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ON THE STRONG TYPE MULTIPLIER NORMS OF
RATIONAL FUNCTIONS IN SEVERAL VARIABLES

MICHAL WOJCIECHOWSKI

1. Introduction

Let G be a locally compact abelian group, I its dual. For ¢ € L°°(I") denote by
T, the L?(G) multiplier transform defined by ¢. If T, extends to a bounded operator
on L7(G) weput N,(¢) = ||Ty: L"(G) — L7(G)]. Otherwise we put N,,(¢p) = o0.
Denote by M (G) the space of regular complex-valued Borel measures on G with the
total variation (denoted || - ||s(g)) as norm. We deal with the models G = RY (d-
dimensional Euclidean space) and G = T (the d-dimensional torus). In the present
paper we study the dependence on p of the function p > N,(¢).

In Section 3 we show that if ¢ satisfies some regularity conditions and ¢ has no
limit at infinity then N,(¢) > C - max(p, 17_’L|) for some C > 0. In Section 4 we deal
with rational multipliers R = P Q™' such that Q is a somewhat elliptic polynomial
in the sense of Definition | below.

Let RY and Z< denote respectively the subsets of elements of RY and Z¢ with
non-negative coordinates. For y = (y,) € R’ and z = (z,) € RY we write y < z
iff y, <z, forv=1,2,...,d. By P; we denote the space of all polynomials in d
variables x = (xy, ..., xq). If Q € P, then

o) = Zayxy
Y

with all y’s distinct, where x¥ = x]"x}*...x". In this framework, we put sp Q =
{y € Z‘J’r: a, # 0} and we signify by conv Q the convex hull in R? of the set
UyespQ{ﬁ: 0 S ﬂ S V}

Definition 1. A polynomial Q is called somewhat elliptic if there exists C > 0
such that

|Q(x)] > C - |x”| whenevery € Z¢ Nconv Q and x € RY.

(Here and in the sequel, the symbol “C” denotes a non-negative constant which
can change in value from one occurrence to another.)
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Examples of somewhat elliptic polynomials are the elliptic polynomials with no
roots in R and fundamental polynomials of smoothnesses (cf. [8]).

Remark. The notion of somewhat elliptic polynomials is similar to but stronger
than the notion of “strongly slightly elliptic polynomials” introduced in [8], p. 403.

The main result of Section 4 is Theorem 3 (stated in Section 2) which asserts the
following dichotomy: for any rational function R = PQ~' where Q is somewhat
elliptic either N\ (R) < oo (that is, R is the Fourier transform of a bounded measure)
or N,(R) > C max (p, #) forl < p < oo.

The origin of this paper was the study of special classes of rational multipliers
which occur as entries of the multiplier matrix for the so-called canonical projection
of the jet representation of a general anisotropic Sobolev space. This study has been
initiated in [9] and [8] and developed further in the forthcoming memoir [1]. It turns
out that fundamental polynomials of smoothnesses are special cases of somewhat
elliptic polynomials. An application of the reasoning in Section 4 is the observation
that the entries of the multiplier matrix of the canonical projection generated by
non-maximal elements of a smoothness are the Fourier transforms of measures (cf.
Corollary 5).

All the function spaces and measure spaces on R? considered in this paper are
embedded in the space of tempered distributions. The Fourier transform of a function
f or a measure u (in symbols f, resp. i) is understood in the distributional sense
(cf. [12], Chapt. 1, §3).

The author gratefully acknowledges many helpful suggestions made by Professor
A. Pelczynski during the preparation of this paper.

2. Results

The main result of the reasoning in Section 3 is Theorem 1, which will be stated
here. It concerns a wider class of multipliers than the rational ones, and gives a lower
bound for the L”-norms of multipliers as p tends either to 1 or to co.

THEOREM 1. Let ¢:Z¢ — C. Suppose that either
(1) there exist a, b € C with a # b and sequences (kj)l?’il c Z% and (nj)j=1 c74
such that for every n € 74, we have, as j — 00,

o(n+ki)—>a, ¢n—-kj)—a, ¢n+n;)—>b, ¢n—n;)—b,

or
(II) there exist a,b € C with a # b and a sequence (k)72 C 74 such that for
everyn € 7, we have, as j — oo,

Sr+k)—>a . pn—k) > b.



