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BOUNDED POINT EVALUATIONS
FOR CERTAIN pt(/)’SPACES

THOMAS LEN MILLER, WAYNE SMITH AND LIMING YANG

ABSTRACT. The set ofbounded point evaluations for pt (/z) is determined for certain measures/z supported
in the closed unit disk in the complex plane. Here pt (#) denotes the closure in U (/z) of the polynomials
in z.

1. Introduction

For a positive measure/z with compact support in the complex plane C and for
< < , let pt (#) denote the closure in U (/z) of the polynomials in z. A point

to in C is a bounded point evaluation for pt (/z) if there exists a constant M > 0 such
that

Ip(w)l < Mllpllt,(.)

for each polynomial p. We denote the set of bounded point evaluations for pt (#) by
bpe(e’ (/x)).

The existence of bounded point evaluations and mean polynomial approximation
have received a great deal of attention, culminating in a result ofThomson [27]: either
Pt (#) L (/z) or pt (#) has bounded point evaluations. In the latter case, Pt (#)
admits a structure related to that of bpe(P (#)). If pt (/x) is irreducible, i.e., if Pt
does not split into the direct sum of nontrivial spaces Pt (/zl) and Pt (#2), then the set
of bounded point evaluations for Pt (/z) is a simply connected region whose closure
contains the support of #.

Thomson’s dichotomy does not enable one however to determine the bounded
point evaluations for an arbitrary measure/z; indeed, such a characterization seems
generally out of reach. Nevertheless, for some natural classes of measures, it is
possible to study the structure of the bounded point evaluations, and much interesting
analysis has resulted. The canonical result in this vein is of course Szeg6’s Theorem,
which characterizes the set ofbounded point evaluations for a measure # with support
on the unit circle O D. In the case that # is weighted area measure restricted to
a bounded region, we mention work by Carleman [9], Keldy [19], DZrbajan and
aginjan 13, p. 158], Havin 15], Havin and Maz’ja 16], 17], ,aginjan [24], Shapiro
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[25], and Brennan [6], [7]. Akeroyd [1 ], [2], [3] has dealt with harmonic measures
for some crescent-like sets, and Hruscev 18], Kriete [20], Trent [28], Vol’berg [29],
[30], and Kriete and MacCluer [21 are among those who have contributed in the case
that Ix consists of weighted Lebesgue measure on the unit circle and weighted area
measure inside the unit disk. More recent work by Akeroyd [4], [5] is also relevant
in this setting. The literature in this area is extensive, and our references above are
by no means complete.

In the present paper, we continue the study of bounded point evaluations for IX of
the form dtx h dm/ W dAIo, where rn and A Io respectively denote Lebesgue
measure on the unit circle and area measure on the unit disk D. Before stating our
results, we need to introduce some notation.

Let K be a compact subset of the unit circle 0D and let J,,} denote the components
of 0D \ K. For each n, let/n denote the chord in the closed unit disk D with the
same endpoints as J,,. Denote by G,, the region with boundary Jn U In; let F be the
rectifiable Jordan curve K U [,.Jn {/,, and U the interior of F.

Define the measure Ix by

dix h dmlt + W dAlu,,

where h is a nonnegative integrable function satisfying ft log h dm > -oo and W
is a positive continuous function on each G,, such that W L(AIu,,). It follows
that G,, bpe(P(WAl,,)). We should mention that if the function h is not log-
integrable over K, an argument similar to that in [5, Theorem 2.2] yields

P’ (Ix) P’ (WdAlc,,) L’ (hmlK).
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In this case, zero is not a bounded point evaluation for pt (Iz).
For simplicity, in this section we just give our characterization in the case that the

weight W is identically 1. It will be stated and proved for more general weights in
the next sections. Let z0 U and let co be the harmonic measure for U at z0. Denote
by I1 and Jl the lengths of In and Jn, respectively.

