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ON THE STRONG TYPE MULTIPLIER NORMS OF
RATIONAL FUNCTIONS IN SEVERAL VARIABLES

MICHAL WOJCIECHOWSKI

1. Introduction

Let G be a locally compact abelian group, F its dual. For E L(F) denote by
T the L2(G) multiplier transform defined by b. If T extends to a bounded operator
on LP(G) weput Np() IIT: LP(G) --> LP(G)II. Otherwise weput Np(ck) x.
Denote by M(G) the space of regular complex-valued Borel measures on G with the
total variation (denoted I1" 114()) as norm. We deal with the models G R (d-
dimensional Euclidean space) and G qU (the d-dimensional torus). In the present
paper we study the dependence on p of the function p -> Np(k).

In Section 3 we show that if 4 satisfies some regularity conditions and k has no
Plimit at infinity then Np(k) >_ C. max(p, 7;_ for some C > 0. In Section 4 we deal

with rational multipliers R P Q- such that Q is a somewhat elliptic polynomial
in the sense of Definition below.

Let R+ and Za+ denote respectively the subsets of elements of I1U and Z’t with
non-negative coordinates. For y (y,,) E /1’t and z (z,,) 6 ,/ we write y < z
iff y,, < z,, for v 1,2 d. By 79,/we denote the space of all polynomials in d
variables x (x x,/). If Q 6 79,t then

Q(x) ax

with all F’s distinct, where x x’x22 x". In this framework, we put sp Q
{?, 6 Z_" a - 0} and we signify by conv Q the convex hull in IR’t of the set

Definition 1.
such that

A polynomial Q is called somewhat elliptic if there exists C > 0

Q(x)l > C-Ixl whenever y 6 Z+ (q conv Q and x E/1’/.

(Here and in the sequel, the symbol "C" denotes a non-negative constant which
can change in valuefrom one occurrence to another.)

Received May 29, 1997.
1991 Mathematics Subject Classification. Primary 42B 15, 42B20, 60G46.
Supported in part by KBN grant 2 P301 004 06.

@ 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

582



STRONG TYPE MULTIPLIER NORMS 583

Examples of somewhat elliptic polynomials are the elliptic polynomials with no
roots in Rd and fundamental polynomials of smoothnesses (cf. [8]).

Remark. The notion of somewhat elliptic polynomials is similar to but stronger
than the notion of "strongly slightly elliptic polynomials" introduced in [8], p. 403.

The main result of Section 4 is Theorem 3 (stated in Section 2) which asserts the
following dichotomy: for any rational function R PQ- where Q is somewhat
elliptic either NI (R) < cxz (that is, R is the Fourier transform of a bounded measure)
or Np(R) > C max (p, _)for < p < x.

The origin of this paper was the study of special classes of rational multipliers
which occur as entries of the multiplier matrix for the so-called canonical projection
of the jet representation of a general anisotropic Sobolev space. This study has been
initiated in [9] and [8] and developed further in the forthcoming memoir ]. It turns
out that fundamental polynomials of smoothnesses are special cases of somewhat
elliptic polynomials. An application of the reasoning in Section 4 is the observation
that the entries of the multiplier matrix of the canonical projection generated by
non-maximal elements of a smoothness are the Fourier transforms of measures (cf.
Corollary 5).

All the function spaces and measure spaces on Rd considered in this paper are
embedded in the space of tempere...d distributions. The Fourier transform of a function

f or a measure/z (in symbols f, resp. ) is understood in the distributional sense
(cf. [12], Chapt. 1, 3).

The author gratefully acknowledges many helpful suggestions made by Professor
A. Pelczyriski during the preparation of this paper.

2. Results

The main result of the reasoning in Section 3 is Theorem l, which will be stated
here. It concerns a wider class of multipliers than the rational ones, and gives a lower
bound for the LP-norms of multipliers as p tends either to or to cxz.