584 MICHAL WOJCIECHOWSKI

Then there exists C > 0 such that for 1 < p < oo,

(1 Np(¢)>C.|a—b|.max(p, %)

where C > 0 is a numerical constant independent of ¢.

One can consider this result as a quantitative version of the Wiener theorem (cf.
[8], Prop. 3.1) which under similar assumptions on ¢ asserts that N,(¢) — 00 as
p — 1. However in Wiener’s theorem no information on the growth of N,(¢) is
givenas p — 1.

By the de Leeuw transference theorem (cf. [12], Chapt. VII, Th. 3.8) we immedi-
ately get:

COROLLARY 1. Let the restriction to Z of a continuous function ¢p:R? — C
satisfy either (I) or (I1). Then ¢ satisfies (1).

COROLLARY 2. Let¢: Z¢ — C extend to a differentiable function, say f: RY —
C such that V f (x) — 0 as |x| = oo. Then both N,(f) and N,(¢) satisfy (1) with
some a # b provided f(x) has no limit at infinity.

In the next theorem we apply the method used in the proof of Theorem 1 to estimate
the growth of N, (¢) as p tends either to 1 or to infinity for discontinuous ¢.

THEOREM 2.  Let x be a limit point of an open setU C R and let U be symmetric
with respect to x. Suppose that ¢: RY — C is a bounded function such that duisa
continuous function which has no continuous extension on U U {x}. Then N,(¢) >
C - max{p, F‘i—,}forl < p < oo.

Leth = (hy, ha, ..., hg) € RY h # 0. We define 8}: R — R’ for h € R% and
t > 0 by letting

Stx = (t"xy, thxy, o M xy)

for x € RY. Let h satisfy h; > O for j = 1,2,...,d. A function ¢: RY — C is
called h-homogeneous of h-degree 0 if ¢ (x) = ¢ (5} x) for every x € R? and t > 0.

COROLLARY 3. Let¢: RY — C be a bounded non-constant function, h-homoge-
neous of h-degree 0 which is continuous on R? \ {0}. Then N » (@) > C-max{p, F——LI}'

Notice that a multiplier which satisfies the conclusion of Theorem 1 has to fulfill
some regularity conditions. Indeed, let ¢ be the characteristic function of an infinite
Sidon subset of Z. Then Cy - \/p < N,(¢) < C, - /p for2 < p < oo (cf. [10]).
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In Section 4 we give a criterion (Proposition 1) for a rational multiplier in R?
with somewhat elliptic denominator to be the Fourier transform of a measure. A
crucial point in our argument is an improvement of Boman’s technique from [2].
Proposition 1 combined with Theorem 1 yields:

THEOREM 3. Let P, Q € P,. Assume that Q is somewhat elliptic. Then either
(P/Q)" € MRY),

or, for some C > 0,

N,(P/Q) > C - max(p, p—’_’—l) (I < p < o0).

The next two corollaries concern multipliers related to smoothnesses For the def-
inition of a smoothness S, its canonical projection Ps and fundamental polynomial
QOs, see[8]and [1, Section 1]. Recall that Pg is p-bounded if and only if all entries of
the matrix (i'*=1#! é—zx—))u ses are p-bounded multipliers. As a consequence of The-
orem 3 and the fact that the fundamental polynomials of smoothnesses are somewhat

elliptic we get

COROLLARY 4. Let S C Zi be a smoothness. Then either the canonical projec-

tion Pg is L'-bounded or for some a, B € S one has N,,(é—:%) > C max(p, ;1:—])
forl < p < oo.

COROLLARY 5. Let S C Z‘fr be a smoothness and let T € Z‘fr N conv2S. As-

sume that there exists y € conv2S§ such that y; > tj for j = 1,2,...,d. Then
(x7/Qs(0)" € L'(RY).

