ON THE STRONG TYPE MULTIPLIER NORMS OF RATIONAL FUNCTIONS IN SEVERAL VARIABLES

Michae Wojciechowski

1. Introduction

Let G be a locally compact abelian group, Γ its dual. For $\phi \in L^{\infty}(\Gamma)$ denote by T_{ϕ} the $L^{2}(G)$ multiplier transform defined by ϕ. If T_{ϕ} extends to a bounded operator on $L^{p}(G)$ we put $N_{p}(\phi)=\left\|T_{\phi}: L^{p}(G) \rightarrow L^{p}(G)\right\|$. Otherwise we put $N_{p}(\phi)=\infty$. Denote by $M(G)$ the space of regular complex-valued Borel measures on G with the total variation (denoted $\left.\|\cdot\|_{M(G)}\right)$ as norm. We deal with the models $G=\mathbb{R}^{d}(d$ dimensional Euclidean space) and $G=\mathbb{T}^{d}$ (the d-dimensional torus). In the present paper we study the dependence on p of the function $p \mapsto N_{p}(\phi)$.

In Section 3 we show that if ϕ satisfies some regularity conditions and ϕ has no limit at infinity then $N_{p}(\phi) \geq C \cdot \max \left(p, \frac{p}{p-1}\right)$ for some $C>0$. In Section 4 we deal with rational multipliers $R=P Q^{-1}$ such that Q is a somewhat elliptic polynomial in the sense of Definition 1 below.

Let \mathbb{R}_{+}^{d} and \mathbb{Z}_{+}^{d} denote respectively the subsets of elements of \mathbb{R}^{d} and \mathbb{Z}^{d} with non-negative coordinates. For $y=\left(y_{v}\right) \in \mathbb{R}^{d}$ and $z=\left(z_{v}\right) \in \mathbb{R}^{d}$ we write $y \leq z$ iff $y_{v} \leq z_{v}$ for $v=1,2, \ldots, d$. By \mathcal{P}_{d} we denote the space of all polynomials in d variables $x=\left(x_{1}, \ldots, x_{d}\right)$. If $Q \in \mathcal{P}_{d}$ then

$$
Q(x)=\sum_{\gamma} a_{\gamma} x^{\gamma}
$$

with all γ 's distinct, where $x^{\gamma}=x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \ldots x_{d}^{\gamma_{d}}$. In this framework, we put $\operatorname{sp} Q=$ $\left\{\gamma \in \mathbb{Z}_{+}^{d}: a_{\gamma} \neq 0\right\}$ and we signify by conv Q the convex hull in \mathbb{R}^{d} of the set $\bigcup_{\gamma \in \operatorname{sp} Q}\{\beta: 0 \leq \beta \leq \gamma\}$.

Definition 1. A polynomial Q is called somewhat elliptic if there exists $C>0$ such that

$$
|Q(x)|>C \cdot\left|x^{\gamma}\right| \quad \text { whenever } \gamma \in \mathbb{Z}_{+}^{d} \cap \text { conv } Q \text { and } x \in \mathbb{R}^{d} .
$$

(Here and in the sequel, the symbol " C " denotes a non-negative constant which can change in value from one occurrence to another.)

Examples of somewhat elliptic polynomials are the elliptic polynomials with no roots in \mathbb{R}^{d} and fundamental polynomials of smoothnesses (cf. [8]).

Remark. The notion of somewhat elliptic polynomials is similar to but stronger than the notion of "strongly slightly elliptic polynomials" introduced in [8], p. 403.

The main result of Section 4 is Theorem 3 (stated in Section 2) which asserts the following dichotomy: for any rational function $R=P Q^{-1}$ where Q is somewhat elliptic either $N_{1}(R)<\infty$ (that is, R is the Fourier transform of a bounded measure) or $N_{p}(R)>C \max \left(p, \frac{p}{p-1}\right)$ for $1<p<\infty$.

The origin of this paper was the study of special classes of rational multipliers which occur as entries of the multiplier matrix for the so-called canonical projection of the jet representation of a general anisotropic Sobolev space. This study has been initiated in [9] and [8] and developed further in the forthcoming memoir [1]. It turns out that fundamental polynomials of smoothnesses are special cases of somewhat elliptic polynomials. An application of the reasoning in Section 4 is the observation that the entries of the multiplier matrix of the canonical projection generated by non-maximal elements of a smoothness are the Fourier transforms of measures (cf. Corollary 5).

All the function spaces and measure spaces on \mathbb{R}^{d} considered in this paper are embedded in the space of tempered distributions. The Fourier transform of a function f or a measure μ (in symbols \widehat{f}, resp. $\widehat{\mu}$) is understood in the distributional sense (cf. [12], Chapt. 1, §3).

The author gratefully acknowledges many helpful suggestions made by Professor A. Pelczyński during the preparation of this paper.

2. Results

The main result of the reasoning in Section 3 is Theorem 1, which will be stated here. It concerns a wider class of multipliers than the rational ones, and gives a lower bound for the L^{p}-norms of multipliers as p tends either to 1 or to ∞.

TheOrem 1. Let $\phi: \mathbb{Z}^{d} \rightarrow \mathbb{C}$. Suppose that either
(I) there exist $a, b \in \mathbb{C}$ with $a \neq b$ and sequences $\left(k_{j}\right)_{j=1}^{\infty} \subset \mathbb{Z}^{d}$ and $\left(n_{j}\right)_{j=1}^{\infty} \subset \mathbb{Z}^{d}$ such that for every $n \in \mathbb{Z}^{d}$, we have, as $j \rightarrow \infty$,

$$
\phi\left(n+k_{j}\right) \rightarrow a, \quad \phi\left(n-k_{j}\right) \rightarrow a, \quad \phi\left(n+n_{j}\right) \rightarrow b, \quad \phi\left(n-n_{j}\right) \rightarrow b,
$$

or
(II) there exist $a, b \in \mathbb{C}$ with $a \neq b$ and a sequence $\left(k_{j}\right)_{j=1}^{\infty} \subset \mathbb{Z}^{d}$ such that for every $n \in \mathbb{Z}^{d}$, we have, as $j \rightarrow \infty$,

$$
\phi\left(n+k_{j}\right) \rightarrow a \quad, \quad \phi\left(n-k_{j}\right) \rightarrow b .
$$

Then there exists $C>0$ such that for $1<p<\infty$,

$$
\begin{equation*}
N_{p}(\phi)>C \cdot|a-b| \cdot \max \left(p, \frac{p}{p-1}\right), \tag{1}
\end{equation*}
$$

where $C>0$ is a numerical constant independent of ϕ.

One can consider this result as a quantitative version of the Wiener theorem (cf. [8], Prop. 3.1) which under similar assumptions on ϕ asserts that $N_{p}(\phi) \rightarrow \infty$ as $p \rightarrow 1$. However in Wiener's theorem no information on the growth of $N_{p}(\phi)$ is given as $p \rightarrow 1$.

By the de Leeuw transference theorem (cf. [12], Chapt. VII, Th. 3.8) we immediately get:

Corollary 1. Let the restriction to \mathbb{Z}^{d} of a continuous function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ satisfy either (I) or (II). Then ϕ satisfies (1).

COROLLARY 2. Let $\phi: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ extend to a differentiable function, say $f: \mathbb{R}^{d} \rightarrow$ \mathbb{C} such that $\nabla f(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Then both $N_{p}(f)$ and $N_{p}(\phi)$ satisfy (1) with some $a \neq b$ provided $f(x)$ has no limit at infinity.

In the next theorem we apply the method used in the proof of Theorem 1 to estimate the growth of $N_{p}(\phi)$ as p tends either to 1 or to infinity for discontinuous ϕ.

THEOREM 2. Let x be a limit point of an open set $\mathcal{U} \subset \mathbb{R}^{d}$ and let \mathcal{U} be symmetric with respect to x. Suppose that $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is a bounded function such that $\phi_{\mid \mathcal{U}}$ is a continuous function which has no continuous extension on $\mathcal{U} \cup\{x\}$. Then $N_{p}(\phi)>$ $C \cdot \max \left\{p, \frac{p}{p-1}\right\}$ for $1<p<\infty$.