THEOREM 1. Let :Zd - C. Suppose that either
n x _d(I) there exist a b C with a : b and sequences (kj)= C

such thatfor every n Z,d, we have, as j --+

(n + kj) -+ a, (n- kj) a, (n -+-nj) b, (n- nj) b,

or

(II) there exist a, b C with a b and a sequence (kj). Zd
j= C such that for

eve. n Zd, we have, as j -+ x,

(n + kj) -+ a (n kj) -+ b.
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Then there exists C > 0 such thatfor < p < cxz,

(1) Np(qb)>C.la-bl.max(p, P )p-1

where C > 0 is a numerical constant independent ofqb.

One can consider this result as a quantitative version of the Wiener theorem (cf.
[8], Prop. 3.1) which under similar assumptions on 4 asserts that Np(dp) --+ cx as
p -+ 1. However in Wiener’s theorem no information on the growth of Np(dp) is
given as p -- 1.

By the de Leeuw transference theorem (cf. [12], Chapt. VII, Th. 3.8) we immedi-
ately get:

COROLLARY 1. Let the restriction to Zd of a continuous function qb: C
satisfy either (I) or (II). Then dp satisfies ).

COROLLARY 2. Let dp: Z -- C extend to a dfferentiablefunction, say f: --+
C such that Vf(x) --+ 0 as Ixl -+ . Then both Np(f) and Np(qb) satisfy (1) with
some a b provided f (x) has no limit at infinity.

In the next theorem we apply the method used in the proof ofTheorem to estimate
the growth of Np(qS) as p tends either to or to infinity for discontinuous 4.

THEOREM 2. Let x be a limitpoint ofan open set lg C and let Lt be symmetric
with respect to x. Suppose that qb: --+ C is a boundedfunction such that qblt is a
continuous function which has no continuous extension on Lt U {x }. Then Np() >
C. max{p, pP--_ }for < p <

Let h (h, h2 hd) E]Ka, h - 0. We define 6" N -- Na for h E IK+ and
> 0 by letting

’x (t’ x, t’x
for x 6 a. Let h satisfy hj > 0 for j 1,2 d. A function q: d -- C is
called h-homogeneous of h-degree 0 if 4(x) 4(3x) for every x 6 and > 0.

COROLLARY 3. Let - C be a bounded non-constantfunction, h-homoge-
neous ofh-degree 0 which is continuous on \ {0}. Then Np() > C max{p, }.

Notice that a multiplier which satisfies the conclusion of Theorem has to fulfill
some regularity conditions. Indeed, let 4 be the characteristic function of an infinite
Sidon subset of Z. Then C v/ < Np(d) < C2 for 2 < p < x (cf. [10]).
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In Section 4 we give a criterion (Proposition 1) for a rational multiplier in IRd
with somewhat elliptic denominator to be the Fourier transform of a measure. A
crucial point in our argument is an improvement of Boman’s technique from [2].
Proposition combined with Theorem yields:

THEOREM 3. Let P, Q E 79d. Assume that Q is somewhat elliptic. Then either

(P/Q)/ M(d),

or, for some C > 0,

Np(P/Q) > C. max(p, (1 <p<).

The next two corollaries concern multipliers related to smoothnesses For the def-
inition of a smoothness S, its canonical projection Ps and fundamental polynomial
Qs, see [8] and 1, Section ]. Recall that Ps is p-bounded if and only if all entries of
the matrix (i11-110s(x)x"+--- ) es are p-bounded multipliers. As a consequence of The-
orem 3 and the fact that th fundamental polynomials of smoothnesses are somewhat
elliptic we get

COROLLARY 4. Let S C Z+ be a smoothness. Then either the canonical projec-
tion Ps is L -bounded orfor some , fi S one has Np() > C max(p, -7-)
,for <p<.

COROLLARY 5. Let S C Z+ be a smoothness and let r 6 Z+ O conv 2S. As-
sume that there exists y conv 2S such that yj > rj for j 1,2 d. Then

(x / Qs(x))/ L(d).

