DENSE SUBSETS OF BANACH *-ALGEBRAS

Bertram Yood

Abstract

Some subsets of a Banach *-algebra A are shown to be dense. In the special case of the algebra of $L(H)$ of all bounded linear operators on a Hilbert space H, the set of all T in $L(H)$ for which T^{n} is quasi-normal for no positive integers n is dense in $L(H)$.

1. Introduction

We study dense subsets of Banach $*$-algebras in order to obtain results which are new and relevant even in the case of the well-studied $L(H)$, the algebra of all bounded linear operators on a Hilbert space H. As in [5, p. 69], $T \in L(H)$ is called quasi-normal if T permutes with $T^{*} T$. See also [4, Chapt. II]. This notion was first introduced and studied (under a different name) by A. Brown [2].

Now let A be a Banach $*$-algebra. It is natural to say that $x \in A$ is quasi-normal if x permutes with $x^{*} x$. Our results, when applied to $L(H)$, show that the set \mathfrak{S} of all $T \in L(H)$ for which T^{n} is quasi-normal for no positive integer n is dense. Let W be any $*$-subalgebra of $L(H)$, closed or not, which is not commutative and contains the identity operator E. Then the set of scalar multiples of E lies in the closure of $\mathfrak{S} \cap W$.

It is not difficult to exhibit $T \in \mathbb{S}$. In the case of the algebra of all two-by-two matrices any matrix with a zero row (column) where the entries of the other row (column) are all non-zero is in \mathfrak{S}. More involved examples involving shifts can be readily devised.

For Banach $*$-algebras we provide a more general pattern in which the above result lies. We restrict our discussion to the case where A is not commutative and has no nilpotent ideal $\neq(0)$. Say $a \in A$ is anti-central if the set of $x \in A$ for which $\left[a^{m}, x^{n}\right] \neq 0$ and $\left[a^{m}, x^{n *}\right] \neq 0$ for all positive integers m and n is dense. (Here $[x, y]=x y-y x$ as usual.) The set \mathfrak{Q} of anti-central elements of A is dense. Moreover, $\mathfrak{S} \subset \mathfrak{Q}$ as well as some dense subsets of \mathfrak{Q} such as the set of $x \in A$ where $\left[x,\left(x^{*} x\right)^{n}\right] \neq 0$ for all positive n and the set of $x \in A$ where $\left[x^{m}, x^{* n}\right] \neq 0$ for all positive m and n.

2. On quasi-normality

Throughout, A will be a complex Banach $*$-algebra with involution $x \rightarrow x^{*}$. We denote the center of A by Z. We set $\rho(x)=\lim \left\|x^{n}\right\|^{1 / n}$. In [3, p. 420] the involution in A is said to be regular if $\rho(h)=0$ and h self-adjoint imply that $h=0$. It is readily verified that A is semi-simple if A has a regular involution. Also A has such an involution if A has a faithful $*$-representation as bounded linear operators on a Hilbert space.

Here and below we use the following fact. Let $p(t)=\sum_{k=0}^{n} a_{k} t^{k}$ be a polynomial in the real variable t with coefficients in A. Let M be a closed linear subspace of A. If $p(t) \in M$ for an infinite subset of the reals then each $a_{k} \in M$.

THEOREM 2.1. Suppose that A has a regular involution. Then either A is commutative or the set of $x \in A$ for which $\left[x^{n}, x^{n *} x^{n}\right] \in Z$ for no positive integer n is dense in A.

Proof. Suppose that the set of $x \in A$ in question is not dense. Then there is a non-void open set G where, to each $x \in G$, there corresponds a positive integer $n=n(x)$ with $\left[x^{n}, x^{n *} x^{n}\right] \in Z$.

For each positive integer m let

$$
W_{m}=\left\{x \in A:\left[x^{m}, x^{m *} x^{m}\right]\right\} \notin Z .
$$

As A is semi-simple the involution is continuous [1, p. 191]. Thus each W_{m} is open. If every W_{m} were dense then, by the Baire category theorem, the intersection of all the sets W_{m} would also be dense, contrary to the existence of G. Hence there is a positive integer n with W_{n} not dense. Let Ω be a non-void open set in its complement.

Pick $a \in \Omega$. For any $y \in A$ we have $a+t y \in \Omega$ for infinitely many real values of t. For these values of t,

$$
\left[(a+t y)^{n}, \quad\left(a^{*}+t y^{*}\right)^{n}(a+t y)^{n}\right] \in Z
$$

The coefficient of the highest power of t in this polynomial is $\left[y^{n}, y^{* n} y^{n}\right]$. Thus $\left[y^{n}, y^{* n} y^{n}\right] \in Z$ for all $y \in A$.

