
ILLINOIS JOURNAL OF MATHEMATICS
Volume 42, Number 4, Winter 1998

UNIFORM AND STRONG ERGODIC THEOREMS
IN BANACH SPACES

TAKESHI YOSHIMOTO

1. Introduction

In his study of the spectral theory of bounded linear operators on a Banach space,
N. Dunford [3] gave some necessary and sufficient conditions for the convergence in
various topologies of a sequence of operator functions to a projection and established
a systematic theory of uniform and strong (i.e., mean) ergodic theorems in Banach
spaces. But the equivalence of Ces.ro, Hausdorff, and Abel summability of a se-
quence of operators had not yet been considered in the concrete. In connection with
this problem, E. Hille [7] obtained, as applications of Abelian and Tauberian theorems
to ergodic theorems, the uniform and strong ergodic theorems as stated below with a
view to relating the (C, c) ergodic theorem for an operator T and the properties of the
resolvent R(; T). In particular, the fact that the uniform (or strong) convergence of
(,k R (.; T) as ) -- +0 implies the (C, or) uniform (or strong) convergence for T
has been established by supposing the power-boundedness of T. It appears, however,
that the power-boundedness is not necessarily essential in the above implication. Our
investigation is motivated by this very fact just mentioned, and we deal with ergodic
theorems for operators which are not necessarily power-bounded.

THEOREM A (HILLE [7, THEOREM 6]). A necessary condition for the existence

ofan operator E such thatfor somefixed ot > O,

n a’-)T’ E(1) (uo) lim,[a)]- =o
is that

(2) (uo)lim__,+0(,k- I)R(; T) E

and

(3) (uo) lim,,_> T"/n 0 (the null operator).

Conversely, if(3) is replaced by the power-boundedness ofT, then (2) implies for
every ot > O. Here, A), n 0, 1,2 are the (C, or) coefficients oforder .
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THEOREM B (HILLE [7, THEOREM 7]). A necessary conditionfor the existence of
an operator E such thatfor somefixed ot > 0,

(ot-l)Tk(1) (SO) lim,,[a)] -k=o A._k E

is that

(2) (so)limz+0()- 1)R(.; T) E

and

(3) (so) limn__, Tn/n O.

Conversely, if(3) is replaced by the power-boundedness ofT, then (2) implies )for
every t > O.

In fact, we have a particular interest in the converse statements of the above the-
orems, when the operators in question are not necessarily power-bounded, because
this case seems to have not been considered by Hille. More precisely, the question
is whether the power-boundedness of the operators in question is indispensable to
deduce (1) from (2). A partial negative answer to this question was first given by
M. Lin [9] in the case ot 1. The purpose of the present paper is to answer the
question negatively for any real order ot > 0. The next section is devoted to the dis-
cussion concerning the relation between Cesb.ro and Abel summability of sequences
of operators in the uniform operator topology. We shall establish a multiplication
principle which reminds us of the so-called noncommuting ergodic theorems in the
usual sense. This principle provides a new (one-parameter) method of treating the
multiparameter ergodic theorems. The arguments used allow us to consider the case
(corresponding to Theorem B) of the strong operator topology. In the last section we
will deal with a similar question of relating Hausdorff and Abel summability. The
proofs given here depend essentially on the operational calculus devised by Dunford
in the spectral theory.

2. Cesro and Abel summability

Throughout this paper, (X, I1" II) will denote a complex Banach space and B[X, X]
will denote the Banach algebra of bounded linear operators on X to itself. For a real
ct > 0 and each integer n > 0 let A,,’) be the (C, ct) coefficient of order ct which is

()defined by the generating function (1 /z)-+) Yn=o A /z (0 < /z< 1). In
particular,

Ao) ao-I) A,7’=
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and

In what follows we take as the basis of this consideration the general formula

C(a)[T]= (a_)T
a, A,,_, (T B[X, X]).
*n k=O

The main result is stated as follows.

THEOREM 1. Fix a real t > 0 and let T B[X, X] satisfy the condition
IlTn/nll -- 0 when n -- cx, where 09 min(1, or). Then there exists an op-
erator E B[X,X] such that IIC)[T]- Ell 0 as n - if and only if
[I(X- I)R(X; T)- Ell--+ Oas ) --+ + O.

In order to prove Theorem we need the following lemma which is of interest in
itself.