3. A lower bound for strong type (p, p) norms of multipliers

Fix a positive integer n. Let {qj" j l, 2 d} be a family of distinct copies
of the circle group. For m 0, 1,2 n put ql’i q,,,+ %,,+2 %,;
let ’’’’’’) (t,,,+, tm+2 tn) denote a generic point of ql",’,,, and let dt ’’’’’) denote
the normalized Haar measure of the group q[",’,,. For m 0 put ql’" ql’, ’’’)

and dt dt ’’’). Next define the functions Xk" qI’" --- by X0 and Xk(t)
(1 + cos tk)Xk_ for k 1,2 n.

LEMMA 1. Given n 1,2 there exists a sequence (ak)=l with terms 4-1
such that

(2) f,, - o’ cos tkXk

k=l

dt>
142
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Proof For fixed m 6 1,2 n define the non-negative martingale

x,,, x’,’,..,,,+ x,,)

by putting ’’ k

" I-Ij=m(1 +costj) fort 6 qI’",m 1,2 nandk m,m+
n. Next put

/((1 Xtmn)2 + Ztln(g-m m)2’’k+--Xk )3 ifl <m <nQm / cos2 t, if m n.

Notice that the functions Qm have the following properties:

(i) Q2 coS2tm qt_ (1 + cos tm)2 Q2m+ for m 1,2 n 1.
(ii) Qm depends only on the variables (tm, tm+l tn)
(iii) (1 + Q2m) is the square function of 5Em for m 1, n 1.

It follows from (iii) by ([6], Prop. VIII-2-7) that the probability P ({ (1 + Q2m+l)
6}) is ’1 and so a fortiori P({Qm+ < 6}) > . It follows from (ii) that
P({Qm+ < 6}) fA,,,+, dt{m’")for m 1,2 n- where Am+ denotes the
projection of the set {Qm+ < 6} on qI’,. Put Bm+ T, \ Am+. The condition (ii)
also implies that Qm uniquely determines a function on T,n,_ which we shall denote

by Qm for m 1,2 n.
Our first aim is to show the recursive inequality

(3) IIQ,,,II > IIQ,,,+,II + (m 1,2 n- 1),
100

implieswhich, combined with the inequality IIQ,,II fr,, costl dt >_ 7-,

(4) IIall >_
100

To establish (3) notice that, by (ii),

IIQ,,,II, Q,,,dt- O.,,,dt"-’"’)=I,+12

where

I fa O,,, dtm") dt,,,,
+

,2:f,f 
Note that if (’," Am+ then (1 + cos tm)Qm+ 12. Thus combining (i) with the
numerical inequality

a2

(a+b) R +b for0 a 1,0b 12,
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we get

I > -F (1 -k- cOStm)Qm+ dtm
/

25

COS
2 tm dtm dt (m’n)

25 +,

+ f fa (l+cStm)m+ldt(m’n’dtm
tit/

f fA> -I- (1 + cos b,)Qm+dt(m’’ dt,.
100 +,

On the other hand, (i) yields

Therefore, remembering that fqr,,, (1 + cos tm)dtm 1, we see that

IIQmll I-4- 12

100

100

+ (1 -k- cOStm)Qm+ldtm’n) dtm

--+f (1+cOStm)dtmf,, Om+,dt

+ Qm+ II.100

Next observe that X cost cost X0 and X+ X costk+Xk for
k-- 1,2 n- 1. Hence

\k=l

Let rj" S2 -- be the Bernoulli sequence of random variables (the Rademacher
functions). Combining (4) and (5) with the Khinchine inequality (while using the
latter’s best constant--see [4], for example) we get

rk(co) cos tkX_ (t)
k=l

dt f Es2 -rk(og)costkXk-i(t)

>_ Q(t) dt

n
>

142

dt
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Hence there exists co S2 such that, upon letting trk rk (09) for k 1,2 n, we
get (2).

