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MONOTONIC TRIGONOMETRIC SUMS AND
COEFFICIENTS OF BLOCH FUNCTIONS

STAMATIS KOUMANDOS

ABSTRACT. We establish a new class of monotonic trigonometric sums. Through a result of Andreev and
Duren, our theorem provides information about the coefficients of certain Bloch functions.

1. Introduction

The class of Bloch functions consists of analytic functions g in the unit disk D
satisfying

sup(l Izl =) Ig’(z)l < ,
zED

For f (z) in the usual class S of analytic and univalent functions in D, it is well known
(cf. [10, p. 32]) that log f’(z) is a Bloch function. Now suppose that f S and
define the coefficients fin by

log f’(z) 2 fl,,z".
n=

For the Koebe function k(z)
(1 z)

we have

log k’(z) 2 ),,z",
n=

where

+/- when n is even,
Z,, ", when n is odd.

In [1], V.V. Andreev and P.L. Duren considered the problem of maximizing the
functional

p(f)=aklkl2, fS,
k=l
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where ak is a sequence of nonnegative numbers. By using the method of boundary
variation they derived the necessary condition for the weights ak > 0, for which the
inequality

k=l k=l

(1.2)

holds for all Bloch functions of the form log f’ for some f e S. Ofcourse, inequality
(1.2) is valid if and only if the Koebe function maximizes the left hand side among all
Bloch functions of this form. In fact, Andreev and Duren [1] proved the following"

THEOREM
k 1,2 n. Ifthe inequality (1.2) holdsfor allfunctions f S, then

d sin4 ak,sink0 >0, 0<0 <
dO sin 0

k=l

where ) are defined by 1.1 ).

Let n > be a fixed integer and let the weights cr > 0 be given,

(1.3)

Andreev and Duren .[1] gave some applications of this theorem by showing that
several instances of (1.2) are false for appropriate choices of the coefficients ak
because, for these a, inequality (1.3) does not hold. However, they gave no example
of trigonometric sum satisfying the condition (1.3) for all n.

In the present paper, our aim is to provide a wide class of trigonometric sums
for which (1.3) is true for all n and thus to give some information for the order of
magnitude of the coefficients ak for which (1.2) may be valid.

Our main result is the following:

THEOREM. For every positive integer n, we have

d {sin4- sinkO}2 >0, 0<0 <zr,
kdO sn0 =

when ot > 3. This inequality isfalsefor appropriate n and 0 when ot < 3.

(1.4)

The first thing to be noted is that inequality (1.3) implies

a) sin kO >_ 0, 0 < 0 < rr, (1.5)
k=l

sin4 0_
because the function 2 is strictly increasing for this range of 0. Thus, in order to

sin0
obtain trigonometric sums for which an inequality like (1.4) is true, we should only
consider sums with a, satisfying the positivity condition (I.5).
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It is true that, for all positive integers n,

in kO
>0, 0<0 <r, (1.6)

kk=l

when c > and this follows by partial summation from the special case c l,
which is known as the Fej6r-Jackson-Gronwall inequality. See [11], [12] and [131.
Inequality (1.6) fails to hold for c < and this has been shown in [8, Sec. 4]. Thus,
we consider (1.4) for oe > 1.

Our theorem above, enables us to characterize the positive sine sums of (1.6) for
which (1.4) is additionally satisfied.

Known results on monotonic trigonometric sums different from (1.4) are

0 <0 for alln, 0<0 <, (1.7)
dO = k sin

which has been obtained by R. Askey and J. Steinig in [4]. See also [2] and [6] for
some more general inequalities.

The natural analogue of (1.7) for cosine sums has been established in [5]. This is

dO cos 1+
k

<0 for alln, 0<0 < (1.8)
k=l

if and only if a 1.
A straightforward differentiation shows that (1.4) is equivalent to

{( 0 ) sinkO cskO]sin4- 7 4 cos2 cos 0
k sin 0

+ k_ > 0,
sn0 = =

and, in turn,

(2 + cos 0)
k sin 0

+ :2i > 0, (1.9)
k=l k=l

sin4
because > 0 for 0 < 0 < . Clearly, (1.9) for R 3, follows by paial

sin 0
summation from the special case 3, which we prove in the next sections. It
should be noted that inequalities (1.2), (1.3) and (1.4) are true for n 1; thus from
now on we assume that n 2 in (1.9).