THEOREM A. Define the measure # by dlz h dmlK + dAIua,,, where h is a
nonnegative integrable function satisfying fK log h dm > -oo. Then the following
conditions are equivalent:

(a) zo is a bounded point evaluationfor pt (lz);
(b) bpe(P (#)) D and et (#) is irreducible;
(c) pt (lz) does not split;
(d) (I) og < .
We note that the convergence of the series (d) is independent of z0 U, since

co is comparable to harmonic measure at any other point z 6 U. We remark that
the convergence of this series is very sensitive. An example was shown to us by
E Nazarov for which the addition of a single point to K changes the series (d) from
convergent to divergent.

Condition (d) is related to the well-known Carleson condition (introduced in [10])
on the set K, which is that

I11 log
n=l

Notice that co(In) < CIll and thus the Carleson condition implies that bpe(P (#))
D for the measure # in Theorem A. We will present an example showing that the
Carleson condition is in fact strictly stronger than this.

THEOREM B. There is a compact subset K ofthe unit circle with m(K) > 0 such
that K satisfies Theorem A (d) but

,--,
_

I11 log x.__
I11

Sufficient conditions for pt (#) to be irreducible will be stated and proved in 2, and
the case that pt (/z) splits will be considered in 3. Theorem A will be an immediate
consequence, as the hypotheses for these theorems will be satisfied when the weight
W is identically 1. Theorem B will be proved in 4.
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2. P’(/z) is irreducible

Let I,, J,, G,, K and U be defined as in the introduction. Define the measure/z
by

d# h dmlK + W dAIu6,,
where h is a nonnegative integrable function satisfying fK log h dm > -oo and W is
a positive continuous function on each G, such that W L(AIu,,). Let ott,, (.) be
the norm of the kernel function of pt (WAI6,,) corresponding to, G,; i.e.,

_+/-

(fo)’c,., (k) sup Ip(k)l IPI’W dA

where the supremum is taken over all nonzero polynomials. For an open set G, we
use (z) to denote the distance of z from the boundary of G.

THEOREM 2.1. Suppose that K satisfies
c

w(l.)log < cx (2.1)
n--I

and that < < cxz is such thatfor some s, C > O,

o,,.(k) <_ CG,, (k)

for every n > and Gn. Then P’ (#)is irreducible and bpe(P’(/z)) D.

Recall that w is harmonic measure for U at a point z0 6 U, and that convergence
of the series (2.1) is independent of the choice of z0. A typical example of a weight
W to which the theorem applies is given by W(z) (1 Iz12), where ct is greater
than -1; see Corollary 2.3 below.
A region G is said to satisfy a 0-wedge condition if there exists r > 0 and 0 6 (0, 1)

such that, for every w OG, a closed circular sector of radius r and opening 0zr lies
in (, with vertex at w. In particular, it is clear that U satisfies a 0-wedge condition
for some 0 > 0. We now fix such a 0.

Let J C U \ G be the arc of the circle connecting the endpoints of In and at the
angle 0/2 to I, at each endpoint. We now fix z0 6 U such that J, separates z0 from
/,, for all n. Choose a Riemann mapping tp from the unit disk D onto U such that
qg(z0) 0, and let p be the inverse of 0. We will denote by C or c absolute constants
that may change from one step to the next. Similarly, C(zo) will denote a quantity
that depends at most on z0, etc.

LEMMA 2.2. For each n, there exists a smooth curve ’n in Gn that joins the
endpoints of Jn such that

log ,, (z)dWv < C. 0-2LO(/n) log II,---1"
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Here V is the region bounded by ,, where , n ’n to K and wv is the harmonic
measurefor V at zo.

Proof Let cn ap (In) and/3n (J). Let an, bn be the endpoints of Jn, and
set An (an) and Bn ap (bn).

Claim 1.

60(z) >_ cmin{Iz Anl2/, Iz Bnl2/}, Z E [n.