Remark. As was observed by R. Latala (cf. [5]), inequality (2) holds (with another
constant) with o-k (- l)k for k 1,2 n.

LEMMA 2. There exists C > 0 such that

dt > C n for n 1,2

eitjProof Let Sk -=1 Xj_I for k 2, n. Then (S,)k= is an analytic
martingale. Therefore, by Prop. 4.1 in [3], we can use (4) and (5) to obtain

dt > C. f X_(t) dt

1>_ C. f cos t. x_(
k=l

C.IIQII
n

142

dt

In the sequel B(x, r) stands for the ball with center at x 6 IKa and radius r > 0. The
symbols (-, .) and I" stand for the scalar product and the Euclidean norm respectively.

Proofof Theorem 1. First consider Case I. Without loss of generality we can
assume that a and b -1. Fix a positive integer n, and let (rj)= be the
sequence of signs from Lemma 1. It follows easily from the assumption of case that
for every e > 0 and N > 3, there exists a sequence (mJv)=l C Zd such that

(6) ImJV+,l > N. ImVl
and

(7) Iq(z)- crjl < ( e

Now, for k 1,2 n, put

R(t) H(1 + cos(mJv, t))
j_</
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and

FnN (,) o’j cos(mv, ,)H(I + cos(m/N, ,)).
j=l i<j

Clearly IIF.N --+ j-t rjXj_t costjll for N --+ (see [7] for more quantitative
information). Hence, by Lemma 1, for N chosen big enough,

(8) IIF,NII > n.
142

Since RnN (t) -j=l cs(mv, t)RjN_I (t) and

{k" (cos(mJv )RjN_, (k)-0} C B m ZlmV[ tAB -mJv Z[m/N[
i<j i<j

we infer by (6) and (7) that

(9) IT0Ru F,NI < e.

Choosing small enough, by (8) and (9) we get

(10) ToR,,u I1 >
142

n.

For the counterpart of (10) in Case II, we specify a and b 0. By similar
reasoning to that used in the preceding case, we define

Rff(t)-- H(I + cos(mV, t))- 1,
j<k

with the mjV’s chosen so as to insure that

(ToRNn )(t) ei(m/’t) H(I--I-cos(m/N, ,)).
j--I i<j

Then (10) follows (with another constant) by the same argument as in Case I, with
Lemma now replaced by Lemma 2.

+ 1. By the well known properties of the RieszFix p < 2 and q such that 7
products and the H61der inequality,

1- 7(11) IIR,NI[p _< IIR,NII IIRNII2 < 2

Therefore by (10) and (11),

Np(dp) >
IIToR"NIIp

> IITR"NII C. n-
R,,N lip R,,N lip
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Substituting for n the integer closest to we get

N() > C.

The case p > 2 follows by duality.

Proofof Theorem 2. One can assume that x 0. Accordingly, we see that there
exist a, b 6 C, a -: b and an infinite sequence (xj)j C H such that xj - 0
and the sequence (x;) does not converge. Moreover, one can assume that there
exist sequences of real numbers e; - 0 and r; --+ 0 satisfying Y.k>; rk < r; for
j 1,2 such that (passing to a subsequence if necessary) one of the following
conditions holds: either

(12)

or

for j even and x B (xj, rj) U B(-xj, rj)
for j odd and x B(xj, rj) U B(-xj, rj),

(13)
IP(x) a] < ej for x B(xj, rj)

[(x) b[ < ej for x B(-xj, rj).
We shall show how (12) implies the assertion of Theorem 2. The argument in the
case of (13) is similar. Obviously we can assume that a and b -1. Then
it follows that for every e > 0 and every two integers n and N there exist a finite
sequence (cj)j__l of signs from Lemma and a finite sequence (yjU)j=ln consisting of
elements of the sequence (x)= such that for j 1,2 n,