Now let $y=h+i t k$ where h and k are self-adjoint and t is real. Set $B=$ $\sum_{j=0}^{n-1} h^{j} k h^{n-1-j}$. Then $y^{n}=h^{n}+i B t+\cdots$ and $y^{* n}=h^{n}-i B t+\cdots$, where we have omitted the terms involving higher powers of t. A direct calculation shows that $[h, B]=\left[h^{n}, k\right]$.

Let $w=\left(y^{n}+y^{n *}\right) / 2$, then $\left[w, y^{* n} y^{n}\right] \in Z$ for all y. Now $w=h^{n}+$ terms involving t to powers two and higher. Then we have

$$
\left[h^{n}+\cdots,\left(h^{n}+i t B+\cdots\right)\left(h^{n}-i t B+\cdots\right)\right] \in Z
$$

for all h, k self-adjoint. (Here again we omitted terms in powers of t greater than one.) This gives

$$
\left[h^{n}+\cdots, h^{2 n}+i t\left[B, h^{n}\right]+\cdots\right] \in Z
$$

for all h, k self-adjoint. The coefficient of t in the polynomial here is $\left[h^{n}, i\left[B, h^{n}\right]\right]$. Therefore $\left[h^{n},\left[h^{n}, B\right]\right] \in Z$ and consequently

$$
\left[h,\left[h^{n},\left[h^{n}, B\right]\right]\right]=0
$$

for all h, k self-adjoint. Recall that $\left[a^{p},\left[a^{q}, b\right]\right]=\left[a^{q},\left[a^{p}, b\right]\right]$ for all a, b. Therefore

$$
\left[h^{n},\left[h^{n},[h, B]\right]\right]=0
$$

and so

$$
\left[h^{n},\left[h^{n},\left[h^{n}, k\right]\right]\right]=0
$$

for all h, k self-adjoint.
We employ the Kleinecke-Shirokov theorem [1, p. 91] which asserts that if [a, $[a, b]]=0$ then $\rho([a, b])=0$. This gives $\rho\left(\left[h^{n},\left[h^{n}, k\right]\right]\right)=0$. Now $\left[h^{n}, k\right]$ is skew and $\left[h^{n},\left[h^{n}, k\right]\right]$ is self-adjoint. By hypotheses we have $\left[h^{n},\left[h^{n}, k\right]\right]=0$. Again using the Kleinecke-Shirokov theorem we have $\rho\left(\left[h^{n}, k\right]\right)=0$ so our hypothesis on $\rho(x)$ shows that $\left[h^{n}, k\right]=0$ for all h, k self-adjoint. Consequently $\left[h^{n}, x\right]=0$ for all h self-adjoint and all $x \in A$. Thus $h^{n} \in Z$ for all h self-adjoint. We then use [9, Lemma 3.1] to see that $x^{n} \in Z$ for all $x \in A$. By standard ring theory [7, Theorem 3.22] we see that A is commutative.

Theorem 2.1 is applicable to all group algebras of locally compact groups as well as to C^{*}-algebras.

Corollary 2.2. Suppose that A has a regular involution. Then the set of $x \in A$ for which $\left[x^{n}, x^{n *} x^{n}\right] \in Z$ for no positive integer n is dense if and only if the set of $x \in A$ for which $\left[x^{n}, x^{n *} x^{n}\right]=0$ for no n is dense.

Proof. The proof of Theorem 2.1 carries through if everywhere we replace Z by (0).

In the following theorem we drop the requirement of completeness. Let B be a normed $*$-algebra with an identity e and let \mathfrak{S} be the set of $x \in B$ such that x^{n} is quasi-normal for no positive integer n.

THEOREM 2.3. If B is not commutative then the set of scalar multiples of e lies in the closure of \mathfrak{S}.

Proof. Since $\lambda x \in \mathfrak{S}$ whenever $x \in \mathfrak{S}$ for any scalar $\lambda \neq 0$ it is enough to show that e is in the closure of \mathfrak{S} whenever B is not commutative.

