LINEAR ISOMETRIES BETWEEN CERTAIN SUBSPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

Juan J. Font

Introduction

Throughout this note, X and Y will stand for locally compact Hausdorff spaces, and E and F for Banach spaces. Let $C_{0}(X, E)$ and $C_{0}(Y, F)$ be the Banach spaces of continuous E-valued and F-valued functions vanishing at infinity defined on X and Y respectively and endowed with the supremum norm $\|\cdot\|_{\infty}$. Let \mathbf{K} denote the field of real or complex numbers. If $E=F=\mathbf{K}$, then we will write $C_{0}(X)$ and $C_{0}(Y)$ ($C(X)$ and $C(Y)$ if X, Y are compact).

The classical Banach-Stone theorem states that if there exists a linear isometry T of $C(X)$ onto $C(Y)$, then there is a homeomorphism ψ of Y onto X and a continuous map $a: Y \rightarrow \mathbf{K},|a| \equiv 1$, such that T can be written as a weighted composition map; that is,

$$
(T f)(y)=a(y) f(\psi(y)) \text { for all } y \in Y \text { and all } f \in C(X)
$$

An important generalization of the Banach-Stone theorem was given by W. Holsztyński in [9] by considering non-surjective isometries. Namely, he proved that, in this case, there is a closed subset Y_{0} of Y where the isometry can still be represented as a weighted composition map. Recently, in [1], the authors have widely generalized this result by studying linear isometries between certain subspaces of $C_{0}(X)$ and $C_{0}(Y)$.

In the context of continuous vector-valued functions similar results are available. In [10], M. Jerison investigated the vector analogue of the Banach-Stone theorem: If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space, then every linear isometry T of $C(X, E)$ onto $C(Y, E)$ can be written as a weighted composition map; namely, $(T f)(y)=\omega(y)(f(\psi(y)))$, for all $f \in C(X, E)$ and all $y \in Y$, where ω is a continuous map from Y into the space of linear isometries from E onto E endowed with the strong operator topology. Furthermore, ψ is a homeomorphism of Y onto X. As in the scalar-valued case, Jerison's results have been extended in many directions (e.g., see [3] or [4]). Among them and in [6], M. Cambern obtained a formulation of Holsztyński's theorem for spaces of continuous vector-valued functions.

[^0]In this paper we focus on such direction. In Section 1 we prove, assuming F strictly convex, that a linear isometry T of a certain linear subspace $\mathcal{A}[A]$ (see Definition 2 and Theorem 1) of $C_{0}(X, E)$ into $C_{0}(Y, F)$ can be written as a weighted composition map on a subspace Y_{0} of Y for every function in $\mathcal{A}[A]$. Furthermore X is shown to be the continuous image of Y_{0}. In Section 2, after assuming that both E and F are strictly convex, we prove that X and Y are homeomorphic if T is a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_{0}(Y, F)$. Let us recall that there are counterexamples (see [5] or [10]) which show that all the above results may not hold if the assumption of strict convexity is not observed.

Preliminaries

For a Banach space E, we will denote by $S_{E}:=\{e \in E:\|e\|=1\}$ its unit sphere and by $\|\cdot\|$ its norm. Recall that a Banach space E is said to be strictly convex if every element of S_{E} is an extreme point of the closed unit ball of E.
$X \cup\{\infty\}$ will stand for the Alexandroff compactification of the locally compact space X. For a function $f \in C_{0}(X, E)$, we will write $\operatorname{coz}(f)$ to denote the cozero set of f, this is, $\operatorname{coz}(f):=\{x \in X: f(x) \neq 0\}$. If V is a subset of X, we will write $\mathrm{cl}(V)$ to denote its closure in X.

Let A be a linear subspace of $C_{0}(X)$. A point $x_{0} \in X$ is said to be a strong boundary point for A if for each neighborhood U of x_{0} and $\epsilon>0$, there is a function ξ in A such that $1=\xi\left(x_{0}\right)=\|\xi\|_{\infty}$ and $|\xi(x)|<\epsilon$ for all $x \in X \backslash U$. We will write σA to denote the set of strong boundary points for A (i.e., the strong boundary for A).