Let $h=\left(h_{1}, h_{2}, \ldots, h_{d}\right) \in \mathbb{R}^{d}, h \neq 0$. We define $\delta_{h}^{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ for $h \in \mathbb{R}_{+}^{d}$ and $t>0$ by letting

$$
\delta_{h}^{t} x=\left(t^{h_{1}} x_{1}, t^{h_{2}} x_{2}, \ldots, t^{h_{d}} x_{d}\right)
$$

for $x \in \mathbb{R}^{d}$. Let h satisfy $h_{j}>0$ for $j=1,2, \ldots, d$. A function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is called h-homogeneous of h-degree 0 if $\phi(x)=\phi\left(\delta_{h}^{t} x\right)$ for every $x \in \mathbb{R}^{d}$ and $t>0$.

COROLLARY 3. Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a bounded non-constant function, h-homogeneous of h-degree 0 which is continuous on $\mathbb{R}^{d} \backslash\{0\}$. Then $N_{p}(\phi)>C \cdot \max \left\{p, \frac{p}{p-1}\right\}$.

Notice that a multiplier which satisfies the conclusion of Theorem 1 has to fulfill some regularity conditions. Indeed, let ϕ be the characteristic function of an infinite Sidon subset of \mathbb{Z}. Then $C_{1} \cdot \sqrt{p}<N_{p}(\phi)<C_{2} \cdot \sqrt{p}$ for $2<p \leq \infty$ (cf. [10]).

In Section 4 we give a criterion (Proposition 1) for a rational multiplier in \mathbb{R}^{d} with somewhat elliptic denominator to be the Fourier transform of a measure. A crucial point in our argument is an improvement of Boman's technique from [2]. Proposition 1 combined with Theorem 1 yields:

Theorem 3. Let $P, Q \in \mathcal{P}_{d}$. Assume that Q is somewhat elliptic. Then either

$$
(P / Q)^{\wedge} \in M\left(\mathbb{R}^{d}\right)
$$

or, for some $C>0$,

$$
N_{p}(P / Q)>C \cdot \max \left(p, \frac{p}{p-1}\right) \quad(1<p<\infty)
$$

The next two corollaries concern multipliers related to smoothnesses For the definition of a smoothness S, its canonical projection P_{S} and fundamental polynomial Q_{S}, see [8] and [1, Section 1]. Recall that P_{S} is p-bounded if and only if all entries of the matrix $\left(i^{|\alpha|-|\beta|} \frac{x^{\alpha+\beta}}{Q_{s}(x)}\right)_{\alpha, \beta \in S}$ are p-bounded multipliers. As a consequence of Theorem 3 and the fact that the fundamental polynomials of smoothnesses are somewhat elliptic we get

COROLLARY 4. Let $S \subset \mathbb{Z}_{+}^{d}$ be a smoothness. Then either the canonical projection P_{S} is L^{1}-bounded or for some $\alpha, \beta \in S$ one has $N_{p}\left(\frac{x^{\alpha+\beta}}{Q_{S}(x)}\right)>C \max \left(p, \frac{p}{p-1}\right)$ for $1<p<\infty$.

Corollary 5. Let $S \subset \mathbb{Z}_{+}^{d}$ be a smoothness and let $\tau \in \mathbb{Z}_{+}^{d} \cap \operatorname{conv} 2 S$. Assume that there exists $\gamma \in \operatorname{conv} 2 S$ such that $\gamma_{j}>\tau_{j}$ for $j=1,2, \ldots, d$. Then $\left(x^{\tau} / Q_{S}(x)\right)^{\wedge} \in L^{1}\left(\mathbb{R}^{d}\right)$.

3. A lower bound for strong type (p, p) norms of multipliers

Fix a positive integer n. Let $\left\{\mathbb{T}_{j}: j=1,2, \ldots, d\right\}$ be a family of distinct copies of the circle group. For $m=0,1,2, \ldots, n-1$ put $\mathbb{T}_{m}^{n}=\mathbb{T}_{m+1} \times \mathbb{T}_{m+2} \times \ldots \times \mathbb{T}_{n}$; let $t^{(m, n)}=\left(t_{m+1}, t_{m+2}, \ldots, t_{n}\right)$ denote a generic point of \mathbb{T}_{m}^{n}, and let $d t^{(m, n)}$ denote the normalized Haar measure of the group \mathbb{T}_{m}^{n}. For $m=0$ put $\mathbb{T}^{n}=\mathbb{T}_{0}^{n}, t=t^{(0, n)}$ and $d t=d t^{(0 . n)}$. Next define the functions $X_{k}: \mathbb{T}^{n} \rightarrow \mathbb{R}$ by $X_{0} \equiv 1$ and $X_{k}(t)=$ $\left(1+\cos t_{k}\right) X_{k-1}$ for $k=1,2, \ldots, n$.

Lemma 1. Given $n=1,2, \ldots$, there exists a sequence $\left(\sigma_{k}\right)_{k=1}^{n}$ with terms ± 1 such that

$$
\begin{equation*}
\int_{\mathbb{T}^{n}}\left|\sum_{k=1}^{n} \sigma_{k} \cos t_{k} X_{k-1}(t)\right| d t>\frac{n}{142} . \tag{2}
\end{equation*}
$$

Proof. For fixed $m \in\{1,2, \ldots, n-1\}$ define the non-negative martingale

$$
\mathfrak{X}_{m}=\left(1, X_{m}^{m}, X_{m+1}^{m}, \ldots, X_{n}^{m}\right)
$$

by putting $X_{k}^{m}=\prod_{j=m}^{k}\left(1+\cos t_{j}\right)$ for $t \in \mathbb{T}^{n}, m=1,2, \ldots, n$ and $k=m, m+$ $1, \ldots, n$. Next put

$$
Q_{m}= \begin{cases}\left(\left(1-X_{m}^{m}\right)^{2}+\sum_{k=m}^{n-1}\left(X_{k+1}^{m}-X_{k}^{m}\right)^{2}\right)^{\frac{1}{2}} & \text { if } 1 \leq m<n \\ \cos ^{2} t_{n} & \text { if } m=n\end{cases}
$$

Notice that the functions Q_{m} have the following properties:
(i) $Q_{m}^{2}=\cos ^{2} t_{m}+\left(1+\cos t_{m}\right)^{2} \cdot Q_{m+1}^{2}$ for $m=1,2, \ldots, n-1$.
(ii) Q_{m} depends only on the variables $\left(t_{m}, t_{m+1}, \ldots, t_{n}\right)$.
(iii) $\left(1+Q_{m}^{2}\right)^{\frac{1}{2}}$ is the square function of \mathfrak{X}_{m} for $m=1,2, \ldots, n-1$.

It follows from (iii) by ([6], Prop. VIII-2-7) that the probability $P\left(\left\{\left(1+Q_{m+1}^{2}\right)^{\frac{1}{2}} \leq\right.\right.$ $6\}$) is $\geq \frac{1}{2}$, and so a fortiori $P\left(\left\{Q_{m+1} \leq 6\right\}\right) \geq \frac{1}{2}$. It follows from (ii) that $P\left(\left\{Q_{m+1} \leq 6\right\}\right)=\int_{A_{m+1}} d t^{(m, n)}$ for $m=1,2, \ldots, n-1$ where A_{m+1} denotes the projection of the set $\left\{Q_{m+1} \leq 6\right\}$ on \mathbb{T}_{m}^{n}. Put $B_{m+1}=\mathbb{T}_{m}^{n} \backslash A_{m+1}$. The condition (ii) also implies that Q_{m} uniquely determines a function on \mathbb{T}_{m-1}^{n} which we shall denote by \widetilde{Q}_{m} for $m=1,2, \ldots, n$.