Suppose otherwise; then there is a neighborhood \mathfrak{N} of e disjoint with \mathfrak{S}. Let $x \in B$. There is an interval $[0, c], c>0$ so that, for each $t, 0 \leq t \leq c, e+t x \in \mathfrak{N}$. To each such t there corresponds a positive integer $n(t)$ where

$$
\left[(e+t x)^{n(t)},\left(e+t x^{*}\right)^{n(t)}(e+t x)^{n(t)}\right]=0
$$

For each positive integer m let W_{m} be the set of $t \in[0, c]$ where $n(t)=m$. At least one W_{m}, say W_{r}, must be infinite. Hence

$$
\left[(e+t x)^{r},\left(e+t x^{*}\right)^{r}(e+t x)^{r}\right]=0
$$

for infinitely many values of t. We omit powers of t at least two in the expansions of $(e+t x)^{r}$ and $\left(e+t x^{*}\right)^{r}$ to have

$$
\left[\left(e+r t x+\cdots,\left(e+r t x^{*}+\cdots\right)(e+r t x+\cdots)\right]=0\right.
$$

so that

$$
\left[r t x+\cdots, r t\left(x+x^{*}\right)+\cdots\right]=0
$$

Therefore $\left[x, x+x^{*}\right]=0=\left[x, x^{*}\right]$ for all $x \in B$. Let $x=u+i v$ where u and v are self-adjoint. We see that $[u, v]=0$ for these u, v and so B is commutative.

3. Anti-central elements

Henceforth we assume that A has a continuous involution $x \rightarrow x^{*}$. We use M to represent a closed linear subspace of A where $M=M^{*}$. Our final conclusions involve $M=(0)$ and $M=Z$. We adopt the following notation of Herstein [7, p. 5]. We set $T(M)=\{x \in A:[x, A] \subset M\}$. Of course $T(M)=Z$ if $M=(0) . T(Z)$ is more interesting algebraically.

Consider A as a Jordan algebra A^{J} under the Jordan multiplication $a \cdot b=a b+b a$. By the standard definition of the center of a non-associative algebra [8, p. 18], inasmuch as $a \cdot b=b \cdot a$, the center Z^{J} of A^{J} is the set of all $z \in A^{J}$ where

$$
(z, x, y)=(x, z, y)=(x, y, z)=0
$$

for all $x, y \in A^{J}$. Here (a, b, c) is the associator of a, b and c :

$$
(a, b, c)=(a \cdot b) \cdot c-a \cdot(b \cdot c)
$$

A straight-forward calculation shows that

$$
(a, b, c)=[b,[a \cdot c]]
$$

Then Z^{J} is the set of all $z \in A$ such that, for all x and y,

$$
[x,[z, y]]=[z,[x, y]]=[y,[x, z]]=0
$$

For $z \in Z^{J},[z, x] \in Z$ for all x or $z \in T(Z)$.
Hence $Z^{J} \subset T(Z)$. Conversely suppose $z \in T(Z)$ so that $[[z, x], y]=0$ for all $x, y \in A$. The Jacobi identity gives $[[x, y], z]+[[y, z] x]+[[z, x], y]=0$ for all x, y, z so that $z \in Z^{J}$. Therefore $T(Z)=Z^{J}$.

Theorem 3.1. If A has no non-zero nilpotent ideals then $Z=Z^{J}$.

Proof. Let $a \in Z^{J}$. As noted above, $[a, x] \in Z$ for all $x \in A$. Hence a permutes with $[a, x]$ for all $x \in A$. By a result of Herstein [7, p. 5] we see that $a \in Z$.

We say that $a \in A$ is anti-central modulo M if the set of $x \in A$ for which $\left[a^{m}, x^{n}\right] \notin M$ and $\left[a^{m}, x^{n *}\right] \notin M$ for all positive integers m and n is dense in A. We use $X(M)$ to denote the set of anti-central elements modulo M.

Theorem 3.2. A is the union of two disjoint sets, $X(M)$ and the set of $x \in A$ for which some power of x lies in $T(M)$.

Proof. Suppose that $a \notin X(M)$. We use the general strategy as in the proof of Theorem 2.1 by applying the Baire Category Theorem to the open sets

$$
W_{m, n, r, s}=\left\{x \in A:\left[a^{m}, x^{n}\right] \notin M \text { and }\left[a^{r}, x^{s *}\right] \notin M\right\}
$$

so that at least one of them, say $W_{m, n, r, s}$, is not dense. Then, for each $y \in A$, either (1) $\left[a^{m}, y^{n}\right] \in M$ or (2) $\left[a^{r}, y^{s *}\right] \in M$. Hence A is the union of two closed sets where, respectively, (1) and (2) hold. At least one of these must contain a non-void open set. From this we see that either $\left[a^{m}, x^{n}\right] \in M$ for all $x \in A$ or $\left[a^{r}, x^{s}\right] \in M \in A$ for all $x \in A$. By [9, Lemma 2.1] there is an integer p so that $a^{p} \in T(M)$.