A subset V of X is said to be a boundary for a linear subspace $A($ resp. $\mathcal{A})$ of $C_{0}(X)$ (resp. $C_{0}(X, E)$) if for every $\xi \in A$ (resp. $f \in \mathcal{A}$), there is $x \in V$ with $|\xi(x)|=\|\xi\|_{\infty}$ (resp. $\|f(x)\|=\|f\|_{\infty}$). ∂A will denote the Shilov Boundary for A, that is, the unique closed boundary for A. In [2], the authors show that the strong boundary for a point-separating closed subalgebra A of $C_{0}(X)$ is dense in ∂A.

Let us finally recall (e.g., see [8, p. 13]) that a linear subspace A of $C_{0}(X)$ is regular if for each closed subset W of X and each $x \in X \backslash W$, there is $\xi \in A$ such that $\xi(x)=1$ and $\xi \equiv 0$ on W. Indeed, a regular closed subalgebra A of $C_{0}(X)$ can be proved to be normal (e.g., see [8, p. 3]); that is, for any pair, U and V, of disjoint compact subsets of X, there exists $\xi \in A$ such that $\xi \equiv 1$ on U and $\xi \equiv 0$ on V. It is also well known that the Shilov boundary of a regular closed subalgebra of $C_{0}(X)$ is X (e.g., see [8, p. 23]).

1. Into case

Definition 1. Let \mathcal{A} be a linear subspace of $C_{0}(X, E)$ and let T be a linear isometry of \mathcal{A} into $C_{0}(Y, F)$. If $e \in S_{E}$ and $x \in X$ such that there exists $f \in \mathcal{A}$ with
$f(x)=\|f\|_{\infty} \cdot e$, then we define
$I(x, e):=\left\{y \in Y:\|(T f)(y)\|=\|f\|_{\infty}\right.$ for all $f \in \mathcal{A}$ such that $\left.f(x)=\|f\|_{\infty} \cdot e\right\}$.

LEmma 1. With the same hypothesis as in Definition $1, I(x, e)$ is nonempty.

Proof. It is clear that

$$
I(x, e) \subset M_{f}=\left\{y \in Y:\|(T f)(y)\| \geq \frac{\|f\|_{\infty}}{2}\right\}
$$

for any $f \in \mathcal{A}$ such that $f(x)=\|f\|_{\infty} \cdot e$. Since $I(x, e)$ is closed and M_{f} is compact (because $T f \in C_{0}(Y, F)$), it suffices to check that if f_{1}, \ldots, f_{n} satisfy $f_{i}(x)=\left\|f_{i}\right\|_{\infty} \cdot e$, then $\bigcap_{i=1}^{n}\left\{y \in Y:\left\|\left(T f_{i}\right)(y)\right\|=\left\|f_{i}\right\|_{\infty}\right\} \neq \emptyset$.

Let us define $f_{0}:=\sum_{i=1}^{n} f_{i}$ and choose a point $y_{0} \in Y$ where $T f_{0}$ attains its norm (this point exists since $T f_{0} \in C_{0}(X, E)$). Hence

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|\left(T f_{i}\right)\left(y_{0}\right)\right\| \geq\left\|\left(T f_{0}\right)\left(y_{0}\right)\right\| & =\left\|f_{0}\right\|_{\infty} \\
& \geq\left\|f_{0}(x)\right\| \\
& =\left\|\sum_{i=1}^{n}\right\| f_{i}\left\|_{\infty} \cdot e\right\| \\
& =\left\|e \cdot \sum_{i=1}^{n}\right\| f_{i}\left\|_{\infty}\right\| \\
& =\sum_{i=1}^{n}\left\|f_{i}\right\|_{\infty}
\end{aligned}
$$

Consequently, since T is an isometry, we infer that

$$
\sum_{i=1}^{n}\left\|\left(T f_{i}\right)\left(y_{0}\right)\right\|=\sum_{i=1}^{n}\left\|f_{i}\right\|_{\infty}
$$

Hence $\left\|\left(T f_{i}\right)\left(y_{0}\right)\right\|=\left\|f_{i}\right\|_{\infty}$ for all $i=1,2, \ldots, n$. That is, $y_{0} \in \bigcap_{i=1}^{n}\{y \in Y:$ $\left.\left\|\left(T f_{i}\right)(y)\right\|=\left\|f_{i}\right\|_{\infty}\right\}$.

Definition 2. Let A be a linear subspace of $C_{0}(X)$. We will denote by $\mathcal{A}[A]$ any linear subspace of $C_{0}(X, E)$ which contains the set $\left\{\xi \cdot e: \xi \in A, e \in S_{E}\right\}$.