(14) ly)U+l > N. IyI

(15) I(x) o’j[ < e for min{lx / yjN[, Ix yNI} < ly/NI.
i<j

Let (t)t>0 be an approximate unit for L (a) such that each t is a smooth function
with bounded sttpport. Then pt (x) -+ (x) uniformly in x on every compact
set. Hence one can choose > 0 such that for j 1,2 n,

(16) [,, (x)- o-j] < ’ formin{lx + yjN[, Ix yNI} < [y/N[.
i<j

On the other hand,

(17) N(,, ) < IIP, II" Np(),
Since ,, is a continuous function, one can choose > 0 such that (14) and (16) hold
for (yjN)7= replaced by some sequence (kjN)j= C .Za. Put (x) p, (,k-x).
By [12], Chapt. VII, 3, we have

(18) Np() Np(t * ).
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Now the de Leeuw transference theorem (cf. 12], Th. 3.8) yields

(19) Np(cplz,,) < Nv(ep).

By (14) and (16), the sequence (mJV).J=, defined by mJv ,k-’kjN E Zd satisfies

(6) and (7), with 4lz,’ playing the r61e of 4. Hence the same procedure as in the
proof of Theorem (with suitable choices for e, n and N) shows that Np (4lz,) >
C max{p, _}. So the desired conclusion follows from (17), (18) and (19). V1

4. Rational multipliers

In the sequel we shall need the following property of somewhat elliptic polynomi-
als:

PROPOSITION 1. Let Q 79d be somewhat elliptic, ,o. (s, s s) d
where 0 < s < 1, and ot zd+ f) conv Q. Assume that ot + PL conv Q for some
0 < s < 1. Thenfor every p such that < p < (| s)- the Fourier transform of
thefunction

f(x) xa/Q(x)

belongs to L (q L P.

To prove Proposition we need a couple of lemmas.

LEMMA 3. Let Q 79,t be somewhat elliptic. Let ot Zd+, p d+, ot + p
cony Q. Then for every n (nl n,1) zd+ there exist a somewhat elliptic
polynomial P, a non-emptyfinite set S C zd+ and a sequence ofcoefficients (a)s,
such that

olnl ( X ) avxV
Ox" Q (x ---)

andfor every m zd+, m < n,

V+P+mEconvP for every , S.

Proo.f It is enough to prove the lemma for derivatives of order 1. Let ek denote
the k-th coordinate unit vector. We can assume that ot > ek (if not, the proof is still
similar), and deduce that

OXk Q(X)
(Olkxt-ek Q(x) x

0

Ox--- Q(x)) (Q(x)) -2.
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Thus, putting P Q2 and S oe + (sp Q ek) N zd+, we get

S+pCct+p+(spQ--ek) C’lzd+ cconvQ+convQ-convP.
Similarly we get S + p + ek C conv P. r-l

The next lemma is a modified version of Theorem 5.1 in [8].

PLEMMA 4. Let P, Q 79a, Q be somewhat elliptic and sp P C conv Q. Then-O
is a bounded Lp multiplierfor < p < cxz.

Proof. Lemma 3 yields

Olnl (P(x))Ox" Q(x)

for every x 6 IRd with non-zero coordinates and n 6 zd+; in particular for n with

nj {0, l} for j l, 2 d. Hence the lemma follows by the Marcinkiewicz
multidimensional multiplier theorem (cf. I1 1], Chapt. VI, 6, Theorem 6’). 123

The next lemma is a modified version of a result due to Boman (cf. [2], Lemma 1).

LEMMA 5. Let S be afinite subset ofZd+, 0 < s < 1, and fl + p. conv S. Then

f.or every p satisfying _< p < (1 s)- there existfunctions ha (or S) such that
ha L p and

x Zx ha(x).
orES

Pro@ Takep C(IR) such that ap (y) p(-y), ap(y) 0inaneighborhood
of 0, and

(20) g/(e-Y) dy 1.