3. A lower bound for strong type (p, p) norms of multipliers

Fix a positive integer n. Let {T;: j =1,2,...,d} be a family of distinct copies
of the circle group. Form =0,1,2,...,n = 1putT) =T,y X Tpqo x ... x Ty
let 1™ = (ty41, twt2s - - -, 1,) denote a generic point of T?, and let dt™") denote

the normalized Haar measure of the group T, . Form = 0 putT" =T}, t = ¢0m

m*

and dt = dt'®". Next define the functions X;: T — R by Xo = | and X, (¢) =
(I +cost)Xy_yfork=1,2,...,n.

LEMMA 1. Givenn = 1,2, ..., there exists a sequence (cy);_, with terms +1
such that
n n
2 orcosty Xy ()| dt > —.
) /%k « Xk—1(1) 5
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Proof. Forfixedm € {1,2,...,n — 1} define the non-negative martingale
Xm = (1 X”Z, X:::*H’ ey X:’)

by putting X' = ['[;‘:m(l +costj) fort e ", m = 1,2,...,nand k = m,m +
l,...,n. Nextput

(= X2+ 30, (X = XD ifl<m<n
cos? t, ifm =n.

Qm =
Notice that the functions Q,, have the following properties:

(i) Q2 =cos’ty + (1 +cost,)*- Q2. form=1,2,....,n—1.
(ii) On depends only on the variables (¢, tpyt1, - - t,,)
(i) (1 + Q2 )2 is the square function of X,, form = 1,2, . — 1.

It follows from (iii) by ([6], Prop. VIII-2-7) that the probability P({(1 + O n+l)2 <
6}) is > —, and so a fortiori P({Qu+1 < 6}) > % It follows from (ii) that
P({Omy1 < 6)) = fA dt™m form = 1,2, ...,n — | where A,,;; denotes the
projection of the set {Qm+ | <6}onT;. Put B, =T} \ A,4. The condition (ii)
also implies that Q,, uniquely determmes a function on ']I‘m ; Which we shall denote
by Q,,, form=1,2,...,n

Our first aim is to show the recursive inequality

1
3) ”Qm”l>”Qm+l"I+—6 m=12,....,n—=1),
which, combined with the inequality || Q, ]I} = fT,, |cost|dt > ]00, implies
n
4 >
4) ol > 100

To establish (3) notice that, by (ii),

”Qm”l = f Qm dt = Qm dt(m b = ]I + 12
’]I‘II

m—1

I Zf / det( )dt,,,,
m m+|

I = f / G di™™ di,y.
T v By

Note that if t™™ ¢ A, then (1 + cos t,,,)Q,,H_. < 12. Thus combining (i) with the
numerical inequality

where

2
@+ b*)} z;—5+b for0<a<1,0<b<I12,
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tm ~
I = f f (COS +(1+coszm)Qm+.)dt""-">dtm
m Am+l

——/ cos? 1, dtmf drtmm
25 'ﬂ',,, Am+l

+/f (1 4 €08 ) Q1 dt ™™ dt,,
m m+1

we get

1 ~
= Jo0 " fT /A,,,+.(l + cos 1) Q1 dt ™™ dty.

On the other hand, (i) yields
2 2732 \3
= / f (cos® ty + (1 4 cost,)* Qp, 1) dt™™™ di,,
m n+1

> / f (1 + €08 1,y) Qo 1dt ™™ dity,.
T ¥ By
Therefore, remembering that f1r (1 + cost,)dt, = 1, we see that
1Qnlh = 1| + 1
> 1 + costy, dr" dt,,
- ]00 ‘/Am ']I‘"( + )Qm-H

m

> 1 + cost,,) dt,, a1 dt"
Z 700 /m( + ) 11‘;:’Q +1
1
= 100 + 1 Q-
Next observe that X! = cost; = cost; - Xp and X{+' — X¥ = cos X, for

k=1,2,...,n—1. Hence
n %
(5) 0, dt =/ (Z(costk : Xk_|)2> dr.
']I'n " k=1

Let r;: € — R be the Bernoulli sequence of random variables (the Rademacher
functions). Combining (4) and (5) with the Khinchine inequality (while using the
latter’s best constant—see [4], for example) we get

n n
EQ[ Zrk(a))COSthk_l(t) dt = / Eq Zrk(w)costhk_l(t) dt
" k:l " k=]
1
> — [ Qi@)dt
V2 J
n
=

142°
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Hence there exists w € 2 such that, upon letting oy = ry(w) fork =1,2,...,n, we
get(2). O

Remark. Aswasobserved by R. Latala (cf. [5]), inequality (2) holds (with another
constant) with oy = (=D fork =1,2,...,n.