Definition 3. Let A be a regular linear subspace of $C_{0}(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$. For any $x \in \sigma A$, we define $I(x):=\bigcup_{e \in S_{E}} I(x, e)$.

In the remainder of this section we will assume that the Banach space F is strictly convex.

Lemma 2. Let A be a regular linear subspace of $C_{0}(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$.
(1) Let $y \in I(x)$ for some $x \in \sigma$. If we take $f \in \mathcal{A}[A]$ such that $f(x)=0$, then $(T f)(y)=0$.
(2) $I\left(x_{1}\right) \cap I\left(x_{2}\right)=\emptyset$ for $x_{1}, x_{2} \in \sigma A$.

Proof. (1) Take $x_{0} \in \sigma A$. From the definition of strong boundary point, we know that there is $\xi \in A$ with $1=\xi\left(x_{0}\right)=\|\xi\|_{\infty}$. As a consequence, by Lemma 1 , $I\left(x_{0}, e\right)$ is nonempty for every $e \in S_{E}$.

Fix $e \in S_{E}$ and $y_{0} \in I\left(x_{0}, e\right)$. Let $f \in \mathcal{A}[A]$ such that f vanishes on some open neighbourhood U of x_{0}. We claim that $(T f)\left(y_{0}\right)=0$. To this end, we can assume, with no loss of generality, that $\|f\|_{\infty}<1$. Let us choose ξ as above such that $\xi<\|\xi\|_{\infty}-\|f\|_{\infty}$ on $X \backslash U$. Let us define the functions

$$
g:=f+\xi \cdot e
$$

and

$$
h:=\frac{1}{2}(g+\xi \cdot e)
$$

It is obvious that $g\left(x_{0}\right)=h\left(x_{0}\right)=\xi\left(x_{0}\right) \cdot e$. Furthermore, $\|\xi \cdot e\|_{\infty}=\|g\|_{\infty}=$ $\|h\|_{\infty}=\xi\left(x_{0}\right)=1$. Hence, as $y_{0} \in I\left(x_{0}, e\right)$, we have $\left\|T(\xi \cdot e)\left(y_{0}\right)\right\|=\left\|(T g)\left(y_{0}\right)\right\|$ $=\left\|(T h)\left(y_{0}\right)\right\|=\xi\left(x_{0}\right)=1$. Since F is strictly convex, and $T(\xi \cdot e)\left(y_{0}\right),(T g)\left(y_{0}\right)$ and $(T h)\left(y_{0}\right)$ belong to S_{E}, we infer that $T(\xi \cdot e)\left(y_{0}\right)$ and $(T g)\left(y_{0}\right)$ coincide (note that $(T h)\left(y_{0}\right)$ is on the segment which joins $T(\xi \cdot e)\left(y_{0}\right)$ and $\left.(T g)\left(y_{0}\right)\right)$. As a consequence, $(T f)\left(y_{0}\right)=0$.

Let $\hat{T} \widehat{y_{0}}: \mathcal{A}[A] \longrightarrow F$ and $\hat{x_{0}}: \mathcal{A}[A] \longrightarrow E$ be the functionals defined by the requirement that $\widehat{T} \widehat{y_{0}}(f):=(T f)\left(y_{0}\right)$ and $\widehat{x_{0}}(f):=f\left(x_{0}\right), f \in \mathcal{A}[A]$. It is straightforward to check that the functions in $\mathcal{A}[A]$ that vanish on a neighbourhood of x_{0} are dense in $\operatorname{ker}\left(\widehat{x_{0}}\right)$ since A is regular. Furthermore, $\operatorname{ker}\left(\widehat{x_{0}}\right)$ is closed since the functional $\widehat{x_{0}}$ is continuous (e.g., see [7, p. 77]). Consequently, the above paragraph yields the inclusion $\operatorname{ker}\left(\widehat{x_{0}}\right) \subset \operatorname{ker}\left(\widehat{T} \widehat{y_{0}}\right)$; this is, if $f\left(x_{0}\right)=0$, then $(T f)\left(y_{0}\right)=0$, as was to be proved.
(2) Suppose that there are $x_{1}, x_{2} \in \sigma A$ and $y \in Y$ such that $y \in I\left(x_{1}\right) \cap I\left(x_{2}\right)$. Choose $\xi \in A$ such that $\xi\left(x_{1}\right)=1$ and $\xi\left(x_{2}\right)=0$. Since $(\xi \cdot e)\left(x_{2}\right)=0$ for every $e \in E$, we have, by (1), that $T(\xi \cdot e)(y)=0$ for all $e \in E$.

