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SOLUTIONS TO THE QUANTUM YANG-BAXTER
EQUATION HAVING CERTAIN BIALGEBRAS AS THEIR

REDUCED FRT CONSTRUCTION

LARRY LAMBE AND DAVID E. RADFORD

Suppose that M is a finite-dimensional vector space over a field k and that R" M (R)

M -- M (R) M is solution to the quantum Yang-Baxter equation(QYBE). The FRT
construction [3] is a bialgebra A(R) associated with R in a natural way. There is a
quotient of the FRT construction, referred to as the reduced FRT construction and
denoted by A(R), which seems rather useful in computation [11]. The bialgebra
A(R) is Hopf algebra only when M (0), whereas the bialgebra A(R) may very
well be a Hopf algebra.

Given a bialgebra A over the field k, a natural question to ask is for which solutions

R to the quantum Yang-Baxter equation is A A(R) as bialgebras. The question
suggests a way of going about classifying and studying solutions to the quantum
Yang-Baxter equation.

In this paper we consider three classes of bialgebras as reduced FRT constructions:
the semigroup algebras k[S] of semigroups S over k, the universal enveloping algebras
U(L) of finite-dimensional abelian Lie algebras over k when k has characteristic 0,
and the class of finite-dimensional Hopf algebras over k.

The first two classes provide an interesting contrast. The polynomial algebra
k[xl Xr] in commuting indeterminants x Xr is the underlying algebra of
U(L), when Dim L r, and is also the underlying algebra of k[S], when S is the
free commutative semigroup on r generators. For the enveloping algebra, one has

A (X (R) xi -[- xi (R)

for all < _< r and for the semigroup algebra, one has

A (Xi Xi (R) Xi

for all < < r.
We show that every finite-dimensional Hopf algebra H over k is the reduced FRT

construction for some solution to the QYBE. This is not difficult to prove and is very
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interesting theoretically. As one might suspect, the quantum double D(H) of H is
instrumental in the construction of such a solution.
A special case (r 1) of Corollary was found during the preparation of [7] and

inspired this paper. This special case was presented by the first author in [5].
Throughout this paper k is a field.

1. Preliminaries

In this section we discuss basic definitions and results used in this paper. We
assume that the reader has some familiarity with the theory of coalgebras and related
structures. A good general reference is 14] from which we draw freely. Other books
on Hopf algebras adequate for our purposes are and [9].

Let U and V be vector spaces over the field k. We use the notation f" U --+ V to
denote a linear map f from U to V. Composition of linear maps will be denoted by
juxtaposition. We will omit the subscript k from the familiar notations Homk (U, V),
Endk (U), and U (R) V.

Let ot Hom (U, k) U* be a linear functional on U. We denote the image
of u U under ot by (c, u) or or(u). Suppose that/g is a subspace of U*. Then
/g+/- {u U I/g(u) (0)} is a subspace of U. We say that/g is a dense subspace
of U* if L/+/- (0). Suppose that L/is a dense subspace of U* and let V be a finite-
dimensional subspace of U. Then for a given/ U* there exists an a /g such that
Clv =/3Iv, where ?’Iv denotes the restriction of ?, U* to V.

Various notions of rank will be useful to us. If f: U V is linear then rank f
Dim Im f has the usual meaning. If S is a subset of U then by rank S we mean
the dimension of the span of S. Suppose that v U (R) V is not zero. Then v has
many representations = bl (R) Ui, where Ui U and 1) V for < < r. We
will denote the smallest r which occurs in these representations by Rank v. When
r Rank v observe that {u Ur and {v Vr are linearly independent. We
set Rank 0 0.
We let rv" U (R) U U (R) U denote the "twist" map defined by rt: (u (R) v) v (R) u

for all u, v U.

1.1. The quantum Yang-Baxter equation. Let M be a vector space over the
field k and let R" M (R) M M (R) M be a linear map. For < < j < 3 we define
R(i,j) by

and

The equation

R(I,2) R (R) lt, R(2,3) lt (R) R,

Rt,3) (1M (R) rM)(R (R) 1M)(IM (R) rM).

R(2,3)R(I,3)R(I,2) R(I,2)R(I,3)R(2,3) (1)
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is called the quantum Yang-Baxter equation (QYBE). The reader can check that
B rMR satisfies

B(2,3)B(,2)B(2,3)-" B(,2)B(2,3)B(,2) (2)

if and only if R satisfies (1). Equation (2) is called the braid equation. Solutions
to the braid equation are important in connection with invariants of knots and links.
See [4] for a discussion of knot and link invariants and also as a source for other
references.

1.2. Coalgebras and related structures. Let (C, A, ) be a coalgebra over the
field k. A common way of denoting the coproduct A: C C (R) C applied to c 6 C
is the variation of the Heyneman-Sweedler notation A(c) c) (R) c<2). We drop
the summation symbol and write

A(c) C(l) (R) c(2)

for all c 6 C. Throughout this paper coalgebras, algebras, and bialgebras are usually
denoted by their underlying vector spaces. We let Ccp be the coalgebra (C, Acp, e),
where Acp rc A. Thus

AcP(c) C(2) (R) 6"(1)

for all c 6 C. The coalgebra C is cocommutative if C Ccp.
Likewise, if (A, m, r/) is an algebra over k, then Ap denotes the algebra (A, mp, r/),

where mp mza. Thus

mP(a (R) b) m(b (R) a) ba

for a, b 6 A. The algebra A is commutative if A Ap.
Suppose that (M, p) is a right C-comodule. There are various notations for rep-

resenting p(m) M (R) C. We will write

p(m) m() (R) m2)

for all m 6 M, again omitting the summation symbol.

Definition 1.
M (R) V by C (p).

We denote the unique minimal subspace V of C such that p(M)

It is not hard to see that C (p) is in fact a subcoalgebra of C. Letm 6 M and suppose
that N is the subcomodule of M which m generates. Then N is finite-dimensional.
We may assume that N : (0) and {ml mr} is a basis for N. For < j < r
write p(mj) ’tr.=l mi (R) Cj. Then the comodule axioms imply that (cj) 8 and

CA( Yre= c (R) c) for alll <i <r.
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The right C-comodule structure (M, p) accounts for a left C*-module structure
on M which is described by

ot---m (IM (R)ot)(p(m)) m(l)(ot, m(2))

for all ot 6 C* and m 6 M. We will denote this module structure by (M,/zp),and
refer to it as the rational left C*-module structure on M arisingfrom (M, p).