LEMMA 2. There exists C > 0 such that
/ Ze”k Xi—1(2)

Proof. Let Sy = Zj;‘ e'li Xj—ifork=1,2,...,n. Then (S)}_, is an analytic
martingale. Therefore, by Prop. 4.1 in [3], we can use (4) and (5) to obtain

dt >C-n forn=1,2,....

/ Zem X1(0)| dt > C / (ZXk l(t)) dt
> C f (Zcos L - Xk l(t)) dt
> C-1Qilh
> C—n- O
T T 1427

In the sequel B(x, r) stands for the ball with centerat x € R and radius r > 0. The
symbols (-, -) and | - | stand for the scalar product and the Euclidean norm respectively.

Proof of Theorem 1.  First consider Case I. Without loss of generality we can
assume that @ = 1 and b = —1. Fix a positive integer n, and let (0;);_, be the
sequence of signs from Lemma 1. It follows easily from the assumption of case I that
for every ¢ > O and N > 3, there exists a sequence (ml’.v )j=1 C 7% such that

(6) ImY | > N - |m}'|
and
1 .
@) |¢(z)—aj|<(6)’8 forzeB( ;Im |)OB< m; ,;l )

Now, fork = 1,2, ..., n, put

RY () = [](1 +cos(m), 1) — 1

j<k
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and
FN(t)_Zo, cos(m, 1) [ J1 + cosim), 1)).
i<j
Clearly [|[FN ||} — || Z _10jXj—1cost|l for N — oo (see [7] for more quantitative
information). Hence, by Lemma 1, for N chosen big enough,

|
N — .
®) 1E > "

Since RN (1) = P cos(m}", t)Rj"L,(t) and

{k: (cos(m, )R )" (k)aéO}cB( DmM)UB(—m;“,DmM),

i<j i<j

we infer by (6) and (7) that

) IT,RY — FN| <.

Choosing & small enough, by (8) and (9) we get

(10) IToR N > —= -
e T

For the counterpart of (10) in Case II, we specify a = 1 and b = 0. By similar
reasoning to that used in the preceding case, we define

RY (1) =[] +cos(m), 1)) — 1,

J=<k

with the m ’s chosen so as to insure that

(TyRY) (1) ~ Ze'"’ DT+ cosml, 1)),

j= i<j

Then (10) follows (with another constant) by the same argument as in Case I, with
Lemma | now replaced by Lemma 2.

Fix p < 2 and ¢ such that L + é = 1. By the well known properties of the Riesz
products and the Holder inequality,

n

q

1-2 2 3
(I IRY Iy < IRy T IR 13 <2<5)
Therefore by (10) and (11),

IZoR 1y 1 Te Ry Zc‘n_(z)ﬂ'
IRV, = IRYI,

Np(¢) =
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Substituting for n the integer closest to #g’—; we get
2

Ny@) > C- -2
p—1

The case p > 2 follows by duality. O

Proof of Theorem 2. One can assume that x = 0. Accordingly, we see that there
exista,b € C, a # b and an infinite sequence (x;)72; C U such that x; — 0
and the sequence ¢ (x;) does not converge. Moreover, one can assume that there
exist sequences of real numbers ¢; — 0 and r; — O satisfying },_; ri < r; for
Jj =1,2,..., such that (passing to a subsequence if necessary) one of the following

conditions holds: either

(12) [p(x) —al <¢g for j evenand x € B(x;, r;) U B(—xj, r})
lp(x) —b| < ¢ for j odd and x € B(x;, rj) U B(—x;,r;),
or
x) —al < ¢; forx € B(x;,r;
(13) fp(x) —al < ¢ (xj,rj)

lp(x) — b| < ¢ for x € B(—x;j,r;).
We shall show how (12) implies the assertion of Theorem 2. The argument in the
case of (13) is similar. Obviously we can assume thata = 1 and b = —1. Then
it follows that for every ¢ > 0 and every two integers n and N there exist a finite
sequence (0;)}_, of signs from Lemma I and a finite sequence (y}v )i, consisting of