Our first aim is to show the recursive inequality

$$
\begin{equation*}
\left\|Q_{m}\right\|_{1}>\left\|Q_{m+1}\right\|_{1}+\frac{1}{100} \quad(m=1,2, \ldots, n-1) \tag{3}
\end{equation*}
$$

which, combined with the inequality $\left\|Q_{n}\right\|_{I}=\int_{\mathbb{T}^{n}}|\cos t| d t \geq \frac{1}{100}$, implies

$$
\begin{equation*}
\left\|Q_{1}\right\|_{1} \geq \frac{n}{100} \tag{4}
\end{equation*}
$$

To establish (3) notice that, by (ii),

$$
\left\|Q_{m}\right\|_{1}=\int_{\mathbb{T}^{n}} Q_{m} d t=\int_{\mathbb{T}_{m-1}^{\prime \prime}} \widetilde{Q}_{m} d t^{(m-1, n)}=I_{1}+I_{2}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{\mathbb{T}_{m}} \int_{A_{m+1}} \widetilde{Q}_{m} d t^{(m, n)} d t_{m} \\
& I_{2}=\int_{\mathbb{T}_{m}} \int_{B_{m+1}} \widetilde{Q}_{m} d t^{(m, n)} d t_{m}
\end{aligned}
$$

Note that if $t^{(m, n)} \in A_{m+1}$ then $\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1} \leq 12$. Thus combining (i) with the numerical inequality

$$
\left(a^{2}+b^{2}\right)^{\frac{1}{2}} \geq \frac{a^{2}}{25}+b \quad \text { for } 0 \leq a \leq 1,0 \leq b \leq 12
$$

we get

$$
\begin{aligned}
I_{1} \geq & \int_{\mathbb{T}_{m}} \int_{A_{m+1}}\left(\frac{\cos ^{2} t_{m}}{25}+\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1}\right) d t^{(m, n)} d t_{m} \\
= & \frac{1}{25} \int_{\mathbb{T}_{m}} \cos ^{2} t_{m} d t_{m} \int_{A_{m+1}} d t^{(m, n)} \\
& +\int_{\mathbb{T}_{m}} \int_{A_{m+1}}\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1} d t^{(m, n)} d t_{m} \\
\geq & \frac{1}{100}+\int_{\mathbb{T}_{m}} \int_{A_{m+1}}\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1} d t^{(m, n)} d t_{m}
\end{aligned}
$$

On the other hand, (i) yields

$$
\begin{aligned}
I_{2} & =\int_{\mathbb{T}_{m}} \int_{B_{n+1}}\left(\cos ^{2} t_{m}+\left(1+\cos t_{m}\right)^{2} \widetilde{Q}_{m+1}^{2}\right)^{\frac{1}{2}} d t^{(m, n)} d t_{m} \\
& \geq \int_{\mathbb{T}_{m}} \int_{B_{m+1}}\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1} d t^{(m, n)} d t_{m}
\end{aligned}
$$

Therefore, remembering that $\int_{\mathbb{T}_{m}}\left(1+\cos t_{m}\right) d t_{m}=1$, we see that

$$
\begin{aligned}
\left\|Q_{m}\right\|_{1} & =I_{1}+I_{2} \\
& \geq \frac{1}{100}+\int_{\mathbb{T}_{m}} \int_{\mathbb{T}_{m}^{\prime \prime}}\left(1+\cos t_{m}\right) \widetilde{Q}_{m+1} d t^{(m, n)} d t_{m} \\
& \geq \frac{1}{100}+\int_{\mathbb{T}_{m}}\left(1+\cos t_{m}\right) d t_{m} \int_{\mathbb{T}_{m}^{\prime \prime}} \widetilde{Q}_{m+1} d t^{(m, n)} \\
& =\frac{1}{100}+\left\|Q_{m+1}\right\|_{1} .
\end{aligned}
$$

Next observe that $X_{1}^{1}=\cos t_{1}=\cos t_{1} \cdot X_{0}$ and $X_{1}^{k+1}-X_{1}^{k}=\cos t_{k+1} X_{k}$ for $k=1,2, \ldots, n-1$. Hence

$$
\begin{equation*}
\int_{\mathbb{T}^{n}} Q_{1} d t=\int_{\mathbb{T}^{n}}\left(\sum_{k=1}^{n}\left(\cos t_{k} \cdot X_{k-1}\right)^{2}\right)^{\frac{1}{2}} d t \tag{5}
\end{equation*}
$$

Let $r_{j}: \Omega \rightarrow \mathbb{R}$ be the Bernoulli sequence of random variables (the Rademacher functions). Combining (4) and (5) with the Khinchine inequality (while using the latter's best constant-see [4], for example) we get

$$
\begin{aligned}
\mathbf{E}_{\Omega} \int_{\mathbb{T}^{n}}\left|\sum_{k=1}^{n} r_{k}(\omega) \cos t_{k} X_{k-1}(t)\right| d t & =\int_{\mathbb{T}^{n}} \mathbf{E}_{\Omega}\left|\sum_{k=1}^{n} r_{k}(\omega) \cos t_{k} X_{k-1}(t)\right| d t \\
& \geq \frac{1}{\sqrt{2}} \int_{\mathbb{T}^{n}} Q_{1}(t) d t \\
& \geq \frac{n}{142}
\end{aligned}
$$

Hence there exists $\omega \in \Omega$ such that, upon letting $\sigma_{k}=r_{k}(\omega)$ for $k=1,2, \ldots, n$, we get (2).

Remark. As was observed by R. Latala (cf. [5]), inequality (2) holds (with another constant) with $\sigma_{k}=(-1)^{k}$ for $k=1,2, \ldots, n$.

Lemma 2. There exists $C>0$ such that

$$
\int_{\mathbb{T}^{n}}\left|\sum_{k=1}^{n} e^{i t_{k}} \cdot X_{k-1}(t)\right| d t>C \cdot n \quad \text { for } n=1,2, \ldots
$$

Proof. Let $S_{k}=\sum_{j=1}^{k} e^{i t_{j}} X_{j-1}$ for $k=1,2, \ldots, n$. Then $\left(S_{k}\right)_{k=1}^{n}$ is an analytic martingale. Therefore, by Prop. 4.1 in [3], we can use (4) and (5) to obtain

$$
\begin{aligned}
\int_{\mathbb{T}^{n}}\left|\sum_{k=1}^{n} e^{i t_{k}} \cdot X_{k-1}(t)\right| d t & \geq C \cdot \int_{\mathbb{T}^{n}}\left(\sum_{k=1}^{n} X_{k-1}^{2}(t)\right)^{\frac{1}{2}} d t \\
& \geq C \cdot \int_{\mathbb{T}^{n}}\left(\sum_{k=1}^{n} \cos ^{2} t_{k} \cdot X_{k-1}^{2}(t)\right)^{\frac{1}{2}} d t \\
& \geq C \cdot\left\|Q_{1}\right\|_{1} \\
& \geq C \frac{n}{142}
\end{aligned}
$$

In the sequel $B(x, r)$ stands for the ball with center at $x \in \mathbb{R}^{d}$ and radius $r>0$. The symbols $\langle\cdot, \cdot\rangle$ and $|\cdot|$ stand for the scalar product and the Euclidean norm respectively.

Proof of Theorem 1. First consider Case I. Without loss of generality we can assume that $a=1$ and $b=-1$. Fix a positive integer n, and let $\left(\sigma_{j}\right)_{j=1}^{n}$ be the sequence of signs from Lemma 1. It follows easily from the assumption of case I that for every $\varepsilon>0$ and $N \geq 3$, there exists a sequence $\left(m_{j}^{N}\right)_{j=1}^{n} \subset \mathbb{Z}^{d}$ such that

$$
\begin{equation*}
\left|m_{j+1}^{N}\right|>N \cdot\left|m_{j}^{N}\right| \tag{6}
\end{equation*}
$$

and
(7) $\left|\phi(z)-\sigma_{j}\right|<\left(\frac{1}{6}\right)^{j} \varepsilon \quad$ for $z \in B\left(m_{j}^{N}, \sum_{i<j}\left|m_{i}^{N}\right|\right) \cap B\left(-m_{j}^{N}, \sum_{i<j}\left|m_{i}^{N}\right|\right)$.