An element c 6 C is said to be grouplike if A(c) c (R) c and e(c) 1. We
let G(C) denote the set of all grouplike elements of C. Then by [14, Proposition
3.2. l.b)] we have:

LEMMA 1.
independent.

Suppose that C is a coalgebra over thefield k. Then G(C) is linearly

If C is a bialgebra over k then G(C) is a semigroup under the multiplication of C.
If C is a Hopf algebra with antipode s then the semigroup G(C) is a group since
s(c) G(C) for c 6 C and is a multiplicative inverse for c.

Suppose that C is a coalgebra over the field k which is spanned by a subset S of its
grouplike elements G(C). Then by Lemma it follows that S G(C) and C k[S]
is the free k-module on the set S. For s G(C) define e, C* by (e,, s’) 6,,,, for
s’ G(C). Then

eses, 6s,s,es (3)

for all s, s’ G(C) and

Z e, . (4)
sEG(C)

Notice that the left hand side of (4) is meaningful since for c 6 C, only finitely many
of the e, (c)’s are non-zero. Therefore for each c 6 C, the sum Y,E(c) e, (c) can be
interpreted as a finite sum.
Now suppose that (M, p) is a right C-comodule and let (M, #p) be the left rational

C*-module structure on M arising from (M, p). For m 6 M only finitely many of the
es--m’s are not zero. Thus Y-,r6(c) e---m can be regarded as a finite sum and m

Y,rG(C) e,r--’-m by (4). Let Mr es---M. We have shown that M Y,rG(C) Mr.
By (3) this sum is direct. Since p(e,r---m) m Il (R) (e,r---m (2)) for all m 6 M and
s 6 S it is easy to see that M,, p- (M (R) ks). Note the b/is a sub-semigroup of C*.

The difference of two grouplike elements in a coalgebra spans a coideal of the
coalgebra. By virtue of Lemma it follows that a coideal of C is spanned by
differences of grouplike elements. We summarize all of this in the following:

LEMMA 2. Suppose that C is a coalgebra over thefield k spanned by a subset of
grouplike elements S. Then:

(a) S G(C) and C k[S] is thefree k-module on S.
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(b) Let (M, p) be a right C-comodule and ML p- (M (R) ks)for s G(C).
Then M. is a subcomodule ofM and M )s6c)M.

(c) Let I be a coideal ofC. Then I is spanned by certain differences s s’, where
s, s’ G(C).

If A is a bialgebra over k, then v 6 A is said to be primitive if A (v) (R) v + v (R) 1.
The subspace P(A) of primitives of A is a Lie algebra under the product [u, v]
uv vu for all u, v P(A). Let A be the dual bialgebra of A. Recall that ot 6 A*
belongs to A if and only if ot vanishes on a cofinite ideal of A. It is not hard to see
that ot 6 A* belongs to A if and only if there exists v i= O/i (R) fli A* (R) A*
such that

(or, ab) (oti, a)(ii, b)
i=1

for all a, b 6 A. If this is the case, and in addition r Rank v, then ti,/; 6 A for
l<i<r.
We note in particular that P(A) is the set of all ot 6 A* which satisfy

(or, ab) (, a)(or, b) + (c, a)(, b)

for all a, b A.

1.3. The reduced FRT construction.
gebra over the field k.

Throughout this subsection A is a bial-

Definition 2. Let A be a bialgebra over the field k. A left quantum Yang-Baxter
A-module is a triple (M,/z, p), where (M,/z) is a left A-module and (M,/9) is a right
A-comodule, such that

al).m <> (R) a2)m
2) (a2).m)/1) (R) (a2).m)2)a) (5)

holds for all a 6 A and m 6 M.

For a discussion of the origin of quantum Yang-Baxter modules the reader is
referred to 13]. For their connection with the FRT construction and for a discussion
of their structure the reader is referred to 12, 6, 7].

Left quantum Yang-Baxter A-modules give rise to solutions to the QYBE (see
[12], [6], [7] for example). Let (M,/z, p) be a left quantum Yang-Baxter A-module
and define a linear map R,p): M (R) M M (R) M by

R(/z,p) (m (R) n) m<> (R) m(2).n (6)

for all m, n 6 M. Then R(z,p) is a solution to the quantum Yang-Baxter equation
[12, 6, 7].
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Definition 3. Let A be a bialgebra over the field k and let (M,/z, p) be a left
quantum Yang-Baxter A-module. Then Rt,,p defined by (6) is the QYBE solution
associated with (M, #, p).

In [7, Section 8.5] we noted that (5) has the more natural formulation

(a.m)l)(R) (a.m) (2) a.ml)(R) m(2) (7)

for all a 6 A and m 6 M when A is a commutative cocommutative Hopf algebra
with antipode s. In this case (7) implies (5) since A is a commutative cocommutative
bialgebra. Since A is commutative, s is an antipode of Ap. Starting with the equation

(a.m) () (R) (a.m)2) (ao).m) () (R) (ao).m)2)a2)s(a))

it is not hard to see that (5) implies (7).
Consider a triple (M, #, p) where (M,/z) is a left A-module and (M, p) is a right

A-comodule. Let (M,/zp) be the left rational A*-module structure on M arising from
(M, p). Then (7) is equivalent to

ot--(a.m) a. (ot---m) (8)

for all c 6 M*, a 6 A, and m 6 M. Thus (5) and (8) are equivalent when A is a
commutative cocommutative Hopf algebra over k.
We need the notion of M-reduced 11, Section 3] in order to describe the reduced

FRT construction.

Definition 4. Let A be a bialgebra over k and suppose (M,/z) is a left A-module.
Then A is M-reduced if the only coideal of A contained in anna (M) is (0).