elements of the sequence (x,);2 such that for j =1,2,...,n,
(14) Iyl > NIy
1/ .
(15) lp(x) —oj] < (6) P for min{lx + y/'I, lx = 1} < Y1y

i<j

Let (),-0 be an approximate unit for L' (R) such that each v, is a smooth function
with bounded support. Then ¥, * ¢(x) — ¢(x) uniformly in x on every compact
set. Hence one can choose t > O such thatfor j = 1,2,...,n,

1\’
(16) |¥ x p(x) — 0j] < (6) € for min{|x +y;"|, lx — yle} < Z Iy,

i<j
On the other hand,
a7 Ny % @) < [Yelli - Np(@),

Since ¥, x¢ is acontinuous function, one can choose A > 0 suchNthat (14)and (16) hold
for (y}");'=l replaced by some sequence (kl’.\’);'=l C AZ4. Put p(x) = ¥, x p(A "' x).
By [12], Chapt. VII, §3, we have

(18) Ny (@) = N, (¥ % $).
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Now the de Leeuw transference theorem (cf. [12], Th. 3.8) yields
(19) Np(@pz) < Np($).

By (14) and (16), the sequence (mN) , defined by m = A"kN e 74 satisfies
(6) and (7), with qblZd playing the rdle of ¢. Hence the same procedure as in the
proof of Theorem 1 (with suitable choices for &, n and N) shows that N (¢fo') >
C - max{ P50 } So the desired conclusion follows from (17), (18) and (19). O

4. Rational multipliers

In the sequel we shall need the following property of somewhat elliptic polynomi-
als:

PROPOSITION 1. Let Q € P, be somewhat elliptic, p, = (s,s,...,s) € R¢
where 0 < s < l,and a € Zi N conv Q. Assume that o + ps € conv Q for some
0 < s < 1. Then for every p such that | < p < (1 — s)~', the Fourier transform of
the function

f)=x*/0(x)
belongsto L' NLP.

To prove Proposition 1 we need a couple of lemmas.

LEMMA 3. Let Q € Py be somewhat elliptic. Leta € Z4,p € RY, o0 + p €
conv Q. Then for every n = (ny,...,ny) € Z‘_{, there exist a somewhat elliptic
polynomial P, a non-empty finite set S C Zg’_ and a sequence of coefficients (a,)ycs,

such that
gl ( x¢ )_ Za,,x"
axn \Q(x)) &2 P(x)

yes

and for everym € 74 . m < n,

y+p+meconvP foreveryy € S.

Proof. It is enough to prove the lemma for derivatives of order 1. Let ¢; denote
the k-th coordinate unit vector. We can assume that « > ¢, (if not, the proof is still
similar), and deduce that

i( ) = (a0 — a5 0 )2
™ Q(x)) = (axx*"“Qx) — x ™ x) - (Q(x) .
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Thus, putting P = Q? and S = & + (sp Q — ex) N Z4, we get
S+pCa+p+(spQ—e)NZL C conv Q + conv Q = conv P.

Similarly we get S + p + ¢, CconvP. 0O

The next lemma is a modified version of Theorem 5.1 in [8].

LEMMA 4. Let P, Q € Py, Q be somewhat elliptic and sp P C conv Q. Then g
is a bounded L? multiplier for | < p < oo.

Proof. Lemma 3 yields

<C-|x™

" P(x)
ax" \ Q(x)
for every x € R with non-zero coordinates and n € Z‘i; in particular for n with

n; € {0,1} for j = 1,2,...,d. Hence the lemma follows by the Marcinkiewicz
multidimensional multiplier theorem (cf. [11], Chapt. VI, §6, Theorem 6’). O

The next lemma is a modified version of a result due to Boman (cf. [2], Lemma 1).