The diNculty of proving inequalities involving trigonometric polynomials, such
as (1.3), (1.4) and (1.5) is acknowledged in Mathematical Reviews by Yuk Leung in
his review of the paper (cf. M.R. 90c:30026).

Our plan to achieve a proof of (1.9) is as follows. In Section 2, we determine the
critical value 3 for the validity of (1.9), that is, we show that this cannot hold for

< 3. In our proof of (1.9) for 3 we consider separately the cases of even
and odd n. We prove (1.9) for even n in Section 3. In the final Section 4, we give the
proof of (1.9) for all odd n R 3.
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2. The critical value of a

In this section, we shall show that inequality (1.9) fails to hold for appropriate n
and 0 when < c < 3. For this purpose, we let

sin kO
S (0) (2 + cos 0)

k sin 0
k=l

cos kO
+ k_l

k=l

and

d (k2 + 1) sin kO
g’(O)

sin0 dO
S(0)=-

k,sin 0
k=l

  cosol cos 0+
sin 0 = =k_

cot0

We examine the sign of g (0) in the vicinity of . First, we observe that

lim g(0) " l)k (kal--_ )+ k--_3 + --- M,,0---
k=l k=l

(2.1)

where

I (  os o_cos0S,o otl0--,, sin2 0 sin 0

A short calculation shows that

Mk (- 1)k (k k3).

Substituting in (2.1) we get

lim g (0)
2 Z(- 1)’ 2

o--,. =, ---’ + ---We next observe that
n

( )Z(_I)k 2

= --g- + -g:3-3 >0,

for ct < 3 when n is even and sufficiently large. In fact, it can be easily checked that

2N

lim Z (- )’ k3-’
U--> (2N)3-’ k= 2"

That is to say that, in this case, the derivative of S’ (0) is positive sufficiently close to
rr, hence S (0) must assume negative values near
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3. Proof of the theorem when n is even

In the present section, we shall establish (1.9) when 3, for all even n. Since

sin kO

kk=l

>0, for alln, 0<0<rr,

we can obtain this result by showing that

sink0 cos kO

k sin0
+ k2

> 0, (3.1)
k=! k=l

for the same range of 0. In order to prove this, we show that both sums on the
left hand side are monotonically decreasing for 0 < 0 < r. Since the left hand
side of (3.1) vanishes for 0 zr, the desired result follows. In fact, in view of the
Fej6r-Jackson-Gronwall inequality, that is (1.6) for c 1, all the cosine sums

cos kO

k2k=l

are strictly decreasing for 0 < 0 < r. For the sine sums in (3.1) we have the
following:

LEMMA 1. For all positive integers N, we have

d 2x-u sink0

dO k=
k3sin0

<0 for 0<0 <zr. (3.2)

Proof This inequality can be considered as an.inequality for ultraspherical poly-
nomials C(x) defined, as usual, by the generating function

(l--2xr+r2)-x =C(x)rk, ) >0.
k=O

Setting x cos 0 and recalling that

C] (cos 0) sin(k + 1)0

C(1) (k / 1) sin0’

we see that inequality (3.2) is equivalent to

2N-I I(Xd -, Ck
dx (k + 1)2 Ck(l)

>0 for all N, -l<x<l, (3.3)
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which we proceed to prove. Using the differentiation formula

d x X+I
dx Ck (x) 22.C_ (x)

and the fact that

(22.) F (k + 2L)
k! k! V(2X)

(see [14], pp. 80-81), we find that (3.3), in turn, is equivalent to

2N-2 2(X
a
C

k=O Ck2(1)
> 0 for all N, < x < 1, (3.4)

where

(k + + 3)
ak I-!

(k -+- 2)2

We note, in passing, that since ak is a strictly increasing sequence, inequality (3.4) can-
not hold for odd sums. The corresponding odd sums of (3.4) are negative for x 1.
However, (3.4) does hold for all even sums. Actually, we shall establish an inequality
more general than this. Namely, for all positive N,

-1 <x<l, ,k> 1. (3.5)

For the proof of (3.5) we need the following theorem, proved by R. Askey and
G. Gasper in [2, Th. A].