LEMMA 1. IfllT"/nll 0asn -- cxzthen II(I-T)C)[T]II 0asn --->

Proof For every positive integer n, no matter how large, (I T)Cn)[T] can be
rewritten as

(o-) Tn+l -tA(C- 1)(I T)Cn)[T] A, I +/__..,’, n-
k=l

Since the sequences {Pn,-I/Pn,a} and {1/Pn,} are both bounded, we get

I1(I- r)c()[r]ll <_
A, An -I-II + I".-k --".-k+llll

k-I

[ (-I) Tn+l (c- l) Tk }<_
Aa) An + + max(l, An )o<<nmax

M{ Tn T, }< l+ll IJ+max
n 0<k<n

for some constant M > 0. However, it is easily seen that
implies max0<k< IITkll/n -- 0 as n cx. Hence I1(I- T)C)[T]II-- 0 as
n -- cx and the lemma follows.

ProofofTheorem 1. Suppose that there exists an operator E B[X, X] such that

IIC)[T]- Ell 0 as n cx:.
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We claim that

I1(-- l)R(k; T)- Ell- 0 as . --+ + 0.

Though this follows from Hille’s theorem (Theorem A), we sketch its proof in the
present situation. In view of Lemma we may say that E is a projection so that,
taking into account that the functions C (.) with complex variables are polynomials,
we can apply Dunford’s uniform ergodic theorem [3, Theorem 3.16] to assert that
X N(I T) @ R(I T), EX N(I T), R(I T) is closed, where N(I T)
and R(I T) denote the null space and range of I-T respectively. Note further that
R(I T) is invariant under T and let S denote the restriction of T to R(I T). Then,
using the uniform ergodic theorem, we see that I S is invertible on R(I T). So,
all that is required is to show that

lim ( )R(; S)II O,
,k---> +0

Now, for sufficiently small > 0, by assumption there exists a positive integer
N N () say, such that S/n < for all n > N. For the number N so
obtained,

IlSnll < IlS’ll nO N ilSnll .
Z" Z" + Z"- -< Z + (Z-1"n=l n=l n=l n=l

Thus, using the equality (I S)(I S)- I which holds on R(I T), we obtain

II(Z.- l)R(,k; S)ll _< (Z.- 1)ll(l S)-ll I + ]
k=l

-< II(l-S)-’ll{ ’-lz. +(’-l)2llSkl’I;_, ; +’

whence the required one on first letting ,k ---> +0 and then --> 0. Therefore we have
proved that (Z. !) R(; T) E --+ 0 as -+ + 0. Next we suppose conversely
that (, 1) R(; T) E 0 as . --+ + 0. Let > 0 be fixed sufficiently
small and choose a positive integer N2 N2() say, such that T"/nll < for all
n > N2. As before, we get

I1(- )e(; T)(I- T)II <
-1 (-1)2 IITII

Z,
k=

-t-,

so that E TE ET and E =(uo)limz I+0(,k- I)R(.; T)E E2; that is to say, E
is a projection in B[X, X] and EX N(I- T). Now, the series Yn0 Tn/Z"+l being
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well defined in the uniform operator topology since T"/nll --+ 0 when n --we have that

=(k- I)(I-T)Z
k=0 n=k+ ) Tk T’

k=0

is also well defined in the uniform operator topology. Thus, if for any x 6 X we write
x- Ex then clearly Ex N(I- T) and Y 6 R(I T), because

oo (I- Tn)x T"x
Y (s) lim (Z- 1)

,k,,+
(s) lim (I T) Z ;,,+X-- 1+0

n=0
.-- I+0

n=0

Moreover, we claim that N(I T) 0 R(I T) {0}. To verify this, first we
remark that there exists a constant K > 0 such that sups<x_<2 I1(, 1)R(,k; T)II _< K
by the principle of uniform boundedness (e.g., see [4, page 66]). If y is of the form
y (I- T)x + z, x, z X, Ilzll < , then

Tny { Tn(l-T)x’n+l --’TnZ]l(z- (z- +
n--0 n--0

< -4-

This means that for any y 6 R(I T),

I1(- 1)R(,k; T)YII 0 as ,k -- + 0.