Let (M,/z) be a left A-module. Then the sum I of all coideals of A contained in
anna (M) is a bi-ideal of A. Thus A~= All is a bialgebra over k with the quotient
bialgebra structure. Let zr" A A be the projection. Then (M, ) is a left A-
module, where is determined by (zr (R) lt) #, and A is (M, )-reduced. We
leave the reader to work out the details.

In the finite-dimensional case solutions to the quantum Yang-Baxter equation have
the form R,,o) by the next result. The following proposition is Theorem 4.2.2 in [7]
which is a slight variation of Theorem 2 in 11 ].

PROPOSITION 1. Suppose that M is a finite-dimensional vector space over the
field k and that R: M (R) M M (R) M is a solution to the quantum Yang-Baxter
equation. Then the bialgebra A(R) satisfies thefollowing properties"

(a) There exists a left quantum Yang-Baxter A(R)-module structure (M, lz, p) on

M such that A(R) is M-reduced and R R(.,o).
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(b) Suppose that A is a bialgebra over thefield k and (M, lz’, p’) is a left quantum
Yang-Baxter A-module structure on M such A is M-reduced and R R(t,,,p, ).

There is a bialgebra map F" A(R) A uniquely definedby 1M (R) F)p p’.
Furthermore lZ lz’(F (R) 1M), F is one-one, and F is an isomorphism when
A(p’) (see Definition 1) generates A as an algebra.

Definition 5. Let M be a finite-dimensional vector space over the field k and
suppose that R: M (R) M M (R) M is a solution to the quantum Yang-Baxter
equation. The bialgebra A(R) described in the previous proposition is the reduced
FRT construction.

The reduced FRT construction A(R) is a quotient of the FRT construction A (R)
which has a universal mapping property similar to that of Proposition 1. See Theo-
rem 2 in [12].

Suppose that M is a finite-dimensional vector space over k and (M,/z, p) is a left
quantum Yang-Baxter A-module structure on M. Let R be the solution to the quantum
Yang-Baxter equation associated with (M,/z, p). Then A(R) is a sub-bialgebra of a
quotient of A.

To establish this, we first let I be the bi-ideal of A which is the sum of the coideals
of A contained in anna (M). Set A A/I and let r" A ----+ A and (M, ) be as
above. Since r is a coalgebra map, ’: M M (R) A defined by ’ (1M (R) r)p
gives M a right A-comodule~ structure (M, . It is easy to see that (M, , is a
left quantum Yang-Baxter A-module and that R(u,p) R(,’). Since A is (M, )-
reduced, it follows that A(R)

_
A( by Proposition 1.

1.4. The I-lopf algebra U(r, k). Let L be an r-dimensional abelian Lie algebra
over the field k. We denote the universal enveloping algebra U(L) by U(r, k). Choose
a basis/3 {x Xr} for L. Then as a k-algebra U(r, k) k[x Xr] is
the polynomial algebra over k in commuting indetermants x Xr. For n
(nl nr) N x x N N define

nrX
II XI’’’Xr (9)

Thus the xn’s form a linear basis for U(r, k). Let U(r, k)n be the homogeneous (total)
degree n subspace of U(r, k) for all n > 0, i.e. U(r, k)n is the span of the xn’s which
satisfy Ixnl n, where Inl nl -i- -t- nr. Thus U(r, k) is a graded algebra since

U(r, k) n=0U(r, k)n

and

U(r, k)mU(r, k)n U(r, k)m+n
for all m, n > 0.
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Set U(r, k)(0) U(r, k) and let U(r, k)(n) be the span of the xn’s where Inl >_ n.
Notice that

U(r, k)(m)U(r, k)(n) U(r, k)(m+n) (10)

for all m, n > 0 and

U(r, k)o

_
U(r, k))

_
U(r, k)(2) D_ (11)

For < < r let i (0 0) be the r-tuple whose entries are 0 except for
the ith, which is 1. Define Xi U(r, k)* by

(Xi, xn) ei,ll (12)

for all n 6 Nr. Let n (ni nr) Nr. Set

xn x’;’... Xnr ( 3)

and set n! n nr !. The notation m < n means that m <_ n for all < < r,
where m (m mr). Set

(") =-I( ni ),m
i=1 mi

Thus( n )=Ounlessm<n’inwhichcasem

m m!(n m)!

We are nearly ready to describe the structure of U(r, k) as a Hopf algebra. First
some more notation. Let P(r, k) P(U(r, k)) be the space of primitive elements of
U(r, k), let P(r, k) be the space of primitive elements of U(r, k), and let U(r, k) be
the subalgebra of U(r, k)* generated by P(r, k).

The reader is left with with the details of proof of the following lemma.

LEMMA 3. Let r > and suppose that the field k has characteristic O. Let
{Xl Xr} be a basisfor U(r, k)l and suppose that xn and Xn are defined by

(9)-(13). Then:

(a) P(r, k) U(r, k). In particular B is a basis for the subspace ofprimitive
elements ofU(r, k), and the xn’sform a basisfor U(r, k).

( n )xn-m(R)xmforallnNr(b) A (xn) m<_n m
(c) xn(xm) n!3n,m for all n,m Nr. Thus the xn’s form a linearly inde-

pendent set.
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(d) P(r,k) has linear basis {Xl Xr}. In particular DimP(r,k)
Dim P(r, k) r.

(e) U(r, k) is a sub-bialgebra ofU(r, k) and the correspondence xi - Xi deter-
mines a bialgebra isomorphism U(r, k) U(r, k).

(f) U(r, k) is a dense subalgebra ofU(r, k)*.

We now consider the subalgebras and quotients of U(r, k). The bialgebra U(r, k)
belongs to the class of pointed irreducible cocommutative bialgebras. It is clear
that sub-bialgebras and quotients of cocommutative bialgebras are cocommutative.
Subcoalgebras of pointed irreducible coalgebras are pointed irreducible. Quotients
of pointed irreducible coalgebras are pointed irreducible by [14, Corollary 8.0.9].
Therefore sub-bialgebras and quotients of cocommutative pointed irreducible bialge-
bras are themselves cocommutative and pointed irreducible. By 14, Lemma 9.2.3],
a pointed irreducible bialgebra is a Hopf algebra.
Now assume that the characteristic of k is 0 and H is a cocommutative pointed

irreducible Hopf algebra over k. Then H
_

U(P(H)) as Hopf algebras by [14,
Theorem 13.0.1 ]. We make the following definition.