Now, for $k=1,2, \ldots, n$, put

$$
R_{k}^{N}(t)=\prod_{j \leq k}\left(1+\cos \left\langle m_{j}^{N}, t\right\rangle\right)-1
$$

and

$$
F_{n}^{N}(t)=\sum_{j=1}^{n} \sigma_{j} \cos \left\langle m_{j}^{N}, t\right\rangle \prod_{i<j}\left(1+\cos \left\langle m_{i}^{N}, t\right\rangle\right) .
$$

Clearly $\left\|F_{n}^{N}\right\|_{1} \rightarrow\left\|\sum_{j=1}^{n} \sigma_{j} X_{j-1} \cos t_{j}\right\|_{1}$ for $N \rightarrow \infty$ (see [7] for more quantitative information). Hence, by Lemma 1, for N chosen big enough,

$$
\begin{equation*}
\left\|F_{n}^{N}\right\|_{1}>\frac{1}{142} \cdot n \tag{8}
\end{equation*}
$$

Since $R_{n}^{N}(t)=\sum_{j=1}^{n} \cos \left\langle m_{j}^{N}, t\right\rangle R_{j-1}^{N}(t)$ and

$$
\left\{k:\left(\cos \left\langle m_{j}^{N}, \cdot\right\rangle R_{j-1}^{N}\right)^{\wedge}(k) \neq 0\right\} \subset B\left(m_{j}^{N}, \sum_{i<j}\left|m_{i}^{N}\right|\right) \cup B\left(-m_{j}^{N}, \sum_{i<j}\left|m_{i}^{N}\right|\right),
$$

we infer by (6) and (7) that

$$
\begin{equation*}
\left|T_{\phi} R_{n}^{N}-F_{n}^{N}\right|<\varepsilon . \tag{9}
\end{equation*}
$$

Choosing ε small enough, by (8) and (9) we get

$$
\begin{equation*}
\left\|T_{\phi} R_{n}^{N}\right\|_{1}>\frac{1}{142} \cdot n \tag{10}
\end{equation*}
$$

For the counterpart of (10) in Case II, we specify $a=1$ and $b=0$. By similar reasoning to that used in the preceding case, we define

$$
R_{k}^{N}(t)=\prod_{j \leq k}\left(1+\cos \left\langle m_{j}^{N}, t\right\rangle\right)-1,
$$

with the m_{j}^{N},s chosen so as to insure that

$$
\left(T_{\phi} R_{n}^{N}\right)(t) \simeq \sum_{j=1}^{n} e^{i\left\langle m_{j}^{N}, t\right\rangle} \prod_{i<j}\left(1+\cos \left\langle m_{i}^{N}, t\right\rangle\right)
$$

Then (10) follows (with another constant) by the same argument as in Case I, with Lemma 1 now replaced by Lemma 2.

Fix $p \leq 2$ and q such that $\frac{1}{p}+\frac{1}{q}=1$. By the well known properties of the Riesz products and the Hölder inequality,

$$
\begin{equation*}
\left\|R_{n}^{N}\right\|_{p} \leq\left\|R_{n}^{N}\right\|_{1}^{1-\frac{2}{4}}\left\|R_{n}^{N}\right\|_{2}^{\frac{2}{4}}<2\left(\frac{3}{2}\right)^{\frac{n}{4}} \tag{11}
\end{equation*}
$$

Therefore by (10) and (11),

$$
N_{p}(\phi) \geq \frac{\left\|T_{\phi} R_{n}^{N}\right\|_{p}}{\left\|R_{n}^{N}\right\|_{p}} \geq \frac{\left\|T_{\phi} R_{n}^{N}\right\|_{1}}{\left\|R_{n}^{N}\right\|_{p}} \geq C \cdot n \cdot\left(\frac{2}{3}\right)^{\frac{n}{4}}
$$

Substituting for n the integer closest to $\frac{q}{\log \frac{3}{2}}$ we get

$$
N_{p}(\phi)>C \cdot \frac{p}{p-1}
$$

The case $p>2$ follows by duality.
Proof of Theorem 2. One can assume that $x=0$. Accordingly, we see that there exist $a, b \in \mathbb{C}, a \neq b$ and an infinite sequence $\left(x_{j}\right)_{j=1}^{\infty} \subset \mathcal{U}$ such that $x_{j} \rightarrow 0$ and the sequence $\phi\left(x_{j}\right)$ does not converge. Moreover, one can assume that there exist sequences of real numbers $\varepsilon_{j} \rightarrow 0$ and $r_{j} \rightarrow 0$ satisfying $\sum_{k>j} r_{k}<r_{j}$ for $j=1,2, \ldots$, such that (passing to a subsequence if necessary) one of the following conditions holds: either

$$
\begin{array}{ll}
|\phi(x)-a|<\varepsilon_{j} & \text { for } j \text { even and } x \in B\left(x_{j}, r_{j}\right) \cup B\left(-x_{j}, r_{j}\right) \tag{12}\\
|\phi(x)-b|<\varepsilon_{j} & \text { for } j \text { odd and } x \in B\left(x_{j}, r_{j}\right) \cup B\left(-x_{j}, r_{j}\right),
\end{array}
$$

or

$$
\begin{array}{ll}
|\phi(x)-a|<\varepsilon_{j} & \text { for } x \in B\left(x_{j}, r_{j}\right) \\
|\phi(x)-b|<\varepsilon_{j} & \text { for } x \in B\left(-x_{j}, r_{j}\right) . \tag{13}
\end{array}
$$

We shall show how (12) implies the assertion of Theorem 2. The argument in the case of (13) is similar. Obviously we can assume that $a=1$ and $b=-1$. Then it follows that for every $\varepsilon>0$ and every two integers n and N there exist a finite sequence $\left(\sigma_{j}\right)_{j=1}^{n}$ of signs from Lemma 1 and a finite sequence $\left(y_{j}^{N}\right)_{j=1}^{n}$ consisting of elements of the sequence $\left(x_{v}\right)_{v=1}^{\infty}$ such that for $j=1,2, \ldots, n$,
(15) $\left|\phi(x)-\sigma_{j}\right|<\left(\frac{1}{6}\right)^{j} \varepsilon$

$$
\begin{equation*}
\text { for } \min \left\{\left|x+y_{j}^{N}\right|,\left|x-y_{j}^{N}\right|\right\}<\sum_{i<j}\left|y_{i}^{N}\right| \text {. } \tag{14}
\end{equation*}
$$

Let $\left(\psi_{t}\right)_{t>0}$ be an approximate unit for $L^{1}\left(\mathbb{R}^{d}\right)$ such that each ψ_{t} is a smooth function with bounded support. Then $\psi_{t} * \phi(x) \rightarrow \phi(x)$ uniformly in x on every compact set. Hence one can choose $t>0$ such that for $j=1,2, \ldots, n$,

$$
\begin{equation*}
\left|\psi_{t} * \phi(x)-\sigma_{j}\right|<\left(\frac{1}{6}\right)^{j} \varepsilon \quad \text { for } \min \left\{\left|x+y_{j}^{N}\right|,\left|x-y_{j}^{N}\right|\right\}<\sum_{i<j}\left|y_{i}^{N}\right| \tag{16}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
N_{p}\left(\psi_{t} * \phi\right)<\left\|\psi_{t}\right\|_{1} \cdot N_{p}(\phi) \tag{17}
\end{equation*}
$$

Since $\psi_{t} * \phi$ is a continuous function, one can choose $\lambda>0$ such that (14) and (16) hold for $\left(y_{j}^{N}\right)_{j=1}^{n}$ replaced by some sequence $\left(k_{j}^{N}\right)_{j=1}^{n} \subset \lambda \mathbb{Z}^{d}$. Put $\widetilde{\phi}(x)=\psi_{t} * \phi\left(\lambda^{-1} x\right)$. By [12], Chapt. VII, §3, we have

$$
\begin{equation*}
N_{p}(\widetilde{\phi})=N_{p}\left(\psi_{t} * \phi\right) \tag{18}
\end{equation*}
$$

Now the de Leeuw transference theorem (cf. [12], Th. 3.8) yields

$$
\begin{equation*}
N_{p}\left(\tilde{\phi}_{\mathbb{Z}^{d}}\right) \leq N_{p}(\tilde{\phi}) \tag{19}
\end{equation*}
$$

By (14) and (16), the sequence $\left(m_{j}^{N}\right)_{j=1}^{n}$ defined by $m_{j}^{N}=\lambda^{-1} k_{j}^{N} \in \mathbb{Z}^{d}$ satisfies (6) and (7), with $\widetilde{\phi}_{\mid \mathbb{Z}^{d}}$ playing the rôle of ϕ. Hence the same procedure as in the proof of Theorem 1 (with suitable choices for ε, n and N) shows that $N_{p}\left(\widetilde{\phi}_{\mid \mathbb{Z}^{d}}\right)>$ $C \cdot \max \left\{p, \frac{p}{p-1}\right\}$. So the desired conclusion follows from (17), (18) and (19).