Accordingly, if x N(I T) 0 R(I T) then x Ex 0 as asserted. Now,
R(I T) is manifestly a T-invariant subspace of X and we let S be the restriction
of T to R (I T). Then one gets

lim I1(- 1)R(); S)Yll 0 for all y (R(I T)
X--- +0

which follows from what has been observed above and hence

II(X- I)R(X; S)ll -- 0 as x + O.

From this we infer that for a fixed ,k > 0 close enough to 1, I (X I)R(2.; S) is
invertible on R(I T). Hence, so is the operator I S and R(I T) must be closed
because we have I- (X- I)R(.; S) (Z- l)-t (I- S)R(.; S). We have therefore
proved that

X N(I- T)@ R(I- T)

(which also means that the representation x Ex + is unique). In view of Lemma
and the fact that -nC-(’)(1) for all n, this yields I]C)[T] Ell --+ 0 as n -- oo
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by Dunford’s uniform ergodic theorem, since all the functions C()(.) of complex
variables are analytic in a fixed neighborhood of the spectrum r (T) of T. The proof
of Theorem has hereby been completed.

Next we make mention of the corresponding question in the strong operator topol-
ogy. If (so) lim,_ T"/n O, where co min(1, or) for some fixed > 0 then an
easy observation gives

(s) lim { max llTkxll } /n O fr all x
0<k<

In addition, it can be easily checked that as in Lemma 1, the analytic functions C,(,) (.)
of complex variables satisfy the condition (so) lim,_(I T)C()[T] O.

Taking this into consideration, the corresponding theorem in the strong operator
topology can be obtained from a minor modification of the arguments used in the
proof of Theorem by applying Dunford’s mean ergodic theorem [3, Theorem 3.19].
Here we state only the result without proof.

THEOREM 2. Fix a real t > 0 and let T B[X, X] satisfy the condition
IIT"x/nll -- Ofor all x X when n -- o, where co min(1,ot). Suppose
that SUPn IIC)[T]xll < for all x R(I T). Then there exists an operator
E B[X, X] such that IIC)[T]x- Exll--+ Ofor all x X when n -+ cxz if and
only if II(,k l)R(.; T)x Ex - Ofor all x X when ) -+ + O.

COROLLARY 1. Let t > 0 be fixed and let T B[X, X] satisfy the condition

Zk=0 n-kIIT"/nll - Oasn -- owhereco min(1,ot). Supposesup,, A(=-)Tkx[I <

for every x R(I T). Then there exists an operator E B[X, X] such that
C,)[T] converges to E in the uniform operator topology when n o.

COROLLARY 2. Let ot > 0 be fixed and let T B[X, X] satisfy the condition
[[T’/n[[ -- 0 as n -- cxz where co min(l, or). Suppose that there is an integer
k > 0 such that T is quasi-compact. Then there exists a compact projection E
B[X, X]suchthat llC)[T]-EII -- Oasn - cx ifandonlyifsupn IIQ=[T]II < .

Proof The necessity ofthe condition sup, IIC()[T]II < o follows from the prin-
ciple of uniform boundedness. Conversely, if C(’)[T] is uniformly (norm-) bounded
then

[T] B[X X] C)[T]x -d-d Orbit(x) for all n > 0 and every x X.

In accordance with Lemma 1, C) [T]} becomes a system ofalmost uniformly invari-
ant integrals for the cyclic semigroup {T" n > 0}. Hence the uniform convergence
of C,,)[T] to a compact projection follows from Eberlein’s uniform ergodic theorem
[5, Theorem 6.1 ]. ffl
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Remark 1. If 0 < ot < and T B[X, X] is quasi-compact, then there exists a
compact projection E B[X, X] such that IIC,)[T] Ell --+ 0 as n -- o if and
only if T"/n converges to 0 in the weak operator topology when n cx. This
follows from Hille’s theorem (Theorem A) and Theorem 3.1 of [13]. Incidentally,
the equation

(,Z- I)R(X; T)---
X

A’() C’) [T]

shows that II(X- I)R(X; T)- Ell 0asX - +0 whenever IICa)[T] Ell - 0
as n ---->

We shall now prove the following theorem which may be regarded as an operator-
theoretical generalization of Ces?aro’s multiplication formula for sequences.

THEOREM 3. Let ti > 0 and wi min(l, oti), 1,2 N. Let Ti
B[X, X], l, 2 N, be uniformly Abel ergodic and satisfy the conditions
lim,o IlTi"/n 0, 1,2 N. Put

(0/i I)M;(,’)[Ti] A,,_k T/k i= 2 N
k=O

21,)[T11- M,(,)[TII,

p+q=n
m=2,3 N.