On the other hand, there is $e_{1} \in S_{E}$ such that $y \in I\left(x_{1}, e_{1}\right)$ and, as x_{1} is a strong boundary point for A, there is a function $0 \not \equiv f \in \mathcal{A}[A]$ such that $f\left(x_{1}\right)=\|f\|_{\infty} \cdot e_{1}$. By (1), we have $(T f)(y)=T\left(\xi \cdot f\left(x_{1}\right)\right)(y)$ since T is linear and $\left(f-\xi \cdot f\left(x_{1}\right)\right)\left(x_{1}\right)=$ 0 . Besides, by the above paragraph, $(T f)(y)=T\left(\xi \cdot f\left(x_{1}\right)\right)(y)=0$. But from the
definition of the set $I\left(x_{1}, e_{1}\right)$, we know that $\|(T f)(y)\|=\|f\|_{\infty} \neq 0$, which is a contradiction.

Lemma 3. Let A be a regular linear subspace of $C_{0}(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$. Let $x \in \sigma A$ and $e \in S_{E}$. If $f(x)=e$ for $f \in \mathcal{A}[A]$, then $\|(T f)(y)\|=\|e\|$ for all $y \in I(x, e)$.

Proof. Since x is a strong boundary point, there is $\xi \in A$ with $1=\xi(x)=\|\xi\|_{\infty}$. Define a function g in $\mathcal{A}[A]$ by $g:=f-\xi \cdot e$. The clear fact that $g(x)=0$ and Lemma 2(1) yield $(T g)(y)=0$. By the linearity of T, we have $(T f)(y)=T(\xi \cdot e)(y)$. Finally, from the definition of $I(x, e),\|(T f)(y)\|=\|T(\xi \cdot e)(y)\|=\|\xi \cdot e\|_{\infty}=$ $\|e\|$.

Definition 4. Let A be a regular closed subalgebra of $C_{0}(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$. For $x \in X \backslash \sigma A$, we define $I(x):=\{y \in$ $Y:(T f)(y)=0$ for all $f \in \mathcal{A}[A]$ such that $f(x)=0\}$.

LEMMA 4. Let A be a regular closed subalgebra of $C_{0}(X)$ and let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$. Then
(1) For any $x \in X, I(x)$ is nonempty.
(2) For any pair $x_{1}, x_{2} \in X, I\left(x_{1}\right) \cap I\left(x_{2}\right)=\emptyset$.

Proof. (1) For $x \in \sigma A$, the result can be found in Lemma 1. On the other hand, let us recall (see the Preliminaries) that σA is dense in $\partial A=X$. Hence, for $x_{0} \in X \backslash \sigma A$, there is a net $\left\{x_{\alpha}\right\}$ in σA converging to x_{0}. Fix $e \in S_{E}$. For each α, there is $y_{\alpha} \in I\left(x_{\alpha}, e\right)$. Since $Y \cup\{\infty\}$ is compact, we can assume, by taking a subnet if necessary, that $\left\{y_{\alpha}\right\}$ converges to $y_{0} \in Y \cup\{\infty\}$. Let us take a function $f \in \mathcal{A}[A]$ such that f vanishes on some neighbourhood V of x. Then there is α_{0} such that $x_{\alpha} \in V$ for $\alpha>\alpha_{0}$. By Lemma 2(1), $(T f)\left(y_{\alpha}\right)=0$ for $\alpha>\alpha_{0}$ and, consequently, $(T f)\left(y_{0}\right)=0$. Now, arguments like those in the last paragraph of the proof of Lemma 2(1) show that $y_{0} \in I\left(x_{0}\right)$.

Finally, let us check that $y_{0} \neq \infty$. Since A is normal (see the Preliminaries), we can choose $\xi \in A$ such that $\xi \equiv 1$ on V. Let $g:=\xi \cdot e$. Since $g\left(x_{\alpha}\right)=e$ for all $\alpha>\alpha_{0}$, Lemma 3 entails that $\left\|(T g)\left(y_{\alpha}\right)\right\|=\|e\|$ for all $\alpha>\alpha_{0}$. That is, $\left\|(T g)\left(y_{0}\right)\right\|=\|e\| \neq 0$, which shows that $y_{0} \neq \infty$.
(2) If either x_{1} or x_{2} is a strong boundary point for A, then the result follows from the same arguments as in Lemma 2(2).