4. Rational multipliers

In the sequel we shall need the following property of somewhat elliptic polynomials:

Proposition 1. Let $Q \in \mathcal{P}_{d}$ be somewhat elliptic, $\rho_{s}=(s, s, \ldots, s) \in \mathbb{R}^{d}$ where $0<s<1$, and $\alpha \in \mathbb{Z}_{+}^{d} \cap \operatorname{conv} Q$. Assume that $\alpha+\rho_{s} \in \operatorname{conv} Q$ for some $0<s \leq 1$. Then for every p such that $1 \leq p<(1-s)^{-1}$, the Fourier transform of the function

$$
f(x)=x^{\alpha} / Q(x)
$$

belongs to $L^{1} \cap L^{p}$.

To prove Proposition 1 we need a couple of lemmas.
Lemma 3. Let $Q \in \mathcal{P}_{d}$ be somewhat elliptic. Let $\alpha \in \mathbb{Z}_{+}^{d}, \rho \in \mathbb{R}_{+}^{d}, \alpha+\rho \in$ $\operatorname{conv} Q$. Then for every $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}$ there exist a somewhat elliptic polynomial P, a non-empty finite set $S \subset \mathbb{Z}_{+}^{d}$ and a sequence of coefficients $\left(a_{\gamma}\right)_{\gamma \in S}$, such that

$$
\frac{\partial^{|n|}}{\partial x^{n}}\left(\frac{x^{\alpha}}{Q(x)}\right)=\sum_{\gamma \in S} \frac{a_{\gamma} x^{\gamma}}{P(x)}
$$

and for every $m \in \mathbb{Z}_{+}^{d}, m \leq n$,

$$
\gamma+\rho+m \in \operatorname{conv} P \quad \text { for every } \gamma \in S
$$

Proof. It is enough to prove the lemma for derivatives of order 1. Let e_{k} denote the k-th coordinate unit vector. We can assume that $\alpha \geq e_{k}$ (if not, the proof is still similar), and deduce that

$$
\frac{\partial}{\partial x_{k}}\left(\frac{x^{\alpha}}{Q(x)}\right)=\left(\alpha_{k} x^{\alpha-e_{k}} Q(x)-x^{\alpha} \frac{\partial}{\partial x_{k}} Q(x)\right) \cdot(Q(x))^{-2} .
$$

Thus, putting $P=Q^{2}$ and $S=\alpha+\left(\operatorname{sp} Q-e_{k}\right) \cap \mathbb{Z}_{+}^{d}$, we get

$$
S+\rho \subset \alpha+\rho+\left(\operatorname{sp} Q-e_{k}\right) \cap \mathbb{Z}_{+}^{d} \subset \operatorname{conv} Q+\operatorname{conv} Q=\operatorname{conv} P
$$

Similarly we get $S+\rho+e_{k} \subset \operatorname{conv} P$.
The next lemma is a modified version of Theorem 5.1 in [8].
Lemma 4. Let $P, Q \in \mathcal{P}_{d}, Q$ be somewhat elliptic and $\operatorname{sp} P \subset \operatorname{conv} Q$. Then $\frac{P}{Q}$ is a bounded L^{p} multiplier for $1<p<\infty$.

Proof. Lemma 3 yields

$$
\left|\frac{\partial^{|n|}}{\partial x^{n}}\left(\frac{P(x)}{Q(x)}\right)\right| \leq C \cdot\left|x^{-n}\right|
$$

for every $x \in \mathbb{R}^{d}$ with non-zero coordinates and $n \in \mathbb{Z}_{+}^{d}$; in particular for n with $n_{j} \in\{0,1\}$ for $j=1,2, \ldots, d$. Hence the lemma follows by the Marcinkiewicz multidimensional multiplier theorem (cf. [11], Chapt. VI, §6, Theorem 6').

The next lemma is a modified version of a result due to Boman (cf. [2], Lemma 1).

Lemma 5. Let S be a finite subset of $\mathbb{Z}_{+}^{d}, 0<s<1$, and $\beta+\rho_{s} \in \operatorname{conv} S$. Then for every p satisfying $1 \leq p<(1-s)^{-1}$ there exist functions $h_{\alpha}(\alpha \in S)$ such that $\widehat{h}_{\alpha} \in L^{p}$ and

$$
x^{\beta}=\sum_{\alpha \in S} x^{\alpha} \cdot h_{\alpha}(x)
$$

Proof. Take $\psi \in C_{0}^{\infty}(\mathbb{R})$ such that $\psi(y)=\psi(-y), \psi(y)=0$ in a neighborhood of 0 , and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi\left(e^{-y}\right) d y=1 \tag{20}
\end{equation*}
$$

For $t=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$ and $x \in \mathbb{R}^{d}$, set

$$
\Psi_{t}(x)=\prod_{i=1}^{d} \psi\left(x_{i} e^{-t_{1}}\right)
$$

Then in view of (20),

$$
\int \Psi_{t}(x) d t=1
$$

if $x_{i} \neq 0$ for each $i=1,2, \ldots, d$. For fixed t_{i} the function $\psi\left(x_{i} e^{-t_{i}}\right)$ is equal to zero in a neighborhood of $x_{i}=0$. Hence for any $\alpha \in \mathbb{Z}^{d}, \beta \in \mathbb{Z}^{d}$ and $t \in \mathbb{R}^{d}$, the function $x^{\beta-\alpha} \Psi_{t}(x)$ belongs to $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, and hence

$$
\left(x^{\beta-\alpha} \Psi_{t}(x)\right)^{\wedge} \in L^{1} \cap L^{p}
$$

We now study the t-dependence of the L^{p}-norm of this function. Since for an arbitrary function $\theta\left(x_{i}\right)$ such that $\widehat{\theta}\left(x_{i}\right) \in L^{p}(\mathbb{R})$, we have, upon setting $s=1-\frac{1}{p}$,

$$
\left\|\left(\theta\left(x_{i} e^{-t_{i}}\right)\right)^{\wedge}\right\|_{L^{p}\left(\mathbb{R}, d x_{i}\right)}=e^{s t_{i}}\left\|\left(\theta\left(x_{i}\right)\right)^{\wedge}\right\|_{L^{p}(\mathbb{R})}
$$

it follows that

$$
\begin{align*}
\left\|\left(x^{\beta-\alpha} \Psi_{t}(x)\right)^{\wedge}\right\|_{L_{p}\left(\mathbb{R}^{d}\right)} & =\prod_{i=1}^{d}\left\|\left(x_{i}^{\beta_{i}-\alpha_{t}} \psi\left(x_{i} e^{-t_{i}}\right)\right)^{\wedge}\right\|_{L_{p}(\mathbb{R})} \tag{21}\\
& =C \cdot \prod_{i=1}^{d} e^{s t_{t}} e^{t_{i}\left(\beta_{i}-\alpha_{t}\right)} \\
& =C \cdot e^{\left\langle t, \beta+\rho_{s}-\alpha\right\rangle} .
\end{align*}
$$

Next we prove that if $\beta+\rho_{s} \in \operatorname{int} \operatorname{conv} S$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \inf _{\alpha \in \operatorname{sp} Q} e^{\left\langle t, \beta+\rho_{s}-\alpha\right\rangle} d t<\infty \tag{22}
\end{equation*}
$$