Definition 6. Let H be a cocommutative pointed irreducible Hopf algebra over
the field k. Then rank H Dim P(H).

By part (a) of Lemma 3 we have"

LEMMA 4. Suppose that the field k has characteristic O. Then rank U(r, k) r.

The conclusion of the lemma is false when the characteristic of k is not 0 except in
the case when r 0.

PROPOSITION 2. Suppose that the field k has characteristic O.

(a) Let B be a sub-bialgebra ofU(r, k). Then B is a sub-Hopfalgebra ofU(r, k)
and B U(s, k) for some s < r. Furthermore B U(r, k) if and only if
s r, or equivalently rank B rank U(r, k).

(b) Suppose that I is a bi-ideal ofU(r, k). Then U(r, k)/l
_

U(s, k)for some s <
r. Furthermore I (0) ifand only ifs r, or equivalently rank U(r, k)/l
rank U(r, k).

Proof In light of the preceding comments we need only establish part (b). Sup-
pose that I is a bi-ideal of U(r, k) and let 7r: U(r, k) -----+ U(r, k)/l be the projection.
Set L P(r, k). Then zr(L)

___
P(U(r, k)/l). Since L generates U(r, k) as an alge-

bra it follows that zr(L) generates U(r, k)/l as an algebra. Since the monomials in a
linear basis for P(U(r, k)/l) form a linear basis for U(r, k)/l it follows that zr(L)
P(U(r, k)/l). Therefore U(r, k)/!

_
U(s, k), where s Dim P(U(r, k)/L). Now
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zr is an isomorphism if and only if zr I/: L zr (L) is a linear isomorphism. This
is the case if and only if s r which happens if and only if Ker zr It I N L (0).
But I f) L (0) if and only if I (0) by [14, Lemma 11.0.1]. rl

2. The semigroup algebra as a reduced FRT construction

Throughout this section S is a (multiplicative) semigroup with neutral element e
and A k[S] is the semigroup algebra over k. We give A a bialgebra structure by
making s S grouplike. By part (a) of Lemma 2 it follows that S G(A). In
this section we characterize the left quantum Yang-Baxter A-modules and for the
associated solution R to the quantum Yang-Baxter equation we compute the reduced
FRT construction A(R). It turns out that A (R)

_
k[S] where S is a quotient of a

sub-semigroup of S.
We note that A (R) has been studied, when A(R) is spanned by grouplike elements,

in special cases in [11] and [7, Chapter 4].
Let M be a left A-module. To say that A is M-reduced is to say that A is faithfully

represented by endomorphisms of M.

PROPOSITION 3. Suppose that S is a semigroup and A k[S] is the semigroup
algebra of S over the field k. Let (M, Ix) be a left A-module and suppose that
zr: A End (M) is the representation afforded by (M, Ix). Then thefollowing are
equivalent:

(a) A is M-reduced.
(b) The restriction n’ls: S End (M) is one-one.

Proof Suppose that A is M-reduced and let s, s’ 6 S satisfy zr(s) rr(s’). Then
s s’ 6 anna (M) and spans a coideal of A. Therefore s s’ 0. We have shown
part (a) implies part (b).

To show part (b) implies part (a), suppose that the restriction zr Is is one-one. Let
I be a coideal of A contained in anna (M). Suppose that s, s’ 6 S and s s’ 6 I.
Then zr(s) zr(s’) which means that s s’ s s 0. By part (c) of Lemma 2
we conclude that I (0). Thus A is M-reduced. I-l

It is convenient to express a representation of S by endomorphisms of M in a
slightly different terminology.

Definition 7. Let S be a multiplicative semigroup with neutral element e and
suppose that M is a vector space over the field k. A set of endomorphisms T, },es
is a representing set of endomorphisms of S in M if Te lt and Ts Ts, Tss, for
S, S S.
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PROPOSITION 4. Suppose that S is a semigroup and A k[S] is the semigroup
algebra of S over the field k. Let (M, p) be a right A-comodule and suppose that
zr: A-----> End (M) is the representation afforded by the rational left A*-module
structure (M,/zp) arisingfrom (M, p). Then A(p) is the span ofthe s S such that
zr(es) 0, where es A* is defined by (es, s’) 8s,s, for all s’ S.

Proof. By part (b) ofLemma 2 we have M @,rsMr where M,r p-1 (M (R)ks)
for s 6 S. Now A(p) is the span ofthe s 6 S such that Mr - (0). Since r(e,r)(Mr,)
6,r,,r’ Mr it follows that Mr :fi (0) if and only if rr (e,r) - (0). I’-!

Let zr: S -----+ End (M) be the representation of S implicit in the previous proposi-
tion. Then the endomorphisms E,r r(s) ofM satisfy the conditions ofthe following
definition.

Definition 8. Let S be a set and suppose that M is a vector space over the field k.
A set Es }sS ofendomorphisms ofM is a spanning orthogonal set ofendomorphisms
of M if Es E,r, 6s,,e E,r for all s, s’ S and YsS Im Es M.

Observe that the sum M Y,rs Im E,r described in the definition is direct. Also
for rn 6 M the set of s 6 S such that E,r(m) 0 is finite. Therefore Y’,ras E,r defined
by (YsS Es)(m) Y,rs Es(m) for rn M is a well-defined endomorphism of M
since the right hand side of the last equation can be regarded as a finite sum.

Our next result characterizes the left A-modules, right A-comodules, and the left
quantum Yang-Baxter A-modules of a semigroup algebra A k[S].

PROPOSITION 5. Suppose that S is a semigroup and M is a vector space over k.
Then:

(a) There is a one-one correspondence

7" w-> (M, IzT-)

between the set of representing sets of endomorphisms T {Ts },res of S in
M and the set of left A-module structures on M, where s.m Tr(m)for all
s Sandrn M.