Since U satisfies a 0-wedge condition, from Theorem in [22] we get

Igo(z)- go(z:z)l Clz z21. (2.2)

On the other hand, since U is convex, 7z’(z) is bounded [23, p 225], so

Iz z2l Cltp(zl) go(z2)l. (2.3)

Now let z E fin, and assume without loss of generality that Iz Bnl _< Iz An l.
Then, using (2.2) and (2.3), there exists z 6 0D such that

ao(z) Iz- zl >_ clio(z)-o(z)l/ >_ ca(o(z))/

> clqg(Z) bn 12/0 > clz Bn 12/.

Claim 2. There exists a C2 curve Fn C 0 0 j,(Gn), where Gn is bounded by and
In, that joins An and Bn such that 1-’ I,.J Fn to 7z(K) is a C2 curve and

66,I)(z) > cmin{Iz Anl2/, Iz Bnl2/},

To see the claim, let F be a Riemann map from D to the upper half plane R2+ with
Fl (0) and F mapping the middle point of ct to cx. For n > 2, let c’n F (otn)
and/3, F (fin). Let A’ F (An) and B F (Bn). Then it follows from Claim
that

aR+ (z) >_ cmin{Iz- A’nl2/, Iz B,’,I2/}, z

Let

Fn ={z=x+iy" y=c
(x A’n)2/ (Otn x)2/0

(A Bn )2/o
Bn < x < Cn}.

It is easy to check that F Ui=2 Fn tO F(Tz(K)) tO ot is a C2 curve and Fn C
F (Tz(G)). Let Fn F- (F’n). Let F2 be another Riemann map from D to R2+ with
F2 (0) and F2 mapping the middle point of 0D \ ct to 0. Using the same method
as above, we can construct F’ as above such that F’ tO F2(OD \ ot) is smooth. Let
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F F (F’) and let F Un= Fn U Or(K). Clearly, F satisfies the conditions of
the claim.

Let Mn 0(F,,). Let ’n be the reflection of Mn with respect to In and ?’
U ’,, u K. From the construction, ’ C D U K. Let V be the region bounded by y.
By the Schwarz reflection principle, we see that r extends to a Riemann map from
V to Or(V) where the boundary of Or(V) is the reflection of F with respect to the unit
circle. Hence the boundary of Or(V) is a C2 curve.

Claim 3. For z E D we have

c.01og <log <Clog
,o(z) ts(o(z)) ,o(z)

To see this, let z 0D such that go(z) Iz zl. Using (2.2) and (2.3), we have

o(z) >_ clio(z)- o(z)l/ >_ cts(w) /,

and similarly, ts(w) > cSo(z). Taking logarithms gives the claim.

Claim 4.

c.01og <log <Clog
a,(l) o(I)

In fact, using (2.2) and (2.3), we get

c log ,--;-7, < log log 7----7, -< C 0- log
II1"ICnl

Let o0 be the harmonic measure for f2 r (V) at zero. Let z* be the reflection
of the point z with respect to In and F, be the reflection of Fn with respect to the unit
circle. Now

log dr.ov < C log dov < C log dwv,,, (z) t(z*) o((z*))

where the last step is from Claim 3. Using Claim 2, we see that

dogv < C.O- log
I(z*) A, + log dov.log

8o(aP(z*)) laP(z*)- Bnl
(2.4)

Now, working with just the first term of this last integral, we estimate

fv, dwv < c fv log dwv =c fr log dwo,log
ICe(z*) Anl I(z)- A,,I Iw- A,,
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where the change of variable to (z) was used. Since the boundary of f2 is C2,
we see that Ito A’,I is comparable to the arc length s(to) from An to to on Fn, and
dto0 is comparable to ds. Therefore,

dtoo < C log s--ds(w) < CIA B’,I loglog
Iw- anl ",

Ian B’,I

_< Clctl log

But lot,, to(l’,) and so from Claim 4 and the last two displays we get

dtov < Cto(l’,) log < C 0-w(l,,) loglog
I(z*) A’,I to(l,,) II’,l

Clearly the same estimate applies to the term in (2.4) involving Bn, and hence

log
66,, (z)

dtov < C. O-2to(In) log Iln----l’
as required.