In fact

$$
\begin{aligned}
\inf _{\alpha \in S} \exp \left\langle t, \beta+\rho_{s}-\alpha\right\rangle & =\exp \left(-\sup _{\alpha \in S}\left\langle t, \alpha-\beta-\rho_{s}\right\rangle\right) \\
& =\exp \left(-H_{E}(t)\right),
\end{aligned}
$$

where $H_{E}(t)$ is the supporting function for the convex set

$$
E=\operatorname{conv} S-\left(\beta+\rho_{s}\right)
$$

But the assumption $\beta+\rho_{s} \in \operatorname{int} \operatorname{conv} Q$ is equivalent to

$$
0 \in \operatorname{int} E
$$

and hence implies that

$$
H_{E}(t)>c|t|
$$

for some $c>0$. This proves (22). Now put

$$
A_{\alpha}=\left\{t \in \mathbb{R}^{d}: e^{\left\langle t, \beta+\rho_{s}-\alpha\right\rangle}=\inf _{\gamma \in S} e^{\left\langle t, \beta+\rho_{s}-\gamma\right\rangle}\right\}
$$

and take $B_{\alpha} \subset A_{\alpha}$ such that

$$
\bigcup_{\alpha \in S} B_{\alpha}=\mathbb{R}^{d} \quad \text { and } \quad B_{\alpha} \cap B_{\alpha^{\prime}}=\emptyset \quad \text { for } \quad \alpha \neq \alpha^{\prime}
$$

Clearly, by (22),

$$
\int_{B_{\alpha}} e^{\left\langle t, \beta+\rho_{s}-\alpha\right\rangle} d t<\infty
$$

for each $\alpha \in S$. Define $h_{\alpha}(x)$ for $x_{i} \neq 0$ by

$$
h_{\alpha}(x)=\int_{B_{\alpha}} x^{\beta-\alpha} \Psi_{t}(x) d t
$$

According to (21) we have

$$
\left\|\widehat{h}_{\alpha}\right\|_{L^{p}} \leq C \int_{B_{\alpha}} e^{\left\langle t, \beta+\rho_{s}-\alpha\right\rangle} d t<\infty
$$

i.e., $\widehat{h}_{\alpha} \in L^{p}$. Finally,

$$
\begin{aligned}
\sum_{\alpha \in S} x^{\alpha} \cdot h_{\alpha}(x) & =\sum_{\alpha \in S} \int_{B_{\alpha}} x^{\beta} \Psi_{t}(x) d t \\
& =x^{\beta} \int_{\mathbb{R}^{d}} \Psi_{t}(x) d t \\
& =x^{\beta} .
\end{aligned}
$$

Remark. Lemma 5 can be generalized to $\rho=\rho_{s}+n$ where $0<s<1$ and $n \in \mathbb{Z}_{+}^{d}$. Specifically, we can obtain the following result.

Lemma 5'. Let S be a finite subset of $\mathbb{Z}_{+}^{d}, 0<s<1, n \in \mathbb{Z}_{+}^{d}$ and $\beta+\rho_{s}+n \in$ conv S. Then for every p such that $1 \leq p<(1-s)^{-1}$ there exist functions h_{α}, $(\alpha \in S)$, such that $\frac{\partial|n|}{\partial x^{n}} \widehat{h_{\alpha}} \in L^{p}\left(\mathbb{R}^{d}\right)$ and

$$
x^{\beta}=\sum_{\alpha \in S} x^{\alpha} \cdot h_{\alpha}(x)
$$

Proof of Proposition 1. Let $n \in \mathbb{Z}_{+}^{d}$. By Lemma 3, $\frac{\partial^{|n|}}{\partial x^{n}} f(x)=\sum_{\gamma \in S} \frac{x^{\gamma}}{P(x)}$. Now by Lemmas 3 and 5, for every $\gamma \in S$ we have

$$
x^{\gamma}=\sum_{\alpha \in \operatorname{sp} P} x^{\alpha} \cdot h_{\alpha}(x)
$$

with $\widehat{h}_{\alpha} \in L^{p}$ for $\alpha \in \operatorname{sp} P$. Since P is a power of Q we infer that $P(x) \neq 0$ for $x \in \mathbb{R}^{d}$. Dividing both sides by P we get

$$
\frac{x^{\gamma}}{P(x)}=\sum_{\alpha \in \operatorname{sp} P} \frac{x^{\alpha}}{P(x)} \cdot h_{\alpha}(x)
$$

By Lemma 4, for every $\alpha \in \operatorname{sp} P$ the function $\frac{x^{\alpha}}{P(x)}$ is a bounded L^{p} multiplier for $p>1$. Hence $\frac{x^{\alpha}}{P(x)} \cdot h_{\alpha}(x)$ is the Fourier transform of an L^{p} function for every $\alpha \in \operatorname{sp} P$. Therefore

$$
\left(x^{\gamma} / P(x)\right)^{\wedge} \in L^{p}\left(\mathbb{R}^{d}\right)
$$

for every $\gamma \in S$, and consequently

$$
\left(\frac{\partial^{|n|}}{\partial x^{n}} f\right)^{\wedge} \in L^{p}\left(\mathbb{R}^{d}\right)
$$

for every $n \in \mathbb{Z}_{+}^{d}$ and $1<p<(1-s)^{-1}$. This means that

$$
\xi^{n} \widehat{f}(\xi) \in L^{p}\left(\mathbb{R}^{d}\right)
$$

for every $n \in \mathbb{Z}_{+}^{d}$ and $1<p<(1-s)^{-1}$. In particular,

$$
(1+|\xi|)^{d} \widehat{f}(\xi) \in L^{p}\left(\mathbb{R}^{d}\right)
$$

Thus, by the Hölder inequality (with $p^{\prime}=\frac{p}{p-1}$),

$$
\begin{aligned}
\|\widehat{f}\|_{1} & =\int(1+|\xi|)^{d}|\widehat{f}(\xi)| \cdot(1+|\xi|)^{-d} d \xi \\
& \leq\left(\int(1+|\xi|)^{p d}|\widehat{f}(\xi)|^{p} d \xi\right)^{1 / p} \cdot\left(\int(1+|\xi|)^{-p^{\prime} d} d \xi\right)^{1 / p^{\prime}} \\
& <\infty
\end{aligned}
$$

Remark. In fact, our proof of Proposition 1 shows that \widehat{f} multiplied by any polynomial belongs to $L^{1} \cap L^{p}$.

An intersection of a convex polyhedron W with a supporting hyperplane is called a face of W. The family of all faces of a convex polyhedron W is denoted $\Upsilon(W)$.

A polyhedron $W \subset \mathbb{R}_{+}^{d}$ is called solid if $x \in W, y \in \mathbb{R}_{+}^{d}$ and $y \leq x$ imply $y \in W$.
For a polynomial $P(x)=\sum_{\gamma \in \operatorname{sp} P} b_{\gamma} x^{\gamma}$ and $A \in \Upsilon(\operatorname{conv} Q)$ we put

$$
P_{A}(x)=\sum_{\gamma \in \operatorname{sp} P \cap A} b_{\gamma} x^{\gamma}
$$

Proposition 2. Let $Q \in \mathcal{P}_{d}$ be somewhat elliptic. Let $P \in \mathcal{P}_{d}$ satisfy $\operatorname{sp} P \subset$ $\operatorname{conv} Q$ and let $\left(P_{A} / Q_{A}\right)^{\wedge} \in M\left(\mathbb{R}^{d}\right)$ for every $A \in \Upsilon(\operatorname{conv} Q)$. Then $(P / Q)^{\wedge} \in$ $M\left(\mathbb{R}^{d}\right)$.

Proof. Define $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ by taking

$$
f(x)=\frac{P(x)}{Q(x)}+\sum_{A \in \Upsilon(\operatorname{conv} Q)} \frac{P_{A}(x)}{Q_{A}(x)}(-1)^{d-\operatorname{dim} A}
$$

It is enough to prove that $\widehat{f_{\mathcal{F}}} \in L^{1}\left(\mathbb{R}^{d}\right)$. To this end we first show that for every $A \in \Upsilon(\operatorname{conv} Q)$ there exist \widetilde{P}_{A} and \widetilde{Q}_{A} in \mathcal{P}_{d}, with \widetilde{Q}_{A} somewhat elliptic, such that

$$
\begin{equation*}
\frac{\widetilde{P}_{A}}{\widetilde{Q}_{A}}=\frac{P_{A}}{Q_{A}} \tag{23}
\end{equation*}
$$

We begin with the case when $A \in \Upsilon(\operatorname{conv} Q)$ satisfies the following:
(*) The linear manifold spanned by A is a coordinate subspace i.e. linear subspace, say K, spanned by some coordinate vectors of \mathbb{R}^{d}.

