(y), the continuity of ω is thus verified.

Assume now that σA is a boundary for $\mathcal{A}[A]$. Take $g \in T(\mathcal{A}[A])$ and $f \in \mathcal{A}[A]$ such that Tf = g. We can find $x \in \sigma A$ and $e \in S_E$ with $f(x) = ||f||_{\infty} \cdot e$. By Lemma 1, there exists $y \in I(x, e) \subseteq I(x) \subseteq Y_0$ (resp. \mathcal{Y}_0) such that ||g(y)|| = $||(Tf)(y)|| = ||Tf||_{\infty} = ||g||_{\infty}$, that is, Y_0 (resp. \mathcal{Y}_0) is a boundary for $T(\mathcal{A}[A])$. \Box

Remark 2. Theorem 1 generalizes the main result of [6] by taking X compact and $\mathcal{A}[A] = C(X)$.

2. Surjective case

In this section we will assume that both E and F are strictly convex Banach spaces.

THEOREM 2. Let T be a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_0(Y, F)$, where A and B are regular closed subalgebras of $C_0(X)$ and $C_0(Y)$ respectively. Then ψ is a homeomorphism of Y onto X and $(Tf)(y) = \omega(y)(f(\psi(y)))$ for all $y \in Y$ and all $f \in \mathcal{A}[A]$. Furthermore, if $y \in I(x)$ for some $x \in \sigma A$, then $\omega(y)$ is a linear isometry of E into F.

Proof. Fix $x \in X$ and let $y \in I(x)$. We first claim that $x \in I(y)$. Suppose that $x \notin I(y)$. Then, since T^{-1} : $\mathcal{B}[B] \longrightarrow \mathcal{A}[A]$ is a linear isometry, Lemma 4(1) entails that there exists $x' \in X$, $x' \neq x$, such that $x' \in I(y)$. Choose $f \in \mathcal{A}[A]$ such that f(x) = 0. By Lemma 2(1) and Definition 4, we infer that both (Tf)(y) = 0 and $T^{-1}(Tf)(x') = f(x') = 0$. This means that x and x' cannot be separated with functions of $\mathcal{A}[A]$, which contradicts the regularity of A.

Let us now suppose that I(x) contains two elements, y and y'. By the above paragraph, $x \in I(y) \cap I(y')$. Since $T(\mathcal{A}[A])$ separates the points of Y, there is a function $f \in \mathcal{A}[A]$ such that (Tf)(y) = 1 and (Tf)(y') = 0. From Lemma 2(1)

and Definition 4, we have $T^{-1}(Tf)(x) = f(x) = 0$ and, hence, (Tf)(y) = 0. This contradiction shows that I(x) is a singleton.

As a straightforward consequence of the above two paragraphs and Theorem 1, we infer that $\mathcal{Y}_0 = Y$ and that $\psi: Y \longrightarrow X$ is a continuous bijection. Furthermore (see Definition 5) T^{-1} induces a continuous bijection of X onto Y which can be easily checked to be the inverse of ψ , which is to say that X and Y are homeomorphic.

Finally, take $y_0 \in Y$ such $y_0 = I(x_0)$ for some $x_0 \in \sigma A$. To see that $\omega(y_0)$ is a linear isometry of *E* into *F*, choose $e_0 \in S_E$ and $\xi \in A$ such that $1 = \xi(x_0) = \|\xi\|_{\infty}$. It suffices to check that $\|\omega(y_0)(e_0)\| = 1$. Let us first note that, by Lemma 1, it is apparent (see also the proof of Lemma 2(1)) that $I(x_0, e) \neq \emptyset$ for all $e \in S_E$. Hence, since $I(x_0)$ is a singleton, $y_0 = \bigcap_{e \in S_E} I(x_0, e)$. In particular, $y_0 \in I(x_0, e_0)$. Consequently,

$$\|\omega(y_0)(e_0)\| := \|T(\xi \cdot e_0)(y_0)\| = \|\xi \cdot e_0\|_{\infty} = 1.$$

Remark 3. Theorems 1 and 2 generalize the main result of [10] by taking X, Y compact, and $\mathcal{A}[A] = C(X)$ and $\mathcal{B}[B] = C(Y)$.

Definition 6. Let \mathcal{A} be linear subspace of $C_0(X, E)$. We say that $x_0 \in X$ is a strong boundary point for \mathcal{A} if for each neighborhood U of x_0 , there is a function $f \in \mathcal{A}$ such that $||f(x_0)|| = ||f||_{\infty}$ and $||f(x)|| < ||f||_{\infty}$ for all $x \in X \setminus U$. We define the strong boundary for \mathcal{A} , $\sigma \mathcal{A}$, to be the set of all strong boundary points for \mathcal{A} .