Assume that there exists $y \in I\left(x_{1}\right) \cap I\left(x_{2}\right)$ with $x_{1}, x_{2} \in X \backslash \sigma A$. Let V_{1} and V_{2} be open neighbourhoods of x_{1} and x_{2} respectively with disjoint closures. By (1), there exist $e_{1}, e_{2} \in S_{E}$, and two nets $\left\{x_{\alpha}\right\}$ and $\left\{x_{\beta}\right\}$ in σA converging to x_{1} and x_{2} respectively, such that both the nets $\left\{y_{\alpha}\right\} \subset I\left(x_{\alpha}, e_{1}\right)$ and $\left\{y_{\beta}\right\} \subset I\left(x_{\beta}, e_{2}\right)$ converge
to y. Choose $\xi \in A$ such that $\xi \equiv 1$ on V_{1} and vanishes on V_{2}. If we define $g:=\xi \cdot e_{1}$, then, as in (1), it is apparent that $\|(T g)(y)\|=\left\|e_{1}\right\| \neq 0$. But there is β_{0} such that $(T g)\left(y_{\beta}\right)=0$ for $\beta>\beta_{0}$. Hence $(T g)(y)=0$. This contradiction shows that $I\left(x_{1}\right) \cap I\left(x_{2}\right)=\emptyset$.

Remark 1. Let us now introduce a linear map of E into F which will allow us to obtain a multiplicative representation of T. Note first that if $\xi \in A$ and $e \in E$, then $\xi \cdot e=(\xi \cdot\|e\|) \frac{e}{\|e\|} \in \mathcal{A}[A]$.

Definition. With the same hypothesis as in Lemma 2 (resp. Lemma 4), let $y \in$ $I(x)$ for some $x \in \sigma A$ (resp. $x \in X$) and let $\xi \in A$ such that $\xi(x)=1$. Then we define a linear map $\omega(y)$ of E into F as follows: $\omega(y)(e):=T(\xi \cdot e)(y)$ for all $e \in E$.

To see that $\omega(y)$ is well defined, suppose that there is another function $\xi^{\prime} \in A$ such that $\xi^{\prime}(x)=1$. Hence, since $\left(\xi \cdot e-\xi^{\prime} \cdot e\right)(x)=0$ for all $e \in E$, Lemma 2(1) (resp. Definition 4) entails that $T(\xi \cdot e)(y)=T\left(\xi^{\prime} \cdot e\right)(y)$ for all $e \in E$.

Definition 5. Let A be a regular linear subspace (resp. closed subalgebra) of $C_{0}(X)$. For a linear isometry T of $\mathcal{A}[A]$ into $C_{0}(Y, F)$, we define the set $Y_{0}:=$ $\bigcup_{x \in \sigma A} I(x)$ (resp. $\mathcal{Y}_{0}:=\bigcup_{x \in X} I(x)$) and a mapping ψ of Y_{0} (resp. \mathcal{Y}_{0}) onto σA (resp. X) by $\psi(y):=x$, where $y \in I(x)$.

Theorem 1. Let T be a linear isometry of $\mathcal{A}[A]$ into $C_{0}(Y, F)$.
(1) If A is a regular linear subspace of $C_{0}(X)$ such that $\sigma A \neq \emptyset$, then $\psi: Y_{0} \longrightarrow$ σA is a well defined surjective continuous mapping and $(T f)(y)=$ $\omega(y)(f(\psi(y)))$ for all $y \in Y_{0}$ and all $f \in \mathcal{A}[A]$.
(2) If A is a closed regular subalgebra of $C_{0}(X)$, then $\psi: \mathcal{Y}_{0} \longrightarrow X$ is a well defined surjective continuous mapping and $(T f)(y)=\omega(y)(f(\psi(y)))$ for all $y \in \mathcal{Y}_{0}$ and all $f \in \mathcal{A}[A]$. Furthermore, ω is a continuous mapping from \mathcal{Y}_{0} into the space of bounded operators of E into F, when this latter space is given its strong operator topology.