For (t ta) IRa and x IRa, set

d

qlt(X) H lP(xie-t’ )"
i=1

Then in view of (20),

q)t(x) dt
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if xi :/: 0 for each 1,2 d. For fixed ti the function (xi e -ti is equal to zero
in a neighborhood of xi O. Hence for any ot 6 Zd,/3 6 Zd and d, the function
xt-%(x) belongs to C(ltU), and hence

(xt-t(x))A L F) Lp.

We now study the t-dependence of the LP-norm ofthis function. Since for an arbitrary
function 0 (xi) such that 0 (xi) 6 Lp (), we have, upon setting s

est’
L,’n),[](O(xie--t’))AllL,’(.dX,) ]l(O(Xi)) A

it follows that

(21)
d

II(x/-qt(x))AIl,,(’, H II(Xi’--’/(xie--t’))AIl,’(],
i=1

d

C H est’ eti (ti-,)
i=I

C e (t’fl+p’-).

Next we prove that if fl + p, 6 int conv S, then

(22) inf e(I’+p’-) dt o.
otsp Q

In fact

inf exp(t, fl + p, or) exp(- sup(t, ot fl p,))
otiS

exp(--He (t)),

where He(t) is the supporting function for the convex set

E cony S (fl + p,).

But the assumption fl + p, int conv Q is equivalent to

0 6 int E,

and hence implies that

He(t) > cltl
for some c > 0. This proves (22). Now put

Au-- { G d’e(t’l+p’-u)-- inf e(t’l+p’-)
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and take Ba C Aa such that

U Ba IR
aES

Clearly, by (22),

and,

elt’l+P"-a) dt < cx

for each ot 6 S. Define ha(x) for xi 0 by

ha(x) f x-a%(x) dt.

According to (21) we have

i.e., ha L p. Finally,

for ot tY t.

II’allL,, <_ C fB e(t’l+P"-a) dt < ,

x h(x) f xq,,(x)
aES otiS

x f,, t(x) dt

Remark. Lemma 5 can be generalized to p p,,.+n where0 < s < and
n 6 Za+. Specifically, we can obtain the following result.

LEMMA 5’. Let S be a finite subset ofZ+, 0 < s < 1, n Za+ and + p.,. + n
conv S. Then for every p such that < p < (1 s)- there exist functions

I’ll
( S), such that-x,,,a LP(]d) and

xl x ha (x).
aS

01hi x NowProof o.fProposition 1. Letn 6 Z+. By Lemma3, ,,f(x) -,ves e(
by Lemmas 3 and 5, for every y S we have

x- xa.ha(x)
asp P

with ha L p for c 6 sp P. Since P is a power of Q we infer that P(x) 0 for
x 6 d. Dividing both sides by P we get

XY X

aEsp P
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By Lemma 4, for every ot 6 sp P the function X is a bounded Lp multiplier for

p > 1. Hence P-US ha(x) is the Fourier transform of an LI’ function for every
ot 6 sp P. Therefore

(x/Px))
for every V S, and consequently

Ox" f
(Rd)

for every n 6 Z and < p < (1 -s)- This means that

"f) LP(d)

for every n and < p < ( -s)-. I particular,

+ )ff) ).

Thus, by the H61der inequafity (with p’ ),

ff [( +)dff().(1 +[)-dd

( + I I) If() d ( + I I)-’ d
< .

Remark. In fact, our proof of Proposition shows that f multiplied by any
polynomial belongs to L C3 LP.

An intersection of a convex polyhedron W with a supporting hyperplane is called
aface of W. The family of all faces of a convex polyhedron W is denoted T(W).
A polyhedron W C IR_ is called solid if x 6 W, y 6 IRd+ and y < x imply y 6 W.
For a polynomial P(x) Zv6spP b,x V and A 6 T(conv Q) we put

PA (X) Z b’x"
?’sp PfqA

PROPOSITION 2. Let Q 79d be somewhat elliptic. Let P 79d satisfy sp P C
conv Q and let (PA/QA)A M(d) fi)r every A T(conv Q). Then (P/Q)/
M(Nd).