THEOREM. Let Z > v > O. If

k=O
ak

C/(l)
> 0, -l<x<l,

then

C (x)
k=O

ak C(l)
> 0, --l<x<l.

See also [3].
According to this theorem, it is sufficient to prove (3.5) for L 1, which reduces

to

2 2Nklsin kO sin kO

k= k + t-
(k + 1)2

> 0, 0 < 0 < rr. (3.6)
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But this inequality holds true for all N. In fact, it is shown in [9, Th. A] that

2 >0, N= 2, 0<0 <zr.
sink0

k=l k+l

On the other hand, inequality

2N-t sink0

__k= (k+l)2
>0, N= 1,2 0<0 <zr,

has been proven in [7, Lemma 4]. The proof of Lemma is now complete. Thus all
our claims about the sums in (3.1) are established.

Unfortunately, the inequality of Lemma is false for the corresponding odd sums.
(In fact it fails near :r.) So for the the case of odd n we should follow a different
argument to achieve a proof of (1.9) and this is given in the next section.

4. Proof of the theorem when n is odd

In this section, we deal with (1.9), for ot 3, in the case where n is odd (n > 3).
It is convenient to consider separately the intervals 0 < 0 < -f and g < 0 < r.

Case 1. The interval 0 < 0 < . We rewrite the left hand side of (1.9) as

2 + cos O -- sin kO -- cos kO

k3 sin 0_ + k2
Sn(O). (4.1)

2 cos - k=l 2 k=l

A summation by parts shows that the Askey-Steinig inequality (1.7) yields

dfl__ sinkO

k=, k-i-
<0, 0<0 <r.

On the other hand, as mentioned earlier, the Fejr-Jackson-Gronwall inequality im-
plies that the cosine sums in (4. l) decrease for 0 < 0 < r, as well. Observe now

2 + cos 0
0 is positive and strictly decreasing for 0 < 0 < g.that the function h (0)

2 cos
Therefore, S, (0) is strictly decreasing on [0, -] for all n. Thus it suffices to prove
the positivity of S,, (0) for g < 0 < r.

Case 2. The interval -y < 0 < zr. Evidently, in this case the positivity of Sn (0)
is equivalent to -- sin k0 sinO--coskOk3 k2

> 0. (4.2)
k=l 2 + cosO

k=

To prove this inequality in the interval under consideration we need the following
elementary lemma.
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LEMMA 2. For every n > 2, we have

cos kO re

k2
<0, <0 <rr.

k=l

Proof. Once more we take into account the fact that these cosine sums are mono-
tonically decreasing on the interval in question and this is deduced from the Fej6r-
Jackson-Gronwall inequality. Thus it suffices to prove that the above cosine sums are

Letnegative for 0 2"

--] cos k -An
k2

2

k=l

It is clear that

A2k Azk+l for k 1,2

Hence we need only to consider the case where n is even. Let n 2N, then

(_l)kAn=- k=l - < O, for all N.

The proof of Lemma 2 is complete. IZI

We now turn to (4.2). It follows readily that the left hand side of (4.2) exceeds

kO sin 0 zr
Tn(O)

k3
pn for <0 <7r

k=
2 + cos 0

where

p. (-)
k2"k=l

Thus we seek to prove positivity of T. (0) for 2 -< 0 < n. We show that T. (0) is
decreasing on this interval. Since clearly T. (r) 0, positivity follows. We see that
inequality

d
T,(O) <0,

dO

is equivalent to

cos
(2 + cos 0)2 --<O<n.

k2
k=

2-
(4.3)
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In view of Lemma 2, this inequality is an immediate consequence of

cos kO

k2k=l
+ Pn + 2pncos O <0, (4.4)

for the same range of 0. We now observe that the left hand side of (4.4) vanishes for
0 r. We shall show that it is also strictly increasing for this range of 0, hence (4.4)
follows. Thus we need to prove that-- sin kO rr

+2pn sinO <0 for -g- <0 <zr. (4.5)
k

k=l

For the proof of this inequality we shall use techniques similar to those of [6] in
estimating the Fej6r-Jackson-Gronwall sum appearing in it.
We make the transformation zr 0 and define

l)tcos(n +
In (40 2 cos

dt,

f (40 2p, sin q.
2

Suppose that n is odd. It can be easily checked that (4.5) is equivalent to

fn(4)- In(4) > 0, 0 < q < , (4.6)

which we prove next.
An elementary calculation shows that fn (40 is a positive, concave function of

in [0, ]for all n.