Proofof Theorem 2.1. Define

(z), for zG,,ho= min(l,h), forzeK.

Since V c D, for each A C K we have

toy(A) tov(zo, A) < too(z0, A) < c. m(A)/(l Izol).

Then using Lemma 2.2 we get

floghodtov tsyfe,, lg66"dtov+frt3{h<l} loghdtov

c

Izol _..fr nlh<l} log h dm> Cts Z to(In) log II1 /

c frloghdm- c fhdmZ to(In) log II1 / Iz01 Izol
Cts

By SzegO’s Theorem [14, p. 136], there is a constant C > 0 such that for each
polynomial p,

Ip(z0)l’ <_ C f Ipl’hodtov.
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On the other hand, we are assuming that

B"(w)lp(w)l’ < C f_ Ip(z)l’Wda(z) < C f Ip(z)l’d#

for w ?’,. Therefore,

f f, ""dov+CflplthdovIPlthodtov < C y IP, .,,

C J" IPl’d/x. (2.5)

So z0 is a bounded point evaluation for pt (#).
Since, for every . V, harmonic measure for V at . is comparable to toy, by

Szeg6’s Theorem we have

P l’ hodtov

Thus from (2.5) we see that V C bpe(pt(#)). Since Gn bpe(pt(WdAla,,) C
bpe(Pt (#)), we conclude that

D C bpe(e’ (/.t)).

Now suppose that pt (/z) is not irreducible. By Thomson’s theorem [27], there
exists E C K with m(E) > 0 such that L (/zle) is a summand of pt (/.t). Since
toy(E) > to(E) > 0, from (2.5) we see that the characteristic function of E is a
nonzero element of pt (hodtov). Hence,

pt (hodtov) pt (hodtovle) pt (hodtovle,.).

This is a contradiction since, from Szegti’s Theorem,

bpe(P (hodtovle)) bpe(P (hodtovle,.)) f.

COROLLARY 2.3. If K satisfies the condition (2.1) and W(z) (1 Izl=) for
some ot > -1, then pt (lz) is irreducible and bpe(P (/z)) D.

Proof. Assume without loss of generality that ot > 0. Since Ipl is subharmonic
for each polynomial p, for , ’n we have

Ip()l’ <
32

Ip(z)ltdA(z),, () -1< tT,, (;)

<
32+

Ip(z) (1-Iz dA(z).,, (,)

Thus ct.,, (,k) < C3I with s 2+_...z
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then
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3. P’ (#) splits

Suppose that W E Lp (A lug,, for some p > 1. If K satisfies

w(In) log
= I/1

P’ (/z) L’ (lg) (P’ (briG,,)).

139

If m(K) 0, the proof of Theorem 3.1 will be similar to that of Theorem 5.7 in
[7]. However if m (K) - 0 the Cauchy transform that we will use is no longer in a
Sobolev space, and therefore some other ideas will have to be used.

Recall that tp is a Riemann map from D to U such that tp(0) z0. Define

az,, (z)
ZO Z

.oZ

LEMMA 3.2. There exists a constant 0 < co < such thatfor each r sufficiently
close to 1, r < 1, there exits a smoothfunction rr, 0 < "Or < on C satisfying

0 iflzl>l,
rr(Z) ifz go(rD) \ {lz,,(z)l 2c0},

0 iflrz,,(z)l < co,

and such that

<_ C(zo)

where C(zo) is independent of r.

Proof. Let r be close enough to so that trz,, o o(rD) contains 2coD. From
Schwarz’s lemma, we see that trz,, o o(r D) C r D. Let r be a smooth function on R
such that0<r < l,r(x)= lforx > l,r(x)=0forx <0, and0<r’(x) <C.
Define

r (11:-1----21) if Izl >r
rr(z) if 2c0 < Izl _< r

r(21zl- 2c0) if Izl < 2c0.
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0

It is easy to check the function rr rr o rz,, has the required properties.
For q > and f Lq (A), recall that the maximum function of f is defined by

Mf (,k) sup for>0 A(O(k, r)) (k.r)
[f(z)ldA(z),

where O(k, r) is the disk with center k and radius r. It is well known that f - Mf
is bounded on Lq (A); see for example [26, p. 5]. For > 1, let t’ be the conjugate
exponent of t, so that )- / 7 1.