Then $\alpha \in \operatorname{sp} Q_{A}$ implies $\alpha \in K$. Hence $Q_{A}(x)=Q\left(p r_{K} x\right)$ where $p r_{K}$ denotes the orthogonal projection from \mathbb{R}^{d} onto K. Since $x^{\gamma}=\left(p r_{K} x\right)^{\gamma}$ for $\gamma \in K \cap \mathbb{Z}_{+}^{d}, Q_{A}$ is somewhat elliptic because the somewhat ellipticity of Q implies the existence of $C>0$ such that for every $\gamma \in \operatorname{conv} Q_{A} \cap \mathbb{Z}_{+}^{d}$ and $x \in \mathbb{R}^{d}$ we have $|Q(x)|>C\left|x^{\gamma}\right|$. Hence

$$
\left|Q_{A}(x)\right|=\left|Q\left(p r_{K} x\right)\right|>C \cdot\left|\left(p r_{K} x\right)^{\gamma}\right|=C \cdot\left|x^{\gamma}\right| .
$$

We put $\widetilde{Q}_{A}=Q_{A}, \widetilde{P}_{A}=P_{A}$.
It remains to consider the case when $A \in \Upsilon(\operatorname{conv} Q)$ fails (*) for every coordinate subspace K. Let $L \subset \mathbb{R}^{d}$ be the smallest coordinate subspace containing A. Let $B=L \cap$ conv Q. Clearly B is a face of conv Q satisfying ($*$). Hence, as we have already proved, Q_{B} is somewhat elliptic. Since $Q_{A}=\left(Q_{B}\right)_{A}$ and $P_{A}=\left(P_{B}\right)_{A}$, without loss of generality we can assume that $L=\mathbb{R}^{d}$.

We represent \mathbb{R}^{d} as the product $\mathbb{R}^{k} \times \mathbb{R}^{d-k}$ where A is parallel to the coordinate vectors $e_{1}, e_{2}, \ldots, e_{k}$ of \mathbb{R}^{d} which span \mathbb{R}^{k}, and A is not parallel to the remaining coordinate vectors $e_{k+1}, e_{k+2}, \ldots, e_{d}$ spanning \mathbb{R}^{d-k}. We also represent \mathbb{Z}^{d} as $\mathbb{Z}^{k} \times$ \mathbb{Z}^{d-k}. Since conv Q is solid, there exists a hyperplane H supporting conv Q and satisfying $H \cap \operatorname{conv} Q=A$, with normal vector $(0, h) \in \mathbb{R}^{k} \times \mathbb{R}^{d-k}$ such that $h \in \mathbb{R}^{d-k}$ has all coordinates strictly positive. For every fixed $z \in \mathbb{R}^{k}$ the function $g: \mathbb{R}^{d-k} \rightarrow \mathbb{C}$ given by

$$
g(y)=\frac{P_{A}(z, y)}{Q_{A}(z, y)}
$$

is h-homogeneous. Therefore, by Corollary 3 , the assumption $\widehat{g} \in M\left(\mathbb{R}^{d}\right)$ enables us to infer that g is constant (in fact we do not need to use here the full strength of this corollary, but only its weaker version which follows from Wiener's theorem, see [8], Prop. 3.1). Thus

$$
\begin{equation*}
\frac{P_{A}(z, y)}{Q_{A}(z, y)}=w(z) \quad \text { for } y \in \mathbb{R}^{d-k} \tag{24}
\end{equation*}
$$

Let $e=(1,1, \ldots, 1) \in \mathbb{R}^{d-k}$. We define $\widetilde{P}_{A}(z, y)=P_{A}(z, e)$ and $\widetilde{Q}_{A}(z, y)=$ $Q_{A}(z, e)$. Then (24) yields (23). We will show that \widetilde{Q}_{A} is somewhat elliptic. Indeed,
let $(\tau, 0) \in \mathbb{Z}_{+}^{d} \cap \operatorname{conv} \widetilde{Q}_{A}$ be an extremal point of conv \widetilde{Q}_{A} (clearly it is enough to check the inequality from Definition 1 for the extremal points). Since A is parallel to \mathbb{R}^{k} we get conv $\widetilde{Q}_{A}=p r_{\mathbb{R}^{d-k}}(A)$ (this follows from the property that if $(\alpha, \beta) \in A$ and $\gamma \leq \alpha$ then $(\gamma, \beta) \in A)$. Hence there exists an extremal point $(\mu, \nu) \in A \cap \mathbb{Z}_{+}^{d}$ of A such that $p r_{\mathbb{R}^{d-k}}(\mu, v)=(\tau, 0)$, i.e., $\mu=\tau$. If $(\alpha, \beta) \in A \cap \mathbb{Z}_{+}^{d}$ then $\langle(\alpha, \beta),(0, h)\rangle=$ $\langle\beta, h\rangle=1$; in particular $\langle(\tau, \nu),(0, h)\rangle=1$. If $(\alpha, \beta) \notin A \cap \operatorname{sp} Q$ then $\langle\beta, h\rangle<1$. Thus, by somewhat ellipticity of Q, if $z^{\tau} \neq 0$ then

$$
\begin{aligned}
C & <\left|\frac{Q\left(z, \delta_{h}^{t} e\right)}{z^{\tau}\left(\delta_{h}^{t} e\right)^{v}}\right| \\
& =\left|\frac{\sum_{(\alpha, \beta) \in A \cap \operatorname{sp} Q} a_{(\alpha, \beta)} z^{\alpha} e^{\beta} t^{\langle h, \beta\rangle}+\sum_{(\alpha, \beta) \notin A \cap \operatorname{sp} Q} a_{(\alpha, \beta)} z^{\alpha} e^{\beta} t^{\langle h, \beta\rangle}}{z^{\tau} e^{v} t^{(h, v\rangle}}\right| \\
& \leq \frac{\left|Q_{A}(z, e)\right|}{\left|z^{\tau}\right|}+\left|\frac{\sum_{(\alpha, \beta) \notin A \cap s p Q} a_{(\alpha, \beta)} z^{\alpha} t^{\langle h, \beta\rangle-1}}{z^{\tau}}\right|
\end{aligned}
$$

Upon letting t tend to infinity, we get $C\left|z^{\tau}\right|<\left|Q_{A}(z, e)\right|=\left|\widetilde{Q}_{A}(x)\right|$. Thus

$$
\left|\widetilde{Q}_{A}(x)\right|=\left|Q_{A}(z, e)\right|>C \cdot\left|z^{\tau}\right|=C \cdot\left|x^{(\tau, 0)}\right| \quad \text { for } x=(z, y) \in \mathbb{R}^{d}
$$

Hence \widetilde{Q}_{A} is somewhat elliptic.
By (23) we obtain

$$
f(x)=\frac{P(x)}{Q(x)}+\sum_{A \in \Upsilon(\operatorname{conv} Q)} \frac{\widetilde{P}_{A}(x)}{\widetilde{Q}_{A}(x)}(-1)^{d-\operatorname{dim} A}
$$

Hence

$$
f(x)=\frac{S(x)}{R(x)}
$$

where $R(x)=Q(x) \prod_{A \in \Upsilon(\operatorname{conv} Q)} \widetilde{Q}_{A}(x)$ is somewhat elliptic (as a product of polynomials with this property).

To complete the proof of Proposition 2 it is enough to show that for $h \in \mathbb{R}_{+}^{d}$, $h \neq 0$, and $x \in \mathbb{R}^{d}$ satisfying $\delta_{h}^{t} x \rightarrow \infty$ and $Q_{A}(x) \neq 0$ whenever $A \in \Upsilon(\operatorname{conv} Q)$, we have

$$
\begin{equation*}
f\left(\delta_{h}^{t} x\right) \rightarrow 0 \quad \text { for } \quad t \rightarrow \infty \tag{25}
\end{equation*}
$$

Indeed, assuming (25) we infer that $\mathrm{sp} S$ does not contain maximal points of conv R and the desired conclusion follows from Proposition 1.

The identity (25) follows from the next two lemmas applied with $S=P$ and $R=Q$.