Then there exist projections Ei B[X, X], 1,2 N, such that

(uo) lim
}IN)[TI TN]

oo nt W W N+N
EN E2E

I"(Ct -’"""" + O/N - N)

Proof.
with

so that

In view ofTheorem there are projections Ei
_
B[X, X], 1,2 N,

(uo) lim C,t’)[T/] Ei. for each i,

(uo) lim M,(,’)[Ti]/n’ Ei/F(cti + 1) for each i.

This also shows that the theorem holds for the case N 1. Suppose that the theorem
has been established for N operators T TN-. So, letting

vN-I)[TI TN 1] Q(N-I)[TI TN-I]/A,(’+’’’+uN-’+N-2)
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one gets

(uo) lim v,N-)[T TN-] EN_ EzE

by assumption. Ceshro’s multiplication formula enables us to assert that

(uo) lim f2N)[Tl TN]/n’+’’’+N+N- EN... E2EI/l-’(cl +... + OtN + N)

by the induction hypothesis. In fact, we have

nOt +...+otN +N-

A}, +...+o,N +N- nOt +...+OtN +N--

EN E2 El
r<ot, : t+ N)

Z AprON) Aq(tl+’"+tu-’-I-N--2) (C(ptu) [TN] V(N-l)q [T TN-I] EN’’" E2E)
p+q

(ot +...+aN +N--A,
nU’+’"+UN+N--I {A(na’+’"+aN+N--I) EN...E2E! EN...E2E! ]Atu’+’’’+uN+n-l) nt’+’’’+aN+N-I 1-’(12/I ---... + aN -- N)and

(aN) [TN] V(qN-l)(’N) A(q +...+N-,+N-:) (Cp [T, TN-,] EN’’" E2E,)Z Ap
p+q=n

(U +...+otN+N--

A, +...+OtN +N--

(UN)A(U+’"+UN-+N--2) (aN) E2EIAp ._p (Cp [TNI EN) EN-I
p=0

A,, +...+aN+N-

Let > 0 be arbitrarily small and choose a number no no(e) > 0 such that

IlVN-) [Tl TN 1]- EN-I’’" E2EII <

and

IIC=u) [TN]- ENII < for all n > no.

Note further that there exists a constant K0 > such that IIEill < sup, IIC’)[T/]II <
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K0, 1,2 N. Then it follows that

for all n > no. Therefore

lim
’(nN) IT TN]
nOt +...+aN+N--

EN E2E
I(Otl ---""" + ON -’{- N)

2Kv-
F(otl +... + OtN + N)

as required. The proof of Theorem 3 has hereby been completed. I--I

THEOREM 4. With the hypotheses of Theorem 3, let Ti B[X, X], 1,2,
N, be strongly Abel ergodic and satisfy the conditions supn [ICffi)[T/]ll < ov

and lim,, [ITi’lx/n’ 0, 1,2 N, for all x X. Then there exist

projections Ei B[X, X], 1,2 N, such thatfor all x X,

(s) lim .],(N)[T TN]x/nu’+’’’+u+N-! EN E2E! x/ l(oti+ .+aN+N).

The proof follows exactly the same line as the proof of Theorem 3, and therefore
it is omitted.

COROLLARY 3. Let S, T B[X, X] satisfy the conditions IIS"ll o(n) and

IIT"II o(n). Let ) be a pole of R(); S) and R(.; T) oforder one. Then with
E T) and E S) the projections corresponding to the pole ) itfollows that

(i) (uo)iim,,__, -p+q=,,l(p -+- 1) -.=o Tk}/n3 E(I; T)/F(4) and

{Yi=o Yj=o }/n E(1; S)E(; T)/F(4).(ii) (uo)lim,, yp+q=,, P S q TJ

This corollary holds also in real Banach spaces, when the assumption that is a
simple pole is replaced by uniform ergodicity, with E(I; S) and E(I; T) the (C, 1)
ergodic projections. In the complex case, these are equivalent to the statement of
Corollary 3.
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COROLLARY 4. Let S, T B[X, X] be quasi-compact and 0 < ot _< 1, 0 <
<_ 1. Suppose that Sn/n - O, Tn/n -- 0 in the weak operator topology when-- x Let {a,1 }n=o be a sequence ofreal or complex numbers with limn_ an/n
(lal < c). Then with the same projections E(l; S) and E(l; T) as in Corollary 3

itfollows that

(i) (uo)lim,[n++’ ]-’ 2p+q=,, [at, Y=0 Aq(t-"_, T
a[F(ot + fl + 2)]- F(u + I)E(I; T),

(-l) si q a(-I)TJ](ii) (uo)lim,,[n++]- p+q=n LO mp-i j=0 q-j

[F( + fl + 2)]- E(I; S)E(I; T).