LEMMA 3.3. Suppose that < and that g Lt’ (#) annihilates pt (lz). Define
k on C by k lug,, g W)u6,,. Let H: U --> C be given by

’)H(w) w

N+i
c(z)
dA(z),
Z--tO

where N is a positive integer. Then, there is a constant C(N) so thatfor all w U,

IH(w)l,
(tO- )j+l

)j+2
k(z) dA(z)

(z-
< C(N)Mk(w)(I -Iwl),

for all j O, 1,2 N.
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Proof. Since the proofs of the two inequalities are similar, we show only that
IH(w)l _< C(N)Mk(w)(I Iwl). For w U, let 6u, Iw 7[ and write

H(w)-- - k(z) dA(z)
Z--llOz-u,l<38,,,I Z- u

z-u,l>_38,,,} Z-

I+I2.

N+I
k(z)
dA(z)
Z--tO

The lemma is established by the following estimates for I and 12.

II1 < ... k(z)

k=l 3"’ Iz- u’[ -’i’- 3" u

2kf< C(N)Ek=l ww 36,,,_<lz-wl< --r_ 3a,,,
]k(z)] dA(z)

< C(NIMk(w)(I -Iwl),

dA(z)

and

1121 < k(z) dA(z)
Z-- ll)

k=l k-36,,,<lz-wl<2k3,,,} Z- "- fl2 [k(z)l da(z)<-- 2(N+2)kw k- 3,,, <lz_wl <2k 3,,,1k=l

< CMk(w)(l -Iwl).

Suppose that g and H are as in the previous lemma. Let q satisfy

t’p
<__ q __<_ (< t’)

t’+p-1

Thenand let t" satisfy , -!- .
(q l)t"

+l<p.

Since W Lp (Alum,,) and g 6 Lr (), it follows from H61der’s inequality that

(f q-I)" +l )’"I[gWllLu(alvc,,,) <_ [[g[IL"(ta) IWI dA
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Hence, gW E Lq(AIuG,,). From now on, we fix such a q with < q < 2 and

-I- 7 1.
For 0 < r < 1, let oor be the harmonic measure on Ur o(r D) evaluated at z0,

i.e., (.O O @ dO. By a change of variables,

ff door
27rir u,. t# -I (z)

for all f continuous on OUr.

LEMMA 3.4. With the notation above, for each , 0 < < 7, there exists a
constant C(N, z0, #) > 0 (depending on N, zo and I) so that

IH(z)l
sup

)0<r<l (1 Izl
door(z) < C(N, z0, #)llgllL,’).

Proof Let 0 < < +/- and let ’r be the smooth positive function constructed inq’
Lemma 3.2. Using Green’s formula [14, p 26], we have

(1 Izl) 2ir u,. (1 Izl) -(z)

_-__lfu(Irr(z)H(z)l)(-l(z))’da(z).r (1 Izl)’ - (z)

Since the function - w))’ is bounded on the set {rr > 0} U, we conclude that-t(w)

(1 -Izl (1 -Izl
de(z

for some constant C.
For a compactly supposed finite Borel measure v, the Cauchy transform of v is

defined by

[ du(z).() z-
The function is locally integrable with respect to area measure. Let

l
r(W) W(W)(W) --a(W).