Lemma 6. Let $P, Q \in \mathcal{P}_{d}, Q$ somewhat elliptic. Let $0 \neq h=\left(h_{j}\right) \in \mathbb{R}_{+}^{d}$ and let H be a supporting hyperplane of $W=$ conv Q perpendicular to h. Let $B=W \cap H$. Then for every $A \in \Upsilon(W) \cup\{W\}$ and for every $x \in \mathbb{R}^{d}$ such that $Q_{A \cap B}(x) \neq 0$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{P_{A}\left(\delta_{h}^{t} x\right)}{Q_{A}\left(\delta_{h}^{t} x\right)}=\frac{P_{A \cap B}(x)}{Q_{A \cap B}(x)} \tag{26}
\end{equation*}
$$

Proof. Our hypotheses on H and h imply the existence of $c>0$ such that $\langle h, x\rangle=c$ for $x \in B$, and $\langle h, x\rangle<c$ for $x \in W \backslash B$. Setting $c_{\gamma}=\langle\gamma, h\rangle$, we have

$$
\begin{aligned}
\frac{P_{A}\left(\delta_{h}^{t} x\right)}{Q_{A}\left(\delta_{h}^{t} x\right)} & =\frac{\sum_{\gamma \in A} b_{\gamma} x^{\gamma} t^{\langle\gamma, h\rangle}}{\sum_{\gamma \in A} a_{\gamma} x^{\gamma} t^{\prime \gamma, h\rangle}} \\
& =\frac{\sum_{\gamma \in A \cap B} b_{\gamma} x^{\gamma} t^{c}+\sum_{\gamma \in A \backslash B} b_{\gamma} x^{\gamma} t^{c_{\gamma}}}{\sum_{\gamma \in A \cap B} a_{\gamma} x^{\gamma} t^{c}+\sum_{\gamma \in A \backslash B} a_{\gamma} x^{\gamma} t^{c_{\gamma}}} \\
& =\frac{\sum_{\gamma \in A \cap B} b_{\gamma} x^{\gamma}+\sum_{\gamma \in A \backslash B} b_{\gamma} x^{\gamma} t^{c_{\gamma}-c}}{\sum_{\gamma \in A \cap B} a_{\gamma} x^{\gamma}+\sum_{\gamma \in A \backslash B} a_{\gamma} x^{\gamma} t^{c_{\gamma}-c}}
\end{aligned}
$$

Since $c_{\gamma}-c<0$ for $\gamma \in A \backslash B$, (26) now follows.

Lemma 7. Let H be a supporting hyperplane of $W=\operatorname{conv} Q$ and $Q_{H \cap A}(x) \neq 0$ for every $A \in \Upsilon(W)$. Then

$$
\begin{equation*}
\frac{P_{H \cap W}(x)}{Q_{H \cap W}(x)}+\sum_{A \in \Upsilon(W)} \frac{P_{H \cap A}(x)}{Q_{H \cap A}(x)}(-1)^{d-\operatorname{dim} A}=0 \tag{27}
\end{equation*}
$$

Proof. It is enough to show that for every $C, B \in \Upsilon(W)$ such that $B \subset C$,

$$
\begin{equation*}
\sum_{\substack{A \in \mathrm{r}(W) \cup(W) \\ A \cap C=B}}(-1)^{\operatorname{dim} A}=0 . \tag{28}
\end{equation*}
$$

Indeed, multiplying both side of (28) by $\frac{P_{B}(x)}{Q_{B}(x)}$ and summing over all $B \in \Upsilon(W)$ we get (27). Formula (28) follows from the fact that the Euler - Poincaré characteristic of a convex polyhedron equals 1 .

Proof of Theorem 3. If $\left(\frac{P_{A}}{Q_{A}}\right)^{\wedge} \in M\left(\mathbb{R}^{d}\right)$ for every $A \in \Upsilon(\operatorname{conv} Q)$, then by Proposition $2,\left(\frac{P}{Q}\right)^{\wedge} \in M\left(\mathbb{R}^{d}\right)$. Otherwise there is $A \in \Upsilon(\operatorname{conv} Q)$ such that $\left(\frac{P_{A}}{Q_{A}}\right)^{\wedge} \notin$ $M\left(\mathbb{R}^{d}\right)$. Then by reasoning as in the proof of Proposition 2 we see that, after relabeling
the coordinates and writing $\mathbb{R}^{d}=\mathbb{R}^{k} \times \mathbb{R}^{d-k}$, the polynomial $z \mapsto Q_{A}(z, 0)$ has no roots in \mathbb{R}^{k}, and, moreover, if $g: \mathbb{R}^{k} \rightarrow \mathbb{C}$ is defined by

$$
g(z)=\frac{P_{A}(z, 0)}{Q_{A}(z, 0)}
$$

then g is a non-constant and h-homogeneous function for some vector $h \in \mathbb{R}^{k}$ with all coordinates positive. Thus, by Corollary 3, for some $C>0$,

$$
\begin{equation*}
N_{p}(g)>C \cdot \max \left(p, \frac{p}{p-1}\right) \tag{29}
\end{equation*}
$$

Let $\widetilde{Q}(z)=Q(z, 0), \widetilde{P}(z) \equiv P(z, 0)$ and let $H \subset \mathbb{R}^{k}$ be a subspace supporting conv \widetilde{Q} such that $H \cap \operatorname{conv} \widetilde{Q}=A$. Let $h \in \mathbb{R}_{+}^{k}$ be the vector normal to H. Then, by Lemma 5 ,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\widetilde{P}\left(\delta_{h}^{t} z\right)}{\widetilde{Q}\left(\delta_{h}^{t} z\right)}=\frac{\widetilde{P}_{A}(z)}{\widetilde{Q}_{A}(z)}=g(z) \tag{30}
\end{equation*}
$$

Since the norm of an L^{p} multiplier remains unchanged after a non-singular linear change of variables, and the class of L^{p} multipliers is closed under pointwise convergence by sequences which are uniformly bounded in multiplier norm, (30) implies

$$
\begin{equation*}
N_{p}(\widetilde{P} / \widetilde{Q}) \geq N_{p}(g) \tag{31}
\end{equation*}
$$

Clearly, since $\widetilde{P} / \widetilde{Q}$ is the restriction of a continuous function P / Q to the subspace $\mathbb{R}^{k} \subset \mathbb{R}^{d}$, it follows by a well-known version of de Leeuw's restriction theorem that

$$
\begin{equation*}
N_{p}(P / Q) \geq N_{p}(\widetilde{P} / \widetilde{Q}) \tag{32}
\end{equation*}
$$

Finally (29), (31) and (32) give

$$
N_{p}(P / Q) \geq C \cdot \max \left(p, \frac{p}{p-1}\right)
$$

REFERENCES

[1] E. Berkson, J. Bourgain, A. Pelczyński and M. Wojciechowski, Characterizations of the ndimensional second order smoothnesses whose canonical projection is of weak type (1,1), in preparation.
[2] J. Boman, Supremum norm estimates for partial derivatives of functions of several real variables Illinois J. Math. 16 (1972), 203-216.
[3] J. Bourgain and W. J. Davis, Martingale transforms ond complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515.
[4] S. Kwapien, R. Latala and K. Oleszkiewicz, Comparision of moments of sums of independent random variables and differential inequalities, J. Funct. Anal. 136(1) (1996), 258-268.
[5] R. Latala, personal communication.
[6] J. Neveu, Martingales a temps discret, Masson, Paris, 1972.
[7] Y. Meyer, Endomorphismes des idéaux fermé de $L^{\prime}(G)$, classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup (4) (1968), 499-580.
[8] A. Pelczynski, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, Analysis at Urbana, vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, pp. 395-415.
[9] A. Pelczyński and K. Senator, On isomorphisms of anisotropic Sobolev spaces with "classical Banach spaces" and a Sobolev type embedding theorem, Studia Math. 84 (1986), 169-215.
[10] W. Rudin, Trigonometric series with gaps, J. Math. and Mech. 9 (1960), 203-228.
[11] E. M. Stein, Singular integrals and differential properties of functions, Princeton Univ. Press, Princeton, 1970.
[12] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, I p., 00-950 Warszawa, Poland
miwoj@impan.gov.pl