It is known that there exists a non power-bounded operator on X which is strongly
(C, or) ergodic for some c > 0. Following Hille [7], to illustrate this, we take X to
be the space C0[0, of functions f (x) continuous for 0 < x < which vanish at 0,
with f max If (x)[. Let/3 > 0 be fixed and define

Qtf (l Jt)f
X

(Jl f)(x) [r()l-t(x u)l-’ f(u)du, 0 <_ x <_

for f 6 X. Obviously Qt and J/ are bounded linear operators on X. Also, it is
seen that IIJll _< [I’(/ / 1)]-, J[3, J[32 J/+/2 (ill, f12 > 0), and OtJt JtQt.
Moreover, the iterate Q for each n >_ has the form

(Qf)(x) f(x) Pn(x u, fl)f(u)du

where

P,,(x u,/3) (-1)k-’ [F(k/3)]- (x u)k/-I

k=l

Then Hille’s theorem [7, Theorem 111 shows that (i) Q O(nl/4), lim,, Q
cxz, and (ii) Q is strongly (C, or) ergodic for ot > 1/2. It is worth while to note that

another example of a strongly (C, 1) ergodic operator which is not power-bounded
is given by Derriennic-Lin [2] and Emilion [6] for a positive operator on a reflexive
Banach lattice. Now, using the operators Q/ and J/, we define T F (/3 + Q/J
for/ > 3/2. Clearly

Tt ={F(/3+l}nQJt for alln > 1.

So, making use of Hille’s estimate

fo { (n /21g(n iIP,,(w, fl)ldw <_ C(fl)
(n- 1)/-, fl > 7
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for sufficiently large n, we have IITfi’ o(n I/2+’) for fl 3/2, y > 0 and IITff
O (n- for fl > 3/2. Furthermore, Tt is compact since the Volterra integral operator
is known to be compact. Hence from Theorem 3.1 of [13] it follows that if 3/2 <

fl < 2 then the operator T is uniformly (C, or) ergodic for ot > fl I. The question
is whether T/ is a non power-bounded operator for some 3/2 < fl < 2, but it is still
open for the time being.

3. Hausdorff and Abel summability

When T B[X, X] is given, we denote by (T) the class of all functions of
complex variables which are analytic in some open set containing the spectrum a (T).
The open set need not be connected and may depend on f 6 (T). If f 6 (T)
is analytic in an open set D containing a(T) and the boundary OD of D consists
of a finite number of rectifiable Jordan curves, oriented in the usual sense, then the
operator f(T) is defined by

f(T) f f(L)R(.; T)d.
D

since R(.; T) is analytic in the resolvent p(T) of T. The operator f(T) so defined
depends only on the function f but not on the domain D. Recall that for I.1 > ,(T)
(the spectral radius of T) the series Y,=0 T,,/"+ converges in the uniform operator
topology. Then

f()) d.f(r)-
2yri D n=0

Z T"
n--O on+l

Z I""C.
n--0

say, and in particular it follows that I f(T) (I T) --,=0 -p=0 CP)Tn"

LEMMA 2. Let Hn Hn (.), n 0, 1,2 be the functions of complex vari-
ables defined by

H,(.) {.t + (1 t)I"dt.