(b) There is a one-one correspondence

A/" (M, pg)

between the set of spanning orthogonal sets of endomorphisms
ofM and the set of right A-comodule structures on M, where

p(m) y Es(m) (R) s
sS

for all rn e M.
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Suppose that (M, #7-) and (M, pg) are as described in parts (a) and (b) respectively.
Then:

(c) (M, txT-, pe) is a left quantum Yang-Baxter A-module ifand only ifthe endo-
morphisms of 7" and commute. In this case the associated solution to the
quantum Yang-Baxter equation is given by

R=Es(R)T,,
sES

where R R(u_,pe ).

Proof Part (a) follows since we are really characterizing the representations
zr: S ---+ End (M) which are in one-one correspondence with the representations of
A as endomorphisms of M. Part (b) is a straightforward exercise based on part (b) of
Lemma 2.

It remains to establish part (c). Recall from Section that the eL’s defined by
(eL, s’) 6,,, for s, s’ S span a dense subspace of A*. Now (M,/zT-, p) is a left
quantum Yang-Baxter A-module if and only if (8) holds, namely

ot--(a.m) a.(c---m)

for all ot 6 A* and m 6 M. Since the es’S span a dense subspace of A* and S is a
basis for A this last condition holds if and only if

es--(s’.m) =s’.(es--m)

for all s, s’ 6 S. Fix s, s’ 6 S. Since e,---m E,(m) and s.m Ts(m) for all
m 6 M, this last equation is the same as E, T,, T,, E,. We have established part (c),
and the proof is complete.

We leave the proof of the following to the reader.

THEOREM 1. Suppose that S is a semigroup and A k[S] is the semigroup
algebra of S over the field k. Let M be a vector space over k. Suppose that Ts }sES
is a set ofendomorphisms ofM representing S and E, }sS is a spanning orthogonal
set ofendomorphisms of M. Assume that the members of7" and commute and set

R=ZEs(R)Ts.
sS

Then:

(a) R is a solution to the quantum Yang-Baxter equation.
(b) Assume that M is finite-dimensional. Let S(p) be the sub-semigroup of S

generated by the s S such that E, O, and let S be the set of equivalence
classes of S(p) under the relation s s’ ifand only if Ts Ts,. Then S is a
multiplicative semigroup with neutral element [e] and product [s][s’] [ss’]
for s, s’ S, and A(R) k[S].
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3. The enveloping algebra of an abelian Lie algebra as a reduced FRT
construction

Let M be a finite-dimensional vector space over the field k. In this section we find
all solutions R: M (R) M M (R) M to the quantum Yang-Baxter equation such that

A(R)
_

U(r, k) for some r > when the characteristic of k is 0.
We describe the left U(r, k)-modules, the right U(r, k)-comodules, and the left

quantum Yang-Baxter U(r, k)-modules in terms of r-tuples of endomorphisms of M.
Initially we do not assume that M is finite-dimensional.
We begin this section with a study of the left U(r, k)-modules M.

PROPOSITION 6. Suppose that M is a vector space over the field k, r > 1, and
:r: U(r, k) End (M) is a representation ofU(r, k). Let (M, #) be the resulting
left U(r, k)-module structure on M. Assume that the characteristic of k is O. Then
thefollowing are equivalent:

(a) U(r, k) is (M, #)-reduced.
(b) For all bases {xl Xr} for P(r, k) the set {Tl Tr} of endomorphisms

ofM is linearly independent, where Ti rc(xi) for all < < r.
(c) There exists a basis {xl Xr} for P(r, k) such that the set {TI Tr}

of endomorphisms of M is linearly independent, where Ti zr(xi) for all
l<i<r.

Proof Let L P(r, k) and I be the largest coideal of U(r, k) contained in

annu(r, k) (M). Consider the restriction map 7rlL" L End (M). Since Kerzr IL
L tq I, and I is a coideal of U(r, k), it follows by [14, Lemma 11.0.1] that I (0) if
and only if L fq I (0). The proposition now follows. I--1

PROPOSITION 7. Suppose that M is a vector space over the field k, r > and
(M, p) is a right U(r, k)-comodule. Assume that the characteristic ofk is 0 and let
zr" U(r, k)* End (M) be the representation of U(r, k)* afforded by the rational

left U(r, k)*-module structure (M, lZp). Then thefollowing are equivalent:

(a) U(r, k)(p) generates U(r, k) as an algebra.
(b) For all bases X Xr forP(r, k) the set {Nl Nr ofendomorphisms

ofM is linearly independent, where Ni 7r(Xi) for all < < r.
(c) There exists a basis {XI Xr} for P(r, k) such that the set of endomor-

phisms Nl Nr ofM is linearly independent, where Ni r (Xi) for all
l<i<r.

Proof Let A U(r, k), let B be the subalgebra of A generated by A(p),
and consider the map Res: P(A) P(B) defined by Res(p) PlB. Let
p P(A) P(r, k). Then Ker p is a subalgebra of A. Thus it follows that
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p(A(p)) (0) if and only if p(B) (0). Since annA.(M) A(p)-c we conclude
that p anna.(M) if and only if p(B) (0).
We have shown that Ker Res po (r, k) N anna. (M) Ker zr Ipo (r, k)" Therefore

Rank Res Rank zr Ipo (r, k)" By part (a) of Proposition 2 and Lemma 3, Res is onto.
Thus we compute

Dim P(B) Dim P(B) RankRes Ranker Ipo(r, k)"

By part (a) of Proposition 2 again we have A B if and only if r Dim P(B), and
r Dim po (r, k) by part (d) of Lemma 3. Thus it follows that A B if and only if
r Ipo(r, k) is one-one. Now the proof is easily completed. I--I

We next characterize the left modules, right comodules, and the left quantum
Yang-Baxter modules for U(r, k) when the field k has characteristic 0. We will find
the following notation conventions very convenient. Let V be a vector space over k
and r > be a fixed integer. For an r-tuple 7" (T Tr) of endomorphisms of
M we define

Tn= TI...TFnr
for all n (n! nr) 6 N N Nr.

To characterize the right comodules for U(r, k) we will need the notion of locally
nilpotent endomorphism.

Definition 9. A linear endomorphism T: V V of a vector space over V over
the field k is locally nilpotent if for every v 6 V there is an integer n > 0 such that
T (v) O.