It is well known that krA(w) rr(w)kA(); see for example [ll] or [14, p. 50
Lemma 10.1]. Hence, the functions k and kA each have compact suppo and are
each members of Lq (A). Therefore, by the Calderon-Zygmund theorem ([81 or [26,
p. 51

Ilgrad(krN)llq Clkrllq,
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where gradf denotes the weak gradient of f. Thus krA is in the Sobolev space
W {u Lq(A) lgrad(u)l Lq(A)}. Notice that for w D,

Z--to Z
+ N+

=0 z- (z-7,) z-w
(3.1)

We write

From the construction of rr, it follows that rr F is in W, and therefore so is rr H. On
the other hand, by Lemma 3.3, we get

I.F(w)l _< C(N)M,(w)

It is easy to check that

rrH zr’k "t:r -F kA w :-:-_ -F Frr -F F w rr zr k rr -F Frr -4r H w "t:r
i to

Using a theorem from [26, p. 77], we have

IlO(vrlHI)llq <_ ff-X-x(IrrHI) -F.-y(IVrHI)
q

-X(15rH) + -y(15rH)
q q

< CIl9(Vr Hlllq.

Now using Lemmas 3.2 and 3.3, we see that

IH(z)l
( -Izl)

dA(z)
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<_ C(N)llkllq + CIlOvrHIIq
+ c(g)llvrFIIq + c(g)llvrMkllq

<_ C(N, zo)llkllq
<_ C(N, z0, #)llgllv’.

Here we used the fact that the Maximum Operator is bounded on Lq (A). The lemma
is now established.

LEMMA 3.5. Suppose that < < o and g LC (lz). Ifg _1_ Pt (/z), then there
is a constant C so that

sup f I"(z)l dtor(Z) <_ C(N, z0)llgllv’t,),
0<r<l

Proof Using (3.1), for g _1_ P (#) we get

First, notice that

Iw 1J < 2J- p0,
1lz w

l<_j<N,

where P,,(z) is the Poisson kernel for w. We bound G as follows.

f f[G(w)I < Pw(z)lg(z)lh(z)din(z)+ Ig(z)lh(z)dm(z)
j=l IZ- lj+

f

.fz Po(z)lg(z)lh(z) dm(z)

+
j_ Iz- lJlz- wl

2u .f,. P,, Ig Ih dm

2Nu(w),

Iwl Ig(z)lh(z)dm(z)
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where u(to) is a positive harmonic function. By Lemma 3.4, we may conclude that

flUa(w)ldor<_flH(w)ldo+2Nfu(w)dor
< C(N, Zo, *)llgll,.,’ + 2Nu(0)
< C(N, zo,

eiO,,Now we fix N such that < 0. Let be the midpoint of J,, and let

/ ’J’ N I&, N Ig,, z D,---- + On + Iln] < arg(z) < -- + 0,,- Iln]

and let

Fnr En f’) Oo(r D).

LEMMA 3.6. Let G be as in the proofofthe previous corollary. Then there exists
an absolute constant C(N) > 0 such thatfor to r’n we have

Proof. From the definition of G,

IG(w)l _< f,:
N+I

Ig(z)lh(z)
Idzl

where g Lt’(/z). Since for to Fn and z K we have Iw 1 < CIJllz 1,
and Iz wl >_ clJl v, the desired estimate is obtained.

Proofof Theorem 3.1. Let g 6 Lt’(bt) be an annihilator of P(/z) and e <

min(, ). Fixing an M, we have

logl’ldoor < f,=,r;,.
=1

og Iff’l door -+- f I" door

log door
(1 -Izl)

We/ log(l- IZ[) door-+- [ff’l door.
=1 l’ir

Hence, by Lemma 3.5 and the subharmonicity of log Iff’1, we get

log I’(z0)l < f log Iff’l
=,r,,.= (1 Izl)’

door -!-e
L, r,,.

Iog(l --Izl)door

+ C(N, zo, tz)llgllL,’,).
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IG(z)l

=,r;, (1 Izl)

Hence,

Thus, from Lemma 3.4 and letting r 1, we see that

log .’(z0)l < fu Ia(z)l
dw+ fu log(l- Izl)dw

,=,r,, (1 -Izl)’ ,__,r,,
+ C(N, zo, z)llgll,’

On the other hand, using Lemma 3.6 and the inequality Ne < 1, we have

doo < IJ, l-ZV’o(ri)llgll,,(u) <_ C(N)llgll,’,).
i=1

loglff’(z0)l < (fu log(l -Izl)dw+C(N, zo, lz)llgllL,’,)
/M=I Fil

M

< C(N, zo, #)llgll,’. / C(N) og(ril) log I1.