Then each function H, belongs to the class (T) and

Hn[TI {(1 t)I + tTlndt.
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Proof Clearly H,, b(T) for all n, because each H,, is a polynomial function.
Let C be the circle I;1 P with ?,(T) < p < ?,(T) + e for an e > 0 sufficiently
small. Then using Cauchy’s integral formula we have

H,,[T] {)vt 4- (I t)}" dt
Xp+t2r p=O

dX

, T" dL dt
p=O

fo’ e(:) fo’(1 t)’’- T dt {(I t)1 + LT}" dt
k=O

as desired.
By the way we note that the functions C,’) C,)(.) belong to the class (T)

and that

1 A(_) )vk
Tp

n n-k p+C(’)[T]
2n’i A k=o p=O

(or- I) T
A},

A,,_
k=O

The sequence of functions H,1 appearing in Lemma 2 is known to constitute a
strongly regular Hausdorff method Hg with the generating function g(t) t, 0 <
< 1. We call the operator averages H,,[T] defined by Hausdorff method Hg in the

sense of Lemma 2 the Hausdorff means of the sequence of powers T, or simply
the Hausdorff means for T. So far, no way to relate the Ceshro (C, or) limit and the
Hausdorff limit has been known in ergodic theory. In connection with this matter, the
next aspect we wish to consider is the new question of relations between Hausdorff
and Abel summability in the uniform and strong operator topology. It will be seen
later that the Abel limit plays an important role in relating the (C, or) limit and the
Hausdorff limit. I--1

THEOREM 5. Let T B[X, X] satisfy the condition IIT"//fill -> 0 when n --oo. Then there exists a projection E B[X, X] such that IIH,,[T] Eli -- 0 as
n -+ oo ifand only if (,k- l)R(X; T)- Ell-> 0 as ) -- 4- O.
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Proof First of all we prove that (I T)H,,[T] -+ 0 in the uniform operator
topology when n oo. It follows from Lemma 2 that

(I- T)Hn[T]
I Tn+l

n+l

+ k(l t)’’-k
n tk-(l t)’’-k+ 7k dt

k-I
k=l

Note that for a fixed with 0 < < 1, max0<k<,, ()tk(l t)’’- is attained for a
k k0(= ko(t)) such that Iko/n tl < l/n. For 0 < < 1, put

A(n) {t" lOin < < 10/n}

and

B(n, t) {k" Ikln tl < t/lO, Ikln tl < (! t)/10i.

We make use of Lorentz’s estimate [11, page 543]

l) [ n (nk__)2}(l-t)"- < /2t(l-t)neXp -4t(l-t) -t k B(n,t).

Then for sufficiently large n, 6 A(n) implies ko B(n, t), so that there exists an
integer N > 0 such that for all n > N,

max ’ (1 t)"-k <
n k’’ (1 t)"-’" <

x/2t (1o<<< ko t)n’
A(n).

Therefore, for all n > N,

I m"x (7) <’’

20 [I-10in
n o/. x/t(l t)

dtJ,
st +20

and we thus have

,’/o’II(I- T)Hn[T]II < + 2 max max (1 --t)"- dt
n -}- 0<k<n O<k<n

T"<
x/-ff + T + (27r + 40) 0<,max<,, r’ II}
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which approaches zero as n -- cx since {max0<k<,, IlTkll}/v/-ff 0 when n cxz.
Now suppose IIH,,[T] Ell 0 as n -- cx. Since H,,(I) for all n, Dunford’s
uniform ergodic theorem applies and we see that X N(I T) R(I T), EX
N(I T), and R(I T) is closed. If S denotes the restriction of T to R(I T)
then lim,, IIn,,[S]ll 0 holds on R(I T), so that ! H,,[S] is invertible on
R(I T) for sufficiently large n. On the other hand, one can easily find appropriate
analytic functions G,,(.) 6 do(T) such that I H,,[T] (I T)G,,[T] for each n.
Hence I S is also invertible on R(I T). Therefore by the same calculation as
in the first half of the proof of Theorem we obtain I1(, l)R(,k; S)ll 0 when
k -- + 0, which implies that 11(, I)R(.; T) Ell 0 when L + 0. The
converse follows from the general result, and the theorem is proved. UI

The above theorems can be generalized to the case of more general operator
functions f,,(T) for f,, 6 do(T). We state only the results without the proofs.

THEOREM 6. Let T B[X, X] satis. lim,, IlT"/nll O for some 0 <
< 1. Suppose that the functions ., dO(T) satis. lim,,.,(l) and

lim,,_, tl(l T).,(T)II O. Then thefollowing statements are equivalent:

(i) (uo)lim,, f,,(T) E, E2 E, EX N(I- T).
(ii) (uo)limz+0(,k- I)R(); T) E, E2 E, EX N(I- T).
(iii) R (I T) is closed.