In what follows, we fix the notation ?, I.n+
In order to establish (4.6) we now consider the following cases.

Case 2a. The interval 0 < q < -. For q lying in this interval, we show that
the left hand side of (4.6) is strictly increasing from fn (0) In (0) 0. In fact,
differentiating we get

2pn cos q cos(n + )q
2 2 cos 2

whose positivity follows from

q 4_cos(n+ )q>-cos -4p,,cos4cos >0cos - 4pn cos q cos -and the last inequality follows by an elementary calculation.
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Case 2b. The interval - < q < 3 2
. Here we observe that the left hand side of

(4.6) increases from fn (-) In (-) > 0.

Case 2c.
we have

The interval 3- < 4 < 2. Let us suppose first that n 4N + 3. Then,

(n-2)Lz COS tIn () < 7 dt
2 cos

fo cost
2 cos 7_ d + Ln,

2

(4.7)

where

(n-2)- COS --t
7a 2 cos

dt

N f4+) cos -t7 dt"
k=l d(4k-3)- 2 COS

(4.8)

It is not hard to see that

(4k-k-I)’ COS -t
k-3)- ’O

at

f4t,+)- cost
I -----7- dt2rr a (4k-3) COS 2-’

2r a(4- cos )cos(- +)t
cos dt (4.9)

From this it follows easily that

(4k+l)- COS t
d (4k-3)- 2 COS 7dt<V__(zr cos(4k+l)4 )cos(4k- 1)%

Thus, from this and (4.8) we deduce that

zr ,= cos(4k+l)-
2N

zr ,= cos(2k + 1)-



110 STAMATIS KOUMANDOS

4N+2

(-11+
7r sin k y-

k=2N+3 2

We also have

4N+2_2 (-l)k+< Z_ (4.10)
zr kk=2N+3

- cos -t ?,
dt < (4.11)

2 cos 2r cos v__’4
Combining this with (4.7) and (4.10) we obtain

4N+2

In(P) < ?’ 2 Z2r cos - 4- (-1)k+ (4.12)
zr kk=2N+3

On the other hand, since the functions fn (P) are concave in the interval under con-
sideration, we have

y rr (3yfn(p) > min {fn (3-), f ()}= f ). (4.13)

The validity of (4.6) in this interval follows from the inequality

4N+2

fn (3 V) 2 Z 1)k+l > 0, (4.14)

’ 2r COS % k=2N+3 k

which we shall prove using the estimates obtained above. In fact, it is easily seen that

4N+24N+2 7 )k+ll’ (--1)k+l <--lim (4N+) (-1 (4 15)
}/ k=ZU+3 k rr uoo k 2rk=2N+3

On the other hand, it is readily shown that, for n > 3,

and
Y -- >1.12

< 0.164.
2r cos v__

4

A combination of the above with (4.15) establishes (4.14).
In a similar way we can estimate the integral In (P), in the case where n 4N 4- 1.

It is clear that now we have

" cos 7tL,($) < 7 dt
2 cos 7
cos t’--Fdt + Rn,
cos

(4.16)



MONOTONIC TRIGONOMETRIC SUMS AND BLOCH FUNCTIONS 111

where

t,, cos

_
R,

2 COS 2

---’-"-dt.

As above, we find that

2 4N

R,, <-- Z (-l)k+-"
zr kk=2N+

Now, using this, (4.11 and (4.16) we obtain

g 2 4+- /__, (-1)+-.I,, ()
2n" cos - zr kk=2N+l

(4.17)

Thus, in view of (4.13) and (4.17) the desired inequality (4.6) is deduced from

4N

y 2rr COS % 7"t" y k=ZN+l T > 0. (4.18)

To see that (4.18) is valid, we first observe that

4N

Y k=2N+l

l)k+ 4<-- lim (4N+I) (-1)+-=
k rr N--+ x) k 2n’"k=2N+l

(4.19)

Then, we can easily verify that, for n > 5, we have

and

<0.161.

A combination of these inequalities with (4.19) yields (4.18).
The proof of our main result is now complete.
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