If, in addition, σA is a boundary for $\mathcal{A}[A]$, then $Y_{0}\left(\right.$ resp. $\left.\mathcal{Y}_{0}\right)$ is a boundary for $T(\mathcal{A}[A])$.

Proof. (1) By Lemma 2(2), ψ is a well defined mapping. To check the continuity of ψ, let $\left\{y_{\alpha}\right\}$ be a net convergent to y in Y_{0}. Assume, contrary to what we claim, that $\left\{\psi\left(y_{\alpha}\right)\right\}$ does not converge to $\psi(y)$. By taking a subnet if necessary, we can consider that $\left\{\psi\left(y_{\alpha}\right)\right\}$ converges to an x in the compact space $X \cup\{\infty\}$. Let U and V be disjoint neighborhoods of x and $\psi(y)$ in $X \cup\{\infty\}$, respectively. There exist an
α_{0} such that $\psi\left(y_{\alpha}\right) \in U$, for all $\alpha \geq \alpha_{0}$, and, since A is regular, a function $f \in \mathcal{A}[A]$ such that $\operatorname{coz}(f) \subset V$ and $\|(T f)(y)\| \neq 0$. For $\alpha \geq \alpha_{0}, \psi\left(y_{\alpha}\right) \notin \operatorname{coz}(f)$. Hence, by Lemma 2(1), $(T f)\left(y_{\alpha}\right)=0$, for all $y_{\alpha} \geq \alpha_{0}$. Consequently $\left\{(T f)\left(y_{\alpha}\right)\right\}$ does not converge to $(T f)(y) \neq 0$, which contradicts the continuity of $T f$.

Finally, to obtain the multiplicative representation of T, let $x \in \sigma A$ and $y \in I(x)$. Choose any function $\xi \in A$ such that $\xi(x)=1$. For every $f \in \mathcal{A}[A]$, the function $f-\xi \cdot f(x)$ vanishes at x. Thus, by Lemma 2(1), we infer that $(T f)(y)=T(\xi$. $f(x))(y)=\omega(y)(f(x))$ for every $f \in \mathcal{A}[A]$.
(2) By Lemma 4(2), ψ is a well defined mapping. The results now follows from Lemma 4(1) and from the same arguments as in (1).

To prove the continuity of ω, let $\left\{y_{\alpha}\right\}$ be a net convergent to y in \mathcal{Y}_{0}. Fix $e \in$ E and define a function $f \in \mathcal{A}[A]$ by $f:=\xi \cdot e$, where $\xi \equiv 1$ on a certain neighbourhood of $\psi(y)$. Since ψ is continuous, there is a α_{0} such that, for all $\alpha \geq \alpha_{0}$, $\left\|\omega\left(y_{\alpha}\right) e-\omega(y) e\right\|=\left\|\omega\left(y_{\alpha}\right) f\left(\psi\left(y_{\alpha}\right)\right)-\omega(y) f(\psi(y))\right\|=\left\|(T f)\left(y_{\alpha}\right)-(T f)(y)\right\|$. Since $\left\{(T f)\left(y_{\alpha}\right)\right\}$ converges to $(T f)(y)$, the continuity of ω is thus verified.

Assume now that σA is a boundary for $\mathcal{A}[A]$. Take $g \in T(\mathcal{A}[A])$ and $f \in \mathcal{A}[A\rceil$ such that $T f=g$. We can find $x \in \sigma A$ and $e \in S_{E}$ with $f(x)=\|f\|_{\infty} \cdot e$. By Lemma 1, there exists $y \in I(x, e) \subseteq I(x) \subseteq Y_{0}$ (resp. \mathcal{Y}_{0}) such that $\|g(y)\|=$ $\|(T f)(y)\|=\|T f\|_{\infty}=\|g\|_{\infty}$, that is, $Y_{0}\left(\right.$ resp. $\left.\mathcal{Y}_{0}\right)$ is a boundary for $T(\mathcal{A}[A])$.

Remark 2. Theorem 1 generalizes the main result of [6] by taking X compact and $\mathcal{A}[A]=C(X)$.

2. Surjective case

In this section we will assume that both E and F are strictly convex Banach spaces.
THEOREM 2. Let T be a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_{0}(Y, F)$, where A and B are regular closed subalgebras of $C_{0}(X)$ and $C_{0}(Y)$ respectively. Then ψ is a homeomorphism of Y onto X and $(T f)(y)=\omega(y)(f(\psi(y)))$ for all $y \in Y$ and all $f \in \mathcal{A}[A]$. Furthermore, if $y \in I(x)$ for some $x \in \sigma A$, then $\omega(y)$ is a linear isometry of E into F.