THEOREM 7. Let T B[X, X] satis. lim,, IlT"x/nll O for all x X
and some 0 < ot < 1. Let f,, do(T) satis. lim,, .,(1) andlim,,_ I1(I
T)f,,(T)xll Oforallx X. Supposethatsup,, IIf,,(T)xll < cxandsup<x<_2 I1(-
R (); T)x < for all x X. Then thefollowing statements are equivalent:

(i) (so) lim,, f,,(T) E, E2 E, EX N(I T).
(ii) (so)limz_+o(- I)R(); T) E, E2 E, EX N(I T).
(iii) X--N(I-T) R(I-T).

THEOREM 8. Let T B[X, X] be quasi-compact and satis. the condition
Tn/x/-ff --+ 0 in the weak operator topology when n cx. Then H,,[T] con-

verges (as n --+ cx) to a compact projection E B[X, X] in the uniform operator
topology.

Proof By virtue of Lemma VIII, 8.1 of [4] (cf. [13, Lemma 2.2]), the spectrum
or(T) is a subset of the unit disk {z: Izl _< 1} and any pole ,k of R(#; T) with I,1
has order one. Moreover, by Theorem VIII, 8.3 of [4] (cf. [13, Lemma 2.3]), there
exist at most a finite number of points ,k ,kp of unit modulus in r (T). Each point
Zk is a simple pole and the corresponding projection E (kk; T) has a finite dimensional
range. Let

cr or(T) N {z: Izl < 1} and r’ o’(T) a.
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Clearly or’ { Lp}. Since r is compact, one can choose a number 3 with
0 < 6 < such that supz I.1 < . It follows that

Hn[T]E(cr’; T)

_
Hn(Xi)E(Xi; T)

and

H.[T]E(r; T) (Hn[T]).E(cr; T) Hn[T]E(r; T)

(see [4, Theorems VII, 3.20 and VII, 3.22]). Each function H,,(.) belongs to (T.),
and so

Hn[T] (2zri)- f Hn(X)R(Z; T)dX,
u

where U is some neighborhood ofa cr(T) with U C {z: Izl < } and its boundary
8U is rectifiable. If n is sufficiently large then by using Lorentz’s estimate, for L with

I1 _< we have

Inn()l < + q-- {3t -+- (1 t)}n at
-IO/n d IO/n

,,1f,-,o/,,20 () _k }< Z6 t+ max (l-t)" dt
k--0 n O/n 0<k<n

< ---t-

rr+20

and for X with Il 1, 1,

{fo’ }[(X- 1)Hn(X)] < 2 t"dt + max tk(l -t)"- dt
O<k<n

< 2 ++ dt
n + n n ao/. /t(1 -t)

< (2r + 42).

Therefore, since R (.; T) is uniformly bounded on 8U in the sense of the norm II,
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IIHn[T]E(c’; T)- E(I; T)II _<

All in all we get

2zr +42

o, I, 11
IIE(Z;T)II O

IIH,[T]- E(I; T)II < IIH,[T]E(r; T)II + IIH,[T]E(cr’; T)- E(1; T)II

0 -which means that limn_, Ilnn[T] E(1; T)II 0. Finally, it remains to show that
E E(I; T) is compact. Since T is assumed to be quasi-compact, there exist some
integer m > 0 and some compact operator P B[X, X] such that lITm P < 1.
Put Q Tm P. Then (I Q)- exists and

P(I Q)- + (I Tm)(] Q)- =/.

Hence, EP(I Q)- E which implies that E is compact. This completes the proof
of the theorem.

From what we have already observed we can derive the following equivalence of
Ceshro, Hausdorff, and Abel summability as mentioned in the introduction (cf. [1],
[8]).

COROLLARY 5. Let T B[X, X] satisfy the condition limn IIT"/nll Ofor
some 0 < ot < 1/2. Then thefollowing statements are equivalent:

(i) (uo) lim,__, C)[T] E, E2 E, EX N(I T).
(ii) (uo) lim, Hn[T] E, E2 E, EX N(I T).
(iii) (uo) limz__,l+0() 1)R(); T) E, E2 E, EX N(I T).
(iv) X N(I T) R(I T), R(I T) is closed.
(v) R((I- T)) is closed.
(vi) R(I T) is closed.