Pro@ Define f’ IRd -- C by taking

PA (X_____._) (-- l)d_dim AP(x) -q- Z QA (x)f (x)
O(x) ZT(convO)
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It is enough to prove that . E L IQ]d). To this end we first show that for every
A E T(conv Q) there exist PA and QA in 79d, with A somewhat elliptic, such that

(23)
QA QA

We begin with the case when A 6 T (conv Q) satisfies the following:

(,) The linear manifold spanned by A is a coordinate subspace i.e. linear subspace,
say K, spanned by some coordinate vectors of Rd.

Then ot 6 sp QA implies ot 6 K. Hence QA (x) Q(prKx) where prK denotes the
orthogonal projection from Rd onto K. Since x (prKx) for ?’ 6 K t zd+, QA
is somewhat elliptic because the somewhat ellipticity of Q implies the existence of
C > 0 such that for every 9,, E cony QA A 7/d+ and x 6 Nd we have Q (x)l > C Ix I.
Hence

IOA(X)] IO(prKx)l > C I(prKx)l C Ixl.
We put QA QA, PA PA.

It remains to consider the case when A 6 T(conv Q) fails (,) for every coordinate
subspace K. Let L C Rd be the smallest coordinate subspace containing A. Let
B L f3 cony Q. Clearly B is a face of cony Q satisfying (,). Hence, as we have
already proved, QB is somewhat elliptic. Since QA (QB)A and PA (PB)A,
without loss of generality we can assume that L Rd.
We represent ]Kd as the product k Rd-k where A is parallel to the coordinate

vectors e, e2 ek of Rd which span ]Kk, and A is not parallel to the remaining
coordinate vectors e+, ek+2 ed spanning Rd-k. We also represent Zd as Z
Zd-. Since cony Q is solid, there exists a hyperplane H supporting conv Q and
satisfying H A conv Q A, with normal vector (0, h) 6 Rk d-k such that
h 6 Rd-k has all coordinates strictly positive. For every fixed z E k the function
g. d-,

_
C given by

g(y)
PA(Z,Y)
QA(Z,Y)

is h-homogeneous. Therefore, by Corollary 3, the assumption " 6 M(Rd) enables
us to infer that g is constant (in fact we do not need to use here the full strength of
this corollary, but only its weaker version which follows from Wiener’s theorem, see
[8], Prop. 3.1). Thus

PA (Z, Y)
(24)

QA (Z, y)
w(z) for y IRd-k.

Let e (1, 1) G Rd-k. We define PA (Z, y..,) PA (Z, e) and QA (27, y)
QA (27, e). Then (24) yields (23). We will show that QA is somewhat elliptic. Indeed,
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let (r, 0) E Za+ A conv )A be an extremal point of conv 0A (clearly it is enough to
check the inequality from Definition for the extremal points). Since A is parallel to
k we get cony )A pr,,-k (A) (this follows from the property that if (or, fl) E A and
y _< ot then (y, fl) A). Hence there exists an extremal point (#, v) A A Z_ of A
suchthat pr,- (#, v) (r, 0), i.e., # r. If(a, fl) AfqZ+ then ((or, ), (0, h))
(, h) 1; in particular ((r, v), (0, h)) 1. If (or, ) A f3 sp Q then (fl, h) < 1.
Thus, by somewhat ellipticity of Q, if z - 0 then

Q(z, 6he)
z(8,e)"

(a,fl)eAsp Q
a(,)zet(’’) + a(,)zet(’)

(a,fl)q[Afqsp Q

zr evt(h,v)

IQA(z,e)I
< +

izl

a(u,)zUt (h’)-
(t,fl)c’AAsp Q

Upon letting tend to infinity, we get CIzl < IQA(z, e)l IQA(X)I. Thus

IOA(X)l- IQA(Z, e)l > C. Izl- C. for x

Hence QA is somewhat elliptic.
By (23) we obtain

f(x)
P(x)
Q(x)

+ E PA (X) )d-dim A

AT(convQ,

(-1

Hence

.f(x)
S(x)

R(x)

where R(x) Q(x) 1-IAET(conv Q) QA (x) is somewhat elliptic (as a product of poly-
nomials with this property).