A basic example of a locally nilpotent endomorphism is the following. Let (M, p)
be a right C-comodule for a coalgebra C over the field k and let (M,/zp) be the
resulting rational left C*-module structure on M. Let zr: C* End (M) be the
representation of C* afforded by (M, #p). Then

zr(ot)(m) ot----m m () (o, m (2)

for all cg 6 C* and rn M. Since every rn 6 M generates a finite-dimensional sub-
comodule (N, PIN) of (M, p), and thus C(PlN) is a finite-dimensional subcoalgebra
of C, it follows that 7r(ot) is a locally nilpotent endomorphism of M for all ot 6

Rad(C*).
Now suppose that V is a vector space over the field k and N 6 End (V) is locally

nilpotent. Then

T ottN
e=0
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is a well-defined endomorphism of V for any or0, a, a2 E k. To see this, note
that for a given v E V there are only finitely many t > 0 such that N (v) 7 O. Thus

T (v) y N (v)
e=0

has finitely many non-zero summands and can thus be regarded as a finite sum. For
the same reason ifN" (N Nr) is an r-tuple of locally nilpotent endomorphism
of V then

T y anA/"n
nN"

is a well-defined endomorphism of V for all choices of coefficients an k. If in
addition T (T Tr) is an r-tuple of endomorphisms of V then

T anal"n (R) Tn
nN"

is a well-defined endomorphism of V (R) V for any choice of coefficients an k.
There are obvious generalizations of the latter to the tensor product of a finite number
of vector spaces over k.

PROPOSITION 8. Suppose that M is a vector space over the field k and r > 1.
Assume that the characteristic ofk is O. Let/3 {x Xr} be afixed basisfor the
space ofprimitives P(r, k) ofU(r, k). Then"

(a) There is a one-one correspondence

7- -> (M,

between the set of r-tuples 7- (T Tr) of commuting endomorphisms
ofM and the set ofleft U(r, k)-module structures on M, where xi .m Ti (m)
for all < < r and m M.

(b) There is a one-one correspondence

iV" (M,

between the set ofr-tuples N" (N Nr) ofcommuting locally nilpotent
endomorphisms ofM and the set of right U(r, k)-comodule structures on M,
where

pAr,t m .h/"n m (R)
I c=N

for all m M.
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Suppose that (M, lzT-,t) and (M, PA;,t) are as described in parts (a) and (b) respec-
tively. Then:

(c) (M, #7-,t, PN’,) is a left quantum Yang-Baxter U(r, k)-module ifand only if
the components of 7- and iV" commute. In this case the associated solution to
the quantum Yang-Baxter equation is given by

--27A/’n (R) Tn,
I’tN"

where R R(u,,m-, ).

Proof. Part (a) follows from the usual formulation of left A-module structures
(M,/z) on M in terms of representations zru: A End (M) given by/z(a (R) m)
zr,(a)(m) for any algebra A over k, where a 6 A and rn 6 M, together with the
observation that as an algebra A U(r, k) is the (commutative) polynomial algebra
over k on any basis for P (A).

To show part (b) we first note that the subalgebra ,4 U(r, k) of A U(r, k)
generated by P(r, k) P(A) is a dense subspace of A* by part (f) of Lemma 3.
Thus if p: M M (R) A is a linear map we have that (M, p) is a right A-comodule
if and only if (M,/zp) is a left A-module, where this module action is given by

.m (1 m (R) )(p(m))

for all ot 6,4 and rn 6 M.
First of all assume that A/" (NI Nr) is an r-tuple whose components are

commuting locally nilpotent endomorphisms of M. Define P,B: M M (R) A by

xn
PALB(m) Z jV’n (m) (R)

n!

for all rn 6 M. By part (b) of Lemma 3 it follows that

xn ) xn-m
(,,-,n)’i<_fl

Xn

for all n 6 Nr. Therefore (M, pc,t) is a right U(r, k)-comodule.
Conversely, suppose that (M, p) is a right A U(r,k)-comodule. Let r:

A* ----+ End (M) be the representation of the induced left rational A*-module struc-
ture (M, #p) on M. By parts (b) and (d) of Lemma 3 the set {Xl Xr} is a basis
for P(A), where Xi(xn) ci,n for all n 6 Nr, and xn(xm) n!3n,m for all
n, m 6 Nr. Let Ni zr(Xi). Then NI Nr commute since X Xr com-
mute. Now let rn 6 M and suppose that N is the finite-dimensional sub-comodule of
M which rn generates. Then ,o(N)

_
N (R) V for some finite-dimensional subspace
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V of A. Therefore there exist an integer nmin > 0 such that V is in the span of the
xn’s, where n (n nr) satisfies ni < nmin for all < < r. This means

.IV"n (m) xnm M(Xn, V) (0)

whenever ni > nmin holds for one of the components ni of n. In particular Ni is a
locally nilpotent endomorphism of M for < < r. Since ,A is a dense subspace of
A* and is spanned by the Xn’s, the calculation

(1M (R) Xm) E Afn(m) (R) -. A/’m(m)
N

xm---m
(lg (R) xm)(p(m))

for all m 6 N and rn M shows that p p./v’,t. We leave it to the reader to
complete the proof of part (b) by showing for r-tuples A/" and Af’ whose components
are commuting locally nilpotent endomorphisms of M that PAr,t P,,t implies

We now show part (c). By parts (a) and (b) any left quantum Yang-Baxter A-module
has the form (M, #7-,n, P,n) where T (Tl Tr) and A/" (Ni Nr) are
r-tuples of commuting endomorphisms, where N Nr are locally nilpotent. The
formula for R R(uT-,,p,) follows from the calculation

R(m (R) n) m Il (R) m(2).n

nN

Tn
nN

for all m, n M.
We complete the proof of part (c) by showing that (8) holds, namely

ot---(a.m) a.(ot--m)

for all ot A*, a 6 A, and rn 6 M if and only if the T’s and Nj’s commute. Since
,A is a dense subalgebra of A* it is not hard to see that (8) is equivalent to

Xi___(xj.m) xj.(Xi._.m)

for all < i, j < r and rn 6 M. This last equation is equivalent to Ni Tj Tj Ni for
all < i, j < r. We have shown part (c), and thus the proof of the proposition is
complete. IZ!
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The solution to the quantum Yang-Baxter equation described in part (c) of Proposi-
tion 8 can be described in terms ofthe exponential map. Assume that the characteristic
of k is 0 and that N is a locally nilpotent endomorphism of a vector space V over k.
Then

N
expN --.

n--0

is a well-defined endomorphism of V. The endomorphism of part (c) of Proposition
8 can be written

R exp (N (R) T)... exp (Nr (R) Tr).