COROLLARY 6. Let T B[X, X] satisfy the condition limn_, IlT"x/nll 0

for all x X and for some 0 < ot _< 1/2. Suppose that SUPn IIC=)[T]xll
and SUPn IIH[T]xll cxz for all x R(I T). Then the following statements are
equivalent:

(i) (so)lim,__, C)[T] E, E E, EX N(I- T).
(ii) (so) limn Hn[T] E, E2 E, EX N(I T).
(iii) (so)limz+0()- I)R(); T)= E, E2 E, EX N(I-T).
(iv) X N(I T) R(/- T).
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THEOREM 9. Let Ti B[X, X], 1,2 N, be uniformly Abel ergodic and
satisfy the conditions limn_ IIT,./4ffll o, l, 2 N. Write Gn)[Tl]
Hn T and

(m-I)G(nm)[TI Tm] np[Tm]Gq [TI Tm-l]
p+q=n

rn =2,3 N.

Then there exist projections Ei B[X, X], 1,2 N, such that

G(n)[T TN] EN’’" E2E(uo) lim
,,-* nN-I 1-" (N)

Proof By virtue of Theorem 5, there exist projections Ei B[X, X],
1,2 N, such that

(uo) lim Hn[T/] Ei, 1,2 N

which shows, of course, that the theorem holds for the case N 1. Suppose that in
the case N > 2, the theorem has been established for N operators TI TN-.
So, writing

wN-I)[TI TN I] "-G(N-I)[TI TN I]/A(nN-2)

we see by the induction hypothesis that

(uo) lim W(nN-I)[TI TN-I] EN-I E2Ei.

Now let e > 0 be arbitrarily small and choose a number no n0(e) > 0 such that

Ilnn[T]- EN[[ < ,

]]wN-I)[TI TN-I] EN-I E2EI < e,

and

IA(U-)/n(N-)- 1/1-’(N)I < (z

for all n > no. Moreover, by the principle of uniform boundedness, IIEi
sups>_0 H[T,.]II < K0, 1,2 N for some constant K0 > 1. Therefore
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we have

nN-I
EN E2E

F(N)
A(nN- Ko
nN-I
lo

Z A(0) (N-2) W(qN-l) E2EI--n-qAq [T, TN-I]- EN-I
q=0

x
A(nN_

so that

lim II[nN-t]-’GtnN)[T TN] [I’(N)]-’ EN E2EII < 3KVe,
n---cx

which proves the theorem. 121

Remark 2. Let T 1-’(/5 + I)QJ with the operators J and Q defined in 2.
First we consider the case </3 < 3/2. Hille’s estimate

IPn(W, )ldw <_ C()(n- 1)//2-1/4

for sufficiently large n gives limn__-, IITfflI/v/- 0. Recall that T is compact.
Then, in view of Theorem 8, T turns out to be uniformly Hausdorff ergodic and it is
also uniformly (C, or) ergodic if ot > 1/2. Next we consider the case </3 < 3/2.
For I,k 11 > J we have

R(; Q/) [(,k- 1)I + J/]- Z (-1

n=o (Z-1)"+’

which converges in the uniform operator topology. It follows from Hille’s theorem
that limn__, IlQll/n O, but it is obviously false that the point is at most a sim-
ple pole of R(); Q). Hence by Mbekhta and Zemfinek’s theorem [10, Th6orme
1] the operator Qt fails to be uniformly (C, 1) ergodic. This also implies that Q
is not uniformly (C, or) ergodic when 1/2 < c < 1. This fact seems to have
been unnoticed by Hille. In [12], Wacker proved that if the point is a pole
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of order less than or equal to an integer p > of R(; T)(T B[X, X]) and
n-I Tklimn. IlTnll/np 0, then (l/np) k=0 converges in B[X, X]. The converse

implication does not hold in general. For example, we have lim,_ IlQll/np 0
n-Iand (uo)lim,,_(l/np) Y’,=0 Q 0 when p >_ 2. But the point fails to be a

pole of R(.; Q) of order less than or equal to p. Incidentally, if p > 2 then Q
is easily shown to satisfy Burlando’s condition E (k, p) for some positive integer k.
Hence by Burlando’s theorem [1, Theorem 3.4] we see that 3(1 Q) x where
;(T) --inf{n N" R(Tn) R(Tn+l)}.

Acknowedgments would like to express my thanks to the referee for many
helpful comments which improved the presentation of this paper.
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