Proof. Fix $x \in X$ and let $y \in I(x)$. We first claim that $x \in I(y)$. Suppose that $x \notin I(y)$. Then, since $T^{-1}: \mathcal{B}[B] \longrightarrow \mathcal{A}[A]$ is a linear isometry, Lemma 4(1) entails that there exists $x^{\prime} \in X, x^{\prime} \neq x$, such that $x^{\prime} \in I(y)$. Choose $f \in \mathcal{A}[A]$ such that $f(x)=0$. By Lemma 2(1) and Definition 4, we infer that both $(T f)(y)=0$ and $T^{-1}(T f)\left(x^{\prime}\right)=f\left(x^{\prime}\right)=0$. This means that x and x^{\prime} cannot be separated with functions of $\mathcal{A}[A]$, which contradicts the regularity of A.

Let us now suppose that $I(x)$ contains two elements, y and y^{\prime}. By the above paragraph, $x \in I(y) \cap I\left(y^{\prime}\right)$. Since $T(\mathcal{A}[A])$ separates the points of Y, there is a function $f \in \mathcal{A}[A]$ such that $(T f)(y)=1$ and $(T f)\left(y^{\prime}\right)=0$. From Lemma 2(1)
and Definition 4, we have $T^{-1}(T f)(x)=f(x)=0$ and, hence, $(T f)(y)=0$. This contradiction shows that $I(x)$ is a singleton.

As a straightforward consequence of the above two paragraphs and Theorem 1, we infer that $\mathcal{Y}_{0}=Y$ and that $\psi: Y \longrightarrow X$ is a continuous bijection. Furthermore (see Definition 5) T^{-1} induces a continuous bijection of X onto Y which can be easily checked to be the inverse of ψ, which is to say that X and Y are homeomorphic.

Finally, take $y_{0} \in Y$ such $y_{0}=I\left(x_{0}\right)$ for some $x_{0} \in \sigma A$. To see that $\omega\left(y_{0}\right)$ is a linear isometry of E into F, choose $e_{0} \in S_{E}$ and $\xi \in A$ such that $1=\xi\left(x_{0}\right)=\|\xi\|_{\infty}$. It suffices to check that $\left\|\omega\left(y_{0}\right)\left(e_{0}\right)\right\|=1$. Let us first note that, by Lemma 1 , it is apparent (see also the proof of Lemma 2(1)) that $I\left(x_{0}, e\right) \neq \emptyset$ for all $e \in S_{E}$. Hence, since $I\left(x_{0}\right)$ is a singleton, $y_{0}=\bigcap_{e \in S_{E}} I\left(x_{0}, e\right)$. In particular, $y_{0} \in I\left(x_{0}, e_{0}\right)$. Consequently,

$$
\left\|\omega\left(y_{0}\right)\left(e_{0}\right)\right\|:=\left\|T\left(\xi \cdot e_{0}\right)\left(y_{0}\right)\right\|=\left\|\xi \cdot e_{0}\right\|_{\infty}=1
$$

Remark 3. Theorems 1 and 2 generalize the main result of [10] by taking X, Y compact, and $\mathcal{A}[A]=C(X)$ and $\mathcal{B}[B]=C(Y)$.

Definition 6. Let \mathcal{A} be linear subspace of $C_{0}(X, E)$. We say that $x_{0} \in X$ is a strong boundary point for \mathcal{A} if for each neighborhood U of x_{0}, there is a function $f \in \mathcal{A}$ such that $\left\|f\left(x_{0}\right)\right\|=\|f\|_{\infty}$ and $\|f(x)\|<\|f\|_{\infty}$ for all $x \in X \backslash U$. We define the strong boundary for $\mathcal{A}, \sigma \mathcal{A}$, to be the set of all strong boundary points for \mathcal{A}.

It is a routine matter to verify that $\sigma A \subseteq \sigma \mathcal{A}[A]$ for any linear subspace A of $C_{0}(X)$.

THEOREM 3. Let T be a linear isometry of $\mathcal{A}[A]$ onto such a subspace $\mathcal{B}[B]$ of $C_{0}(Y, F)$, where A and B are regular closed subalgebras of $C_{0}(X)$ and $C_{0}(Y)$ respectively. If we assume that $\sigma \mathcal{A}[A]=\sigma A$ and $\sigma \mathcal{B}[B]=\sigma B$, then the strong boundaries for $\mathcal{A}[A]$ and for $\mathcal{B}[B]$ are homeomorphic.