When M is finite-dimensional, observe that R g(R)g + N for some nilpotent
endomorphism N of M (R) M; thus R is unipotent.

Suppose that A U(r, k) and that (M, PA;,) is a finite-dimensional right A-
comodule. To prove the theorem of this section we need to know the rank of the
subalgebra B of A generated by A(p).

LEMMA 5. Suppose that M is a finite-dimensional vector space over the field k
and ./V" (N Nr) is an r-tuple ofnilpotent endomorphisms ofM. Assume that
the characteristic of k is O, let 13 be a basis for P(r, k), and suppose that B is the
subalgebra ofU(r, k) generated by U(r, k)(pN’,t). Then rank B rankA/’.

Proof First of all suppose that C is a coalgebra over k and that (M, p) is a
finite-dimensional right C-comodule. Let {ml m. be a basis for M and write
p(mj) Yi= mi (R) cj where cj 6 C. Then C(p) is the span of the cj’s. Therefore

C(p) (M* (R) lc)(p(M)). (14)

Now let A U(r, k) and consider (M, p), where p p,u. Choose a basis
{A/"n’ A/"n’ for the span of the A/"n’s. Since

p(m) JV"n (m) (R)
n!/’EN

for all rn M, there exist c ct A such that

p(m) ./k/"n’ (m) (R) ci
i=1

(15)

for all rn M.
We claim that A(p) is the span of the i’S. First note that A(p) is contained in

the span of the ci’s by (14) and (15). To see that the ci’s are contained in A(p)
we note that M* (R) M

_
End (M), where (or (R) m, n) (or, n)m for all ot 6 M*

and m, n 6 M. Thus we can think of M (R) M* as End (M)* via the composite
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M (R) M* (M* (R) M)*
_
End (M)* which is given by (m (R)or, T) (ct, T(m)) for

all m M, c M*, and T End(M). Now fix _< j _< and let

p

f Z me (R) ore End (M)*
e=l

be the functional which satisfies (f, A/n; i,j. Then

cj y(f, Acn)ci
i=1

P

Z(ote (R) lc,)(p(me))
=1

which means that cj A(,o). Therefore A(,o) is the span of the Ci’S.
We will assume that the basis/3 has been chosen in the following way. Reorder

{Nl Nr} if necessary so that {Nl N.} is a basis for the span of the Ni’s.
Now there are only finitely many n’s such that A/"n is not zero. Choose a basis for
the span of the N’n’s, consisting of A/’n’s, so that any A/"n is a linear combination of
basis elements A/"m which satisfy Iml >_ Inl. Since N"n is nilpotent whenever n - o,
it follows that .A/" t must be in the basis. Also observe that

P(A) c_ A(l), (16)

and

Ci A(2) if Inil > 1, (17)

Co-- I. (18)

Let B be the subalgebra of A generated by C A(p). Since {N N,} is a
basis for the span of {Nl Nr} for s < j _< r we have

where otj 6 k. We calculate

r.z_,
pjv’,u(m) rn (R) + ,.N’j(m) (R) xj + V

j=l
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i=1 j=s+l

m(R)l+,Ni(m)(R)x+V,
i=1

n
wherexi xi+Yj=s+10l)Xj forall < < sandV ylnl>l A/’n(R) E M(R)A2).
By the way we chose our basis for the span of the ./v’n’s it follows by (16)-(18) that
A(p)

_
k sp(x’ x,) A2). Thus the primitives of B lie in the span of

xl,’ ,x,’ which form a linearly independent set.
Let ,4 k[x’ Then ,4 isx, be the subalgebra of A generated by x

a sub-Hopf algebra of A and ,4 U(s, k) as Hopf algebras. Since A(p)
we may consider (M, P,t) to be a right .A-comodule. Let r" ,4* End (M)
be the representation of ,4* arising from the left rational ,4*-module structure on M
determined by (M, P,t). Let X Xi IA for < < s. Then X’ X
form a linear independent set, and thus form a basis for P (,4) by Lemma 3. Since

Ni zr(X) for < < s we can apply Proposition 7 to conclude that B ,4. This
completes the proof. E!

By part (c) of Proposition 8 we have an explicit formulation of the solution R to
the quantum Yang-Baxter equation associated to a left quantum Yang-Baxter U(r, k)-
module structure. Our next result characterizes A (R).

THEOREM 2. Let M be a vector space over the field k. Suppose that the char-
acteristic of k is O. Let 7- (Tl Tr) and ./V" (N1 Nr) be r-tuples of
commuting endomorphisms ofM such that the Ni ’s are locally nilpotent and the Ni ’s
commute with the Tj ’s. Set

and

Then:

(a) R is a solution to the quantum Yang-Baxter equation.
(b) IfM isfinite-dimensional, then A(R) U(Rank, k).



650 LARRY LAMBE AND DAVID E. RADFORD

Proof. By part (c) of Proposition 8 there exists a left quantum Yang-Baxter
U(r, k)-module structure (M,/zT-,t, P,t) (M,/z, p) on M such that R described
in the statement of the theorem is the associated solution to the QYBE. Thus part (a)
follows. In the finite-dimensional case, we note that the fact that R satisfies the QYBE
also follows from the fact that the Ni’s and Tj’s generate a commutative subalgebra
4 of End (M) and that R (R) A.