From our construction, we see that

w(li \ r/i) C(zo)lli \ F’il < C(zo)llil N.

On the other hand, U satisfies the 0-wedge condition. Using Theorem in [22] and
(2.2), since N > , we conclude that

o(li) c(zo)lll 2w(li \ r/i),

for sufficiently large. Hence, for such i,

to(li) <_ 2o(ri),

and therefore,

M

log Iff’(z0)l _< C(N, zo, #)llgll,’u) + C(N) to(li)log II1.

Now, letting M cx, we see that

g(zo} o.
ptThe same method shows that (,k) 0 for each ,k e U. Thus e (#).

Therefore, no point of U is a bounded point evaluation for pt (/z). Now the theorem
follows from Thomson’s theorem in [27].

Theorem A is a direct conclusion of Corollary 2.3 and Theorem 3.1, with the
weight W identically 1.
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4. Proof of Theorem B

In this section, we will construct an example for which the Carleson condition fails
but . co(In) log < o.

Let {En with En be a sequence of arcs in the unit circle and {En be the
corresponding chords whose positions will be chosen. Let Fn be another sequence of
arcs such that Fn has an endpoint in common with En. Let F be the corresponding
chords with

lEVI IE’,I2’’-’.
Now we can choose the positions of {E, and {F,} such that

(En t_J Fn) q (Em t_J Fm) n # m.

Choose an integer Nn such that

We divide Fn into Nn equal pieces denoted by {Fnj}I<_j<_N,,. Let {Fj}<_j<_N,, be the
corresponding chords. Let U be the region bounded by tO E’n to Fj to (0D \ to En).

LEMMA 4.1.
Then the following conditions hold:
(i)

o N.

EE IFjl log cx,

tha is, aD \ (U fin U n) doe no satiates he Carleon eondifion, and
(ii)

" (Fj)log + (E,’,)log < .

Let U be as above and co be the harmonic measure for U at zero.

Proof. Since

m,, NnE [F,’,j[ log > c[F,’,[ log > c,

it follows that (i) holds.
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Let G,, be the region bounded by F, and F,,. Let Un U \ (n. Let o. be the
harmonic measure for Un at zero. We claim that

o.(Ff) ClFIIEI.
Let S be the sector with center at the common endpoint of E. and F. and radius

2 such that F, U E’,, C 0 S..

n

Letos,, be the harmonic measure for S. at zero. Since U. C S., w. (Fn’) < os,, (F,).
Let d. be the common point of E. and F,,. Then

is a Riemann map from S. to a half disk with radius between 2 and 3. Hence.

ws,,(F) < ClF,’,l "-,,e,,,F,,,,/2 < CIF/,llF/,I <_ CIF/,IIEI,

and the claim is established.
Clearly,

On the other hand,

o (F,;j) log
j=l

o)(ujN"IFtj) <_ O)n(Ftt) S CIF,’,IIEI.

(uN,< W._j= F,,j) logF,;j

Therefore, condition (ii) holds.

N,,
< CIE,,llF[,l log

Nn
IF,;I -< CIE.I.
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The following theorem is an immediate consequence ofTheoremA andLemma4.1.

THEOREM 4.2. Let U be as in Lemma 4.1 and let the measure lz satisfy the
hypotheses ofTheorem A. Then

n=l Ilnl

andbpe (et(IA)) D, for < < o.

Acknowledgment. We would like to thank James Brennan forpointing out an error
in an earlier version of this paper. It was in correcting this error that we constructed
the counterexample in Section 4 and we came to the final formulation ofTheorem 3.1.
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