It is a routine matter to verify that $\sigma A \subseteq \sigma \mathcal{A}[A]$ for any linear subspace A of $C_0(X)$.

THEOREM 3. Let T be a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_0(Y, F)$, where A and B are regular closed subalgebras of $C_0(X)$ and $C_0(Y)$ respectively. If we assume that $\sigma \mathcal{A}[A] = \sigma A$ and $\sigma \mathcal{B}[B] = \sigma B$, then the strong boundaries for $\mathcal{A}[A]$ and for $\mathcal{B}[B]$ are homeomorphic.

Proof. Let $x_0 \in \sigma \mathcal{A}[A] = \sigma A$. By Theorem 2, $I(x_0)$ is a singleton. Let $y_0 = I(x_0)$.

Next we claim that $I(x_0) \subseteq \sigma \mathcal{B}[B]$. Fix $e_0 \in S_E$ and let V be a neighbourhood of y_0 . Recall, as in the proof of Theorem 2, that $y_0 = \bigcap_{e \in S_E} I(x_0, e)$. If $y \notin V$, then, from the definition of $I(x_0)$, there is a function $f_y \in \mathcal{A}[A]$ such that

$$\left\|f_{y}(x_{0})\right\|=\left\|f_{y}\right\|_{\infty}\cdot e_{0}$$

and

$$\left\| (Tf_{y})(y) \right\| < \left\| f_{y} \right\|_{\infty}.$$

For each $y \in (Y \cup \{\infty\}) \setminus V$, we may take an open neighborhood V_y of y such that $||(Tf_y)(y')|| < ||f_y||_{\infty}$ for all $y' \in V_y$. Since $(Y \cup \{\infty\}) \setminus V$ is compact, there exist $\{y_1, \ldots, y_n\} \subset (Y \cup \{\infty\}) \setminus V$ such that $(Y \cup \{\infty\}) \setminus V \subset \bigcup_{i=1}^n V_{y_i}$. Now, let us define the map

$$g:=\sum_{i=1}^n f_{y_i}.$$

It is clear that

$$g(x_0) = \left(\sum_{i=1}^n \left\|f_{y_i}\right\|_{\infty}\right) \cdot e_0,$$

which implies that $||g(x_0)|| = ||g||_{\infty}$. Hence, since $y_0 = I(x_0)$, we infer that $||(Tg)(y_0)|| = ||g||_{\infty}$. Moreover, for every $y \in Y \setminus V$ we have

$$\|(Tg)(y)\| \leq \sum_{i=1}^{n} \|(Tf_{y_i})(y)\| < \sum_{i=1}^{n} \|f_{y_i}\|_{\infty} = \|g\|_{\infty} = \|Tg\|_{\infty}.$$

As a consequence, $y_0 \in \sigma \mathcal{B}[B]$.

In like manner we prove that, if $y_0 \in \sigma \mathcal{B}[B] = \sigma B$, then $I(y_0) \in \sigma \mathcal{A}[A]$. That is, ψ , which is a homeomorphism of Y onto X (see Theorem 2), sends $\sigma \mathcal{B}[B]$ onto $\sigma \mathcal{A}[A]$. \Box

REFERENCES

- [1] J. Araujo and J. J. Font, *Linear isometries between subspaces of continuous functions*, Trans. Amer. Math. Soc. **349** (1997), 413–428.
- [2] _____, On Shilov boundaries for subspaces of continuous functions, Topology Appl. 77 (1997), 79–85.
- [3] E. Behrends, *M-structure and the Banach-Stone theorem*, Lecture Notes in Mathematics, no. 736, Springer-Verlag, New York, 1979.
- [4] M. Cambern, Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1–11.
- [5] _____, The Banach-Stone property and the weak Banach-Stone property in three-dimensional spaces, Proc. Amer. Math. Soc. 67 (1977), 55–61.
- [6] _____, A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math.
 63 (1978), 213–217.
- [7] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
- [8] T. W. Gamelin, *Uniform algebras*, Prentice Hall, Englewood Cliffs, New Jersey, 1969.
- [9] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous function, Studia Math. 26 (1966), 133–136.
- [10] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. 52 (1950), 309-327.

Departamento de Matemáticas, Universitat Jaume I, Campus Penyeta Roja, E-12071, Castellón, Spain font@mat.uji.es