Assume further that M is finite-dimensional. Let A U(r, k) and write/3

{x Xr }. Reorder T Tr if necessary so that T T is a basis for
the span of the Ti’s. Recall that the representation zr" A End (M) afforded by
(M,/z) is determined by :r(xi) T/ for all < < r and that the representation

A*7t’rat: End (M) afforded by (M /xp) is determined by rat(Xi) Ni for all
< < r, where the Xi’s are defined for/3 as in Lemma 3. To compute A(R) we

will pass to a quotient of A and then to a subalgebra of the quotient.
Let s < j < r and write

i=1

where ot 6 k. Let I be the sum of the coideals of anna (M). Then xj Yi=, OljXi C. I
for s < j < r. Since {T T} is linearly independent, the quotient All is the
free algebra on the set of cosets/3 {27 } by Lemma 3. Observe that

i=1 j=s+l i=1

Ni+ otjNj (R)Ti
i=l j=s+l

SO

where "’i Ni + Yj=s+l Otj Nj for all _< < s.
Let (M, 7-,t) be the left All-module structure on M given by 7-,t =/zT-,(r (R)

M) and let (M, ,t) be the right A/l-comodule structure on M defined by P-,t
(IM (R) zr)pN’,, where re" A A/I is the projection. Then (M, 7-,, ;,) is a
left quantum Yang-Baxter A-module and R is the associated quantum Yang-Baxter
equation solution. Let 7- {Tl T, }. Then (M, 7-,) (M,/z,). Observe
that for rn 6 M we have

(xn)p--A;,(m) .hfn (m) (R)
nN
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m(R) + Ni(m)(R)k’-i+ Nj(m)(R)Y-j+V
i=1 j=s+l

m (R) - + _(Ni(m) + otNj(m)) (R) k--ii + V
i=1 j=s+l

m (R) T-f- -i(m) (R) Yr-i A- V
i=1

where V M (R) (A/I)2). Thus ,t3 P-,, where ( ,). Thus we
may replace A by All and (M,/xT-,z, p,z) by (M, #T,, p-,). In particular we
may assume that T Tr} is linearly independent.

Assume that {T Tr} is linearly independent and A is M-reduced. Notice
that Rank.ql RankA/’. Let B be the subalgebra of A generated by A(,o). Then

A(R) B. But RankA/" rank B by Lemma 5. This completes the proof of part
b), and we are done.

COROLLARY 1. Suppose that M is afinite-dimensional vector space over thefield
k and let R: M (R) M M (R) M be a solution to the quantum Yang-Baxter equation.
Assume that the characteristic ofk is O. Then thefollowing are equivalent:

(a) A(R) U(r, k) as bialgebras.
(b) There exists r-tuples 7- Tl Tr and iV" NI Nr of endomor-

phisms ofM such that

(i) {T Tr, N Nr} is a commutingfamily,

(ii) N Nr are nilpotent,

(iii) {T Tr} and {N1 Nr} are linearly independent, and

(iv) R -nN _.jn (R) Tn.

Proof. Part (b) implies part (a) by Theorem 2. To show part (a) implies part (b)
we first observe that there is a left quantum Yang-Baxter A(R)-module structure on
M with associated quantum Yang-Baxter equation solution R. Thus part (a) implies
part (b) by Proposition 8 and Theorem 2.

4. Finite-dimensional Hopf algebras as reduced FRT constructions

Every finite-dimensional Hopf algebra H over the field k can be embedded into
the underlying Hopf algebra D(H) of the quantum double (D(H), ) of H. In
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this section we show that M D(H) has a left quantum Yang-Baxter H-module
structure (M,/z,/9) such that H is (M,/x)-reduced and H(p) H. As a consequence
H A(R), where R is the solution to the quantum Yang-Baxter equation associated
to (M, #, p).

The quantum double is a quasitriangular Hopf algebra.

Definition 10. A quasitriangular bialgebra (respectively quasitriangular Hopf
algebra) over the field k is a pair (A, R), where A is a bialgebra (respectively Hopf
algebra) over k and R i= ai (R) bi E A (R) A satisfies the following:

(QT.1) --i=1 A(ai) (R) bi Zi,j=I ai (R) aj (R) bibj,

(QT.2) Y7=l (ai)bi 1,

(QT.3) -’]i=1 ai (R) AcP(bi) Y’i,j=l aiaj (R) bi (R) bj,

(QT.4) Y7=l ai6(bi) 1, and

(QT.5) (Acp(a))R R(A(a))for all a E A.

Let R(e) (IA (R) A*)(R) and R(r) (A* (R) A)(R). If r Rank R observe that
{al ar} is a basis for R(e) and |bl br} is a basis for g(r).

Suppose that A is a finite-dimensional quasitriangular Hopf algebra over the field
k. Then R(e) and R(r) are sub-Hopf algebras of A by [10, Proposition 2.a)] and
Re) R(r) R(r)R(e) by 10, Theorem .a)]. Let H R(e) and regard M A as a left
H-module under multiplication. Define p: M M (R) H by

p(m) bim (R) ai
i=1

for all rn 6 M. Then (M, p) is a right H-comodule by virtue of (QT.I) and (QT.2).
Using (QT.5) we deduce that (5) holds for (M, #, p). Therefore (M,/z, p) is a left
quantum Yang-Baxter H-module. Since (M,/z) is a faithful H-module we conclude
that H is (M,/z)-reduced. Now suppose that r Rank R. We have noted that
H Re) has basis {al ar} and {b br} is linearly independent. Since
p(l) i=1 bi (R) ai it follows that H(p) H (see Definition 1). Therefore

A(R) H by Proposition l(b), where R: M (R) M-----> M (R) M is the quantum
Yang-Baxter equation solution R R(u,p). Since

R(m (R) n) m (|l (R) m(2).n -’]bim (R) ain
i=1 i=1
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the solution R is given by

R(m (R) n) bim (R) ain
i=1

for all m, n M.
Now suppose that (D(H), ,t) is the quantum double of H. Then there exists

an embedding of Hopf algebras t: H D(H) such that t(H) ,qte). See [2,
page 816] for the definition of the quantum double and its construction and see [10,
Section 3] for the conventions regarding the double we are following here. Since
Dim D(H) (Dim H)2 we have shown:

THEOREM 3. Suppose that H is an n-dimensional Hopfalgebra over the field k.
Then there exists an n2-dimensional vector space M over k and a solution R: M (R)

M M (R) M to the quantum Yang-Baxter equation such that H A(R).
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