LEMMA 5. Let S be a finite subset of 4,0 < s < 1,and B + p, € conv S. Then
for every p satisfying 1 < p < (1 — 5)~! there exist functions hy (o € S) such that
hy, € L? and

xP = Zx“ - hg(x).

a€eS

Proof. Take ¢ € Cy°(R) such that ¥ (y) = ¥ (~y), ¥(y) = Oinaneighborhood
of 0, and

o0
20) f Ve dy = 1.
—00
Fort = (11,...,t;) € R and x € RY, set
d
W (x) = [ [vxie™.
i=l

Then in view of (20),

qu,(x)dt =1
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ifx; #0foreachi = 1,2, ...,d. For fixed #; the function ¥ (x;e”") is equal to zero
in a neighborhood of x; = 0. Hence forany « € Z9, 8 € Z¢ andt € R, the function
x#7*W, (x) belongs to C§°(R?), and hence

(P w,0)) e L' N L.

We now study the 7-dependence of the L”-norm of this function. Since for an arbitrary
function 6 (x;) such that 6(x;) € L”(R), we have, upon setting s = 1 — 1

P’

— N ) A
10 xie™)) Nr@axy = € NO@)) oy

it follows that

d

1) I 00) Ny = ]I ¥ @xie™) e, m)

i=1
d

- C- l_[ &l pliBi—a)
i=l

— C.lBra—a)

Next we prove that if B + p; € intconv S, then

(22) / inf e"#+P =% 4t < 0.
R

¢ aesp Q

In fact

irégeXP(t, B+ ps —a) = exp(— ilig(t’ a—fB—ps)

= exp(—HEg (1)),

where Hp(¢) is the supporting function for the convex set
E =convS — (B + ps).
But the assumption 8 + p, € intconv Q is equivalent to
OcintE,
and hence implies that
Hg(t) > clt|

for some ¢ > 0. This proves (22). Now put

Ay =1{r e RY: lt:BHoi—a) _ jpf oltBto—y)
yes
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and take B, C A, such that
| JB.=R’ and B,NB, =0 for a#a.

aeS

Clearly, by (22),

f R N P

for each o € S. Define h,(x) for x; # 0 by
hy(x) = / xP=w, (x) dt.
According to (21) we have

el < C f e PP gt < oo,
Bo(

i.e., hy € L”. Finally,

Zx"‘ chy(x) = / <P, (x) dt

aeS aeS
= xP f W, (x) dt
RY
= xﬂ. D

Remark. Lemma 5 can be generalized to p = p; +n where 0 < s < | and
ne Zi. Specifically, we can obtain the following result.

LEMMA 5. Let S be a finite mbcetond O<s<l,ne Zd and B+ ps+n €
conv S. Then for every p such that 1 < p < (1 —s)~! there exist functions hy,
(a € S), such that el P he € LP(RY) and

Era
xP = Zx"‘ < hy(x).

aeS

Proof of Proposition 1. Letn € Z4. By Lemma 3, ‘,’L' f@R =Y 575 po Now
by Lemmas 3 and 5, for every y € S we have

xV = Z x% he(x)

aesp P

with 71, € L? for a € sp P. Since P is a power of Q we infer that P(x) s 0 for
x € R?. Dividing both sides by P we get

P(X) P( )
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o

By Lemma 4, for every @ € sp P the function 5 is a bounded L” multiplier for

p > 1. Hence F’% - hy(x) is the Fourier transform of an L” function for every

a € sp P. Therefore
(x?/P(x))" € L"(RY)
for every y € S, and consequently
glnl A J
(&ij) € L"(RY)
foreveryn € Z% and 1 < p < (1 —s)~' . This means that
§"f(§) e LR
foreveryn € Z‘i and 1 < p < (1 —s)~!. In particular,
(1 +EDF &) € LR,

Thus, by the Holder inequality (with p’ = p’_’ s

Tl /(1 FEDFE) |- (14 gD de

-~ 1/p , 1y
(/(l+|€|)pd|f(€)|pd§) .(f(]+|gl)~pdds)

< 0. Od

IA

Remark. 1In fact, our proof of Proposition 1 shows that f multiplied by any
polynomial belongs to L' N L7,

An intersection of a convex polyhedron W with a supporting hyperplane is called
a face of W. The family of all faces of a convex polyhedron W is denoted Y (W).
A polyhedron W C RY is called solid if x € W,y € RL and y < x imply y € W.
For a polynomial P(x) = }_ ., p byx” and A € Y(conv Q) we put
Pax)= > byx".

y€Esp PNA

PROPOSITION 2. Let Q € P, be somewhat elliptic. Let P € Py satisfy sp P C
conv Q and let (Py/Q )" € M(Rd)for every A € Y(conv Q). Then (P/O)" €
M(RY).