Proof. Let $x_{0} \in \sigma \mathcal{A}[A]=\sigma A$. By Theorem 2, $I\left(x_{0}\right)$ is a singleton. Let $y_{0}=I\left(x_{0}\right)$.

Next we claim that $I\left(x_{0}\right) \subseteq \sigma \mathcal{B}[B]$. Fix $e_{0} \in S_{E}$ and let V be a neighbourhood of y_{0}. Recall, as in the proof of Theorem 2, that $y_{0}=\bigcap_{e \in S_{E}} I\left(x_{0}, e\right)$. If $y \notin V$, then, from the definition of $I\left(x_{0}\right)$, there is a function $f_{y} \in \mathcal{A}[A]$ such that

$$
\left\|f_{y}\left(x_{0}\right)\right\|=\left\|f_{y}\right\|_{\infty} \cdot e_{0}
$$

and

$$
\left\|\left(T f_{y}\right)(y)\right\|<\left\|f_{y}\right\|_{\infty}
$$

For each $y \in(Y \cup\{\infty\}) \backslash V$, we may take an open neighborhood V_{y} of y such that $\left\|\left(T f_{y}\right)\left(y^{\prime}\right)\right\|<\left\|f_{y}\right\|_{\infty}$ for all $y^{\prime} \in V_{y}$. Since $(Y \cup\{\infty\}) \backslash V$ is compact, there exist $\left\{y_{1}, \ldots, y_{n}\right\} \subset(Y \cup\{\infty\}) \backslash V$ such that $(Y \cup\{\infty\}) \backslash V \subset \bigcup_{i=1}^{n} V_{y_{i}}$. Now, let us define the map

$$
g:=\sum_{i=1}^{n} f_{y_{i}}
$$

It is clear that

$$
g\left(x_{0}\right)=\left(\sum_{i=1}^{n}\left\|f_{y_{i}}\right\|_{\infty}\right) \cdot e_{0}
$$

which implies that $\left\|g\left(x_{0}\right)\right\|=\|g\|_{\infty}$. Hence, since $y_{0}=I\left(x_{0}\right)$, we infer that $\left\|(T g)\left(y_{0}\right)\right\|=\|g\|_{\infty}$. Moreover, for every $y \in Y \backslash V$ we have

$$
\|(T g)(y)\| \leq \sum_{i=1}^{n}\left\|\left(T f_{y_{i}}\right)(y)\right\|<\sum_{i=1}^{n}\left\|f_{y_{i}}\right\|_{\infty}=\|g\|_{\infty}=\|T g\|_{\infty}
$$

As a consequence, $y_{0} \in \sigma \mathcal{B}[B]$.
In like manner we prove that, if $y_{0} \in \sigma \mathcal{B}[B]=\sigma B$, then $I\left(y_{0}\right) \in \sigma \mathcal{A}[A]$. That is, ψ, which is a homeomorphism of Y onto X (see Theorem 2), sends $\sigma \mathcal{B}[B]$ onto $\sigma \mathcal{A}[A]$.

References

[1] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997), 413-428.
[2] ,On Shilov boundaries for subspaces of continuous functions, Topology Appl. 77 (1997), 79-85.
[3] E. Behrends, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, no. 736, Springer-Verlag, New York, 1979.
[4] M. Cambern, Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1-11.
[5] , The Banach-Stone property and the weak Banach-Stone property in three-dimensional spaces, Proc. Amer. Math. Soc. 67 (1977), 55-61.
[6] , A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math. 63 (1978), 213-217.
[7] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
[8] T. W. Gamelin, Uniform algebras, Prentice Hall, Englewood Cliffs, New Jersey, 1969.
[9] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous function, Studia Math. 26 (1966), 133-136.
[10] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. 52 (1950), 309-327.

Departamento de Matemáticas, Universitat Jaume I, Campus Penyeta Roja, E-12071, Castellón, Spain
font@mat.uji.es

[^0]: Received March 21, 1997.
 1991 Mathematics Subject Classification. Primary 46B04, 46E40; Secondary 46J20.
 Research partially supported by Fundació Castelló (P1B95-18).

