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In [4], Okumura proved that if a Sasakian manifold M of dimension > 3, admits
a non-isometric conformal motion v, then v is special concircular and hence, if, in
addition, M is complete and connected, then it is isometric to a unit sphere. The
last part of this result follows from Obata’s theorem [3]: A complete connected
Riemannian manifold (M, g) of dimension > 1, admits a non-trivial solution p of
partial differential equations VVp = —c?pg (for ¢ = a constant > 0), if and only if
M is isometric to a Euclidean sphere of radius 1/c. Recently, Sharma and Blair [5]
extended Okumura’s result to dimension 3 assuming constant scalar curvature and
proved the following: Let v be a non-isometric conformal motion on a 3-dimensional
Sasakian manifold. If the scalar curvature of M is constant, then M is of constant
curvature and v is special concircular. Generalizing this result we prove:

THEOREM. Let v be a non-isometric conformal motion on a 3-dimensional
Sasakian manifold M such that v leaves the scalar curvature of M invariant. Then M
is of constant curvature 1 and v is special concircular. Hence, if, in addition, M is
complete and connected, then M is isometric to a unit sphere.

COROLLARY. Among all complete and simply connected 3-dimensional Sasakian
manifolds only the unit 3-sphere admits a non-isometric conformal motion that leaves
the scalar curvature invariant.

For a (2n + 1)-dimensional contact metric manifold M (n, &, ¢, g) we know [1]
that

nE) =1, @)X, Y) =gX, oY), n(X) =g(X,&), ¢*=—1+n ® & (1)
¢ =0,nop =0, g(dX,9Y) =g(X,Y) —n(X)n(Y),rank ¢ =2n. (2)
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A contact metric manifold is said to be K-contact if £ is Killing. For a K-contact
manifold,

Vxé = — ¢X. 3

0§ = 2n¢. “

A Sasakian (normal contact metric) manifold is a contact metric manifold satisfying
either one of the following:

R(X,Y)§ =n(¥)X — n(X)Y. &)

(Vx9)Y = g(X,Y)§ —n(Y)X. Q)

A Sasakian manifold is K-contact. A 3-dimensional contact manifold is Sasakian.
The Ricci tensor of a 3-dimensional Sasakian manifold [2] is given by

1
S(X,Y) = 5{(r —2)8(X,Y) + (6 —r)n(X)n(Y)}, )

where r denotes the scalar curvature.
A vector field v on a Riemannian manifold (M, g) is a conformal motion if there
is a smooth scalar function p on M such that

£,8 =2pg. ¥

If p is constant, v is homothetic, and for p = 0, v is Killing. We say that a conformal
motion is non-isometric if it is not Killing on any open neighborhood in M. A
conformal motion v defined by (8) satisfies the following (see [5]):

&)X, Y) = —(m —2)(Vxdp)Y + (Ap)g(X, Y), &)

£,r = =2pr+2(m—1)Ap, (10)

where m is the dimension of M and A = — div(D), D being the gradient operator. A

conformal motion is called an infinitesimal special concircular transformation if the

associated function p satisfies VVp = (—c;p + ¢;)g for some constants c¢| and c;.
In order to prove the theorem we need this result:

LEMMA. A homothetic vector field on a K-contact manifold is Killing.

Proof. As v is homothetic (£,g = cg for a constant ¢), £,§ = 0. Writing
equation (4) as S(&, X) = 2n g(&, X) and Lie-differentiating it along v we get

S([v, £], X) = 2ncg(&, X) + 2ng([v, §], X).

Substituting &€ for X and using (4) yields ¢ = 0, proving the lemma.
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Proof of the theorem. Since £ is Killing, &r = 0 and hence £:dr = d€;r = 0
and £ Dr = 0. Thus

VeDr = —¢Dr (1)
From (8) and the fact that £ is unit it follows that
EmnE =-—nE8) = p. (12)

By hypothesis, vr = 0 and hence £,dr = 0. From (10) we also have
2Ap =rp. (13)
Lie-differentiating (7) along v and using (9) and (13), we have
1
8(VxDp,Y) = 5[(4—r)pg(X, Y)+(r—=6){EnNX)n@)+EnXIn(X)}. (14)

Substituting & for ¥ and using (12) we get

1
5 —6)ENX = pn(X) + g(Ve Dp, X). (15)