Proof. Define f: R! — C by taking

P(x) Pa(x) d—dim A
- A0 .
T =50 +A€Tﬁ:mv@ o0 "
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It is enough to prove that f eL (]R" ). To this end we first show that for every
A € Y (conv Q) there exist PA and Q 4 in Py, with Q A somewhat elliptic, such that

Py Py
04 04

We begin with the case when A € Y (conv Q) satisfies the following:

(23)

(x) Thelinear manifold spanned by A is a coordinate subspace i.e. linear subspace,
say K, spanned by some coordinate vectors of RY.

Then a € sp Q4 implies « € K. Hence Q4(x) = Q(prgx) where prig denotes the
orthogonal projection from R? onto K. Since x” = (prgx)? fory € K N Zi, 04
is somewhat elliptic because the somewhat ellipticity of Q implies the existence of
C > 0 such that for every y € conv Q4 NZ4 and x € RY we have |Q(x)| > C|x7].
Hence

Q4 =1Q(prxx)| > C - |(prgx)"| = C - |x7].

We put Q4 = Qa, Py = Py.

It remains to consider the case when A € Y'(conv Q) fails (x) for every coordinate
subspace K. Let L C R? be the smallest coordinate subspace containing A. Let
B = L Nconv Q. Clearly B is a face of conv Q satisfying (x). Hence, as we have
already proved, Qp is somewhat elliptic. Since Q4 = (Qp)s and P4 = (Pp)a,
without loss of generality we can assume that L, = R,

We represent R? as the product R x RY~* where A is parallel to the coordinate
vectors ey, e, ..., ¢ of RY which span R¥, and A is not parallel to the remaining
coordinate vectors ey, €xy2, . - . , e spanning RY~*. We also represent Z¢ as Z¥ x
Z4=* . Since conv Q is solid, there exists a hyperplane H supporting conv Q and
satisfying H N conv Q = A, with normal vector (0, 7) € R¥ x R‘7* such that
h € RY* has all coordinates strictly positive. For every fixed z € R the function
g: R4 — C given by
Pa(z, y)

Qa(z,y)
is h-homogeneous. Therefore, by Corollary 3 , the assumption g € M (R?) enables
us to infer that g is constant (in fact we do not need to use here the full strength of

this corollary, but only its weaker version which follows from Wiener’s theorem, see
[8], Prop. 3.1). Thus

gy) =

Pa(z,y) d—k
24 —_ = R4,
@4 Oz y ~ W@ forye

Lete = (I,1,...,1) € RI™*. We define Ps(z,y) = Pa(z,e) and Q4(z,y) =
04(z, e). Then (24) yields (23). We will show that Q4 is somewhat elliptic. Indeed,
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let (1,0) € Zi M conv é 4 be an extremal point of conv é 4 (clearly it is enough to
check the inequality from Definition 1 for the extremal points). Since A is parallel to
R* we getconv Q4 = prre-«(A) (this follows from the property that if (o, ) € A and
y < a then (y, B) € A). Hence there exists an extremal point (i, v) € AN Zi of A
such that prge— (i, v) = (7,0),ie, u = t. If (0, B) € AﬂZi then ((«, B), (0, h)) =
(B, h) = 1; in particular {(z, v), (0, h)) = 1. If (o, B) ¢ ANspQ then (B, h) < 1.
Thus, by somewhat ellipticity of Q, if z # 0 then

z,80e
C < o r;, )
ZT((S;,E)V
Y aupeftt P £ q prtef
_ |t@peanspQ (a,f)¢ANsp O
- Ztevt(h.u)

> it
- [Qa(z,€)l 4+ |@prEAno

|z7| 4l

Upon letting ¢ tend to infinity, we get C|z7| < |Qa(z, €)| = |§A (x)|. Thus
104 =104 )| > C- || =C - x"V  forx =(z,y) e R’

Hence Q4 is somewhat elliptic.