To complete the proof of Proposition 2 it is enough to show that for h E d+,
h 5 0, and x 6 d satisfying 3,x -- cx and QA (x) =/= 0 whenever A 6 T(conv Q),
we have

(25) .f(6,x) --+ 0 for -- cxz.

Indeed, assuming (25) we infer that sp S does not contain maximal points of conv R
and the desired conclusion follows from Proposition 1.

The identity (25) follows from the next two lemmas applied with S P and
R=Q.
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LEMMA 6. Let P, Q 79,t, Q somewhat elliptic. Let 0 h (hj) d+ and let
H be a supporting hyperplane ofW conv Q perpendicular to h. Let B W f3 H.
Thenfor every A T(W) LI {W} andfor every x " such that QACB(X) O,

PA (’X) PA(X)
(26) t-lim QA (7x) QAnB(X)

Proof. Our hypotheses on H and h imply the existence of c > 0 such that
(h, x) c for x 6 B, and (h, x) < c for x 6 W \ B. Setting c (y, h), we have

PA (thX)
QA (3th x)

bx t<,h)

yea

axt(,h)

bvxt"+ bx
yAB yAB

ax’t"+ ax’tcy
yeAnB veA\B

vAghB vEA\B

ax + axt"-’
yAB yA\B

Since cv c < 0 for y A \ B, (26) now follows.

LEMMA 7. Let H be a supporting hyperplane ofW conv Q and QHA (X) 0

for every A T(W). Then

PHCA(X) (__l)d_dimA 0.
PHCW(X)

+ Z QHCA(X)
(27)

QHCW(X) AeT(W)

Pro@ It is enough to show that for every C, B 6 T(W) such that B C C,

(28) Z (--1)dimA 0.
AeY(W)JIW}

fqC

PI (x)Indeed, multiplying both side of (28) by and summing over all B 6 T(W) we
get (27). Formula (28) follows from the fact that the Euler- Poincar6 characteristic
of a convex polyhedron equals 1. I--1

PA )AProofof Theorem 3. If ( 6 M(d) for every A 6 T(conv Q), then by

p)/Proposition 2, ( 6 M(d). Otherwise there is A 6 T(conv Q) such that PA

M(d). Then by reasoning as in the proof of Proposition 2 we see that, after relabeling



STRONG TYPE MULTIPLIER NORMS 599

the coordinates and writing ,t k d-k, the polynomial z QA (Z, O) has no
roots in k, and, moreover, if g" k __> C is defined by

g(z)
PA (Z, O)
QA(Z,O)’

then g is a non-constant and h-homogeneous function for some vector h E k with
all coordinates positive. Thus, by Corollary 3, for some C > 0,

(29) Np(g) > C. max p,
p-I

Let O__.(z) Q(z, 0), (z) P(z, 0) and let H C ]k be a subspace supporting
conv Q such that H A conv ) A. Let h E + be the vector normal to H. Then,
by Lemma 5,

P (,’z) PA (Z)
(30) lim .... g(z).

t Q(6thZ QA (z)

Since the norm of an Lp multiplier remains unchanged after a non-singular linear
change of variables, and the class of LP multipliers is closed under pointwise conver-
gence by sequences which are uniformly bounded in multiplier norm, (30) implies

(31) Np(P/Q) > Np(g).

Clearly, since P/Q is the restriction of a continuous function P/Q to the subspace
IRk C IRd, it follows by a well-known version of de Leeuw’s restriction theorem that

(32) Np(P/Q) > Np(P/Q).

Finally (29), (31) and (32) give

Np(P/Q) > C.max p,
p-I

U]
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