The equation (15) transforms (14) into

1
VyDp = 5(4 —r)pY +n(Y)2p& + Ve Dp) + g(Ve Dp, Y)§. (16)

Substituting ¥ = £ in (16) and taking inner product with £, we have

1
g(VeDp, §) = 5”(’ - 8). an

Through (16) we compute R(X, Y)Dp = (VxVy — VyVx — Vix.y1) Dp and contract
itas g(R(e;, Y) Dp, e;) with respect to an orthonormal basis (¢;) and obtain

S(Y, Dp) = (r = 6)Yp + pYr + 3g(V; Dp, ¢Y) + (26p + div Ve Dp)(Y)
— 25(VyVeDp, &) +g(VViDp, V).  (18)

Replacing Y by ¢Y and using (7) gives

1
5(2 —r)g(Y,¢Dp) = (r — 6)g(¢Y, Dp) + pg(¢Y, Dr) —3g(V:Dp,Y)

+3n(Y)g(V: Dp, §)
—28(VyyVeDp, &) + g(VeVyy Dp, £)

where we used the equation

g(VeVeDp, ¢Y) = g(VeVyy Dp, &) — g(Ve Dp, Ve 9Y),
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that can be obtained by differentiating the symmetry identity g(VeDp, ¢Y) =
8(Vyy Dp, &) (this follows from Poincare lemma: d? = 0), along £. We now use
(16) and (3) to rearrange the last three terms of (19) as

g(R(§,9Y)Dp + Vig 4y Dp, &) — g(Ve Dp, VedY) — g(Vyy Ve Dp, §)
= —g(Y,¢Dp) + g(V: Dp, $°Y) — g(Vyy Ve Dp, £)(using(3.12))
—g(Y, ¢ Dp) + g(Ve Dp, ¢*Y) — (#Y)g(Vs Dp, £) + g(Vi Dp, Vyr&)

1 1
=—g@Dp,Y) + 5(8 —r)(@Y)p — 5P(¢Y)r,

Consequently, (19) reduces to
1 1
5P(¢Y)r =g(VeDp,Y) + 50(8 —r)n(y),
and therefore, we obtain
1 1
VeDp = —6p¢Dr + Ep(r — 8)&. (20)
Next, differentiating (17) along Y gives
1
8(VyVeDp, &) = g(VeDp, ¢Y) + 5{(r —8Yp+ pYr}. 21
Further, the divergence term in (18) is
. 1 1
div {—(0/6)¢Dr + Ep(r - 8)&] = E(r — 8)&p — (1/6)g(¢ Dr, Dp),
because (e;) can be taken as a ¢-adapted base (e, pe, £) and hence

—(VVr)(ei, pe;) = g(@V.Dr, e) + g(¢Vy.Dr, pe) = 0.

Thus (18) assumes the form
1 1 1
S(Y, Dp) =2Yp — ngr - g&pg(Y, ¢Dr)+n(Y) [(r —6)p — gg(¢Dr. Dp)} .
Use of (7) in the above equation gives
1 1 3 1
Fr=6)Yp+ 3PYr = {E(r —6)§p — gg(fbDr, Dp)l n(¥)

1
- gépg(dJDn Y). (22)

Substituting ¥ = & gives

1
(r—6)5p = g8@Dr, Dp). (23)
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If r = 6 on M, then (7) shows that M is Einstein, and being 3-dimensional, is of
constant curvature 1. Now let r # 6 in some neighborhood N (p) of a point p in M.
Substituting ¥ = ¢ Dr in (22) and using (23) yields

Ep)(IDr? +18(r — 6)*) = 0.

Asr # 6,&p = 0, on N(p). Differentiating it along & we have g(¢, Ve Dp) = 0 and
hence, from (17) we obtain (r — 8)p = 0. But p # 0 in any open neighborhood, by
hypothesis, and so, r = 8 on N(p). Then (22) reduces to Yp = 0; i.e., p = constant,
and hence by Lemma 2, p = 0 on N(p). This again contradicts our hypothesis.
Hence M is of constant curvature 1, and as r = 6, (14) reduces to VVp = —pg;i.e.,
v is special concircular. The rest of the theorem follows from Obata’s theorem.
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