By (23) we obtain
P(x) FA(X) d—dim A
fx) = + ~(—1) .
f * Q()C) A€Y (conv Q) QA('X)
Hence
S
F) = R((’; ))

where R(x) = Q(x)[] A€ (conv Q) é A (x) is somewhat elliptic (as a product of poly-
nomials with this property).

To complete the proof of Proposition 2 it is enough to show that for & € R,

h # 0, and x € R? satisfying 8,x — oo and Q4(x) # 0 whenever A € Y (conv Q),
we have

(25) f(@&x) —>0 for t — oo.

Indeed, assuming (25) we infer that sp S does not contain maximal points of conv R
and the desired conclusion follows from Proposition 1.

The identity (25) follows from the next two lemmas applied with S = P and
R=0.
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LEMMA 6. Let P, Q € Py, Q somewhat elliptic. Let0 # h = (h;) € R‘i and let
H be a supporting hyperplane of W = conv Q perpendiculartoh. Let B=W NH.
Then for every A € Y(W) U {W} and for every x € R? such that Q ang (x) # 0,

i P4(8)x) _ Panp(x)
=00 Qa(8}x)  Qanp(x)

(26)

Proof. Our hypotheses on H and h imply the existence of ¢ > 0 such that
(h,x) =cforx € B,and (h,x) < cforx € W\ B. Setting ¢, = (y, h), we have

. > byx”t(y'h)
Py(8,x)  yea
Qa(8)x) > a,xvtlrh
y€A
Yo byx"t+ Y byxVt<
_ y€ANB y€A\B
T axrc+ Y apxvtey
y€ANB y€A\B
Yo obyx+ Y byxViv
yeANB y€A\B
>ooaxr+ Y axrir<
y€ANB y€A\B

Since ¢, —c¢ < O0fory € A\ B, (26) now follows. O

LEMMA 7. Let H be a supporting hyperplane of W = conv Q and Q yna(x) # 0
forevery A € Y(W). Then

Pynaw(x) Prna(x)

27
Qnow (x) ACT(W) Qunalx)

(_l)d—dimA — 0

Proof. 1t is enough to show that for every C, B € T(W) such that B C C,

(28) Y (=pimt=o.

AT (WHUIW)
ANC=B

Indeed, multiplying both side of (28) by % and summing over all B € T (W) we
get (27). Formula (28) follows from the fact that the Euler - Poincaré characteristic
of a convex polyhedron equals 1. [

Proof of Theorem 3. 1If (5”:)A e MRY) for every A € Y(conv (), then by
Proposition 2, (—g)A € M(RY). Otherwise there is A € Y (conv Q) such that (%)A ¢
M (R?). Then by reasoning as in the proof of Proposition 2 we see that, after relabeling
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the coordinates and writing RY = R¥ x RY~*, the polynomial z — Q4(z, 0) has no
roots in R¥, and, moreover, if g: R* — C is defined by

_ Pa(z,0)

g(@) = —QA(Z, 0’

then g is a non-constant and h-homogeneous function for some vector 1 € R with
all coordinates positive. Thus, by Corollary 3, for some C > 0,

(29) N,(g) > C - max (p, L]) .
p J—
Let ng) = Q(z,0), ﬁ(z) = P(z,0)and let H C Rf be a subspace supporting

conv Q such that H Nconv Q = A. Leth € ]R’jr be the vector normal to H. Then,
by Lemma 5,

(30) tim £ _ Pa@)
%060 0aQ)

Since the norm of an L” multiplier remains unchanged after a non-singular linear
change of variables, and the class of L” multipliers is closed under pointwise conver-
gence by sequences which are uniformly bounded in multiplier norm, (30) implies

8(2).

31) N,(P/Q) > N,(g).

Clearly, since P /é is the restriction of a continuous function P/Q to the subspace
R ¢ RY, it follows by a well-known version of de Leeuw’s restriction theorem that

32) N,(P/Q) = N,(P/Q).

Finally (29), (31) and (32) give

Ny(P/Q) > C - max (p, %) : O
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