Let $S(M)$ denote the set of $x \in A$ for which x^{n} is quasi-normal modulo M for no positive integer n.
3.3 Corollary. $\quad S(M) \subset X(M)$.

Proof. Let $a \in S(M)$ so that $\left[a^{n}, a^{n *} a^{n}\right] \in M$ for no positive integer n. Then there is no integer p so that $\left[a^{p}, x\right] \in M$ for all $x \in A$. Theorem 3.2 then shows that $a \in X(M)$.
3.4 Corollary. If A has no non-zero nilpotent ideals then either A is commutative or $S(Z)$ is dense.

Proof. Suppose $S(Z)$ is not dense. Then, by Theorem 3.2, there is a non-void open subset G of A where, to each $x \in G$ there corresponds a positive integer $n=n(x)$ so that $\left[x^{n}, y\right] \in Z$ for all $y \in A$. By $[9$, Lemma 2.2] there is a fixed integer n so that $x^{r} \in T(Z)$ for all $x \in A$. But $T(Z)=Z$ by Theorem 3.1. Hence A is commutative [7, Theorem 3.2.2].

4. On some dense subsets

4.1 THEOREM. Either there exists a positive integer r so that $x^{r} \in T(M)$ for all $x \in A$ or the set of $x \in A$ such that $\left[x,\left(x^{*} x\right)^{n}\right] \in M$ for no positive integer n is dense in A.

Proof. Suppose the set in question is not dense. We apply the Baire Category Theorem to the sets $H_{n}=\left\{x \in A:\left[x,\left(x^{*} x\right)^{n}\right] \notin M\right]$ to see, reasoning as above, that for some positive integer $r,\left[y,\left(y^{*} y\right)^{r}\right] \in M$ for all $y \in A$.

In dealing with $\left[y,\left(y^{*} y\right)^{r}\right] \in M$ we set $y=u+i t v$ where u and v are self-adjoint and t is real. Then $y^{*} y=u^{2}+t^{2} v^{2}+i[u, v] t$. For convenience we set $u^{2}+t^{2} v^{2}=w$ and $z=i[u, v]$ so that $\left(y^{*} y\right)^{r}=(w+t z)^{r}$. Let Q_{k} be the sum of the terms in the expansion of $(w+t z)^{r}$ for which the sum of the exponents of the z^{j} factors is k. Then $\left(y^{*} y\right)^{r}=\sum_{k=0}^{r} Q_{k} t^{k}$.

As $\left[u+i t v,\left(y^{*} y\right)^{r}\right] \in M$ also $\left[u-i t v,\left(y^{*} y\right)^{r}\right] \in M$ for all u, v self-adjoint and t real; thus $\left[v,\left(y^{*} y\right)^{r}\right] \in M$ for all v, y in question. We have

$$
\left[v, Q_{0}+t Q_{1}+\cdots+t^{r} Q_{r}\right] \in M
$$

for all v self-adjoint and t real. Notice that $Q_{0}=w^{r}=\left(u^{2}+t^{2} v\right)^{r}$. Letting $t \rightarrow 0$ we see that $\left[v, u^{2 r}\right] \in M$ for all u, v self-adjoint. Thus $\left[h^{2 r}, y\right] \in M$ for all h self-adjoint and $y \in A$; it follows from [9, Lemma 3.1] that $\left[x^{2 r}, y\right] \in M$ for all $x, y \in A$.

Say $a \in A$ is anti-normal modulo M if for all positive integers m and n we have $\left[a^{m}, a^{* n}\right] \notin M$.
4.2 Lemma. The set W of $x \in A, x$ anti-normal modulo M, is either dense or empty.

Proof. Suppose that the set in question is not dense. By applying the Baire Category Theorem to the sets $Q_{r, s}=\left\{x \in A:\left[x^{r}, x^{* s}\right] \notin M\right\}$ we can, by reasoning as above, deduce that there are positive integers m and n so that $\left[y^{m}, y^{* n}\right] \in M$ for all $y \in M$. This shows that if W is not dense then W is void.

Next we consider the case where $M=(0)$.
4.3 Theorem. Suppose A has no non-zero nilpotent ideals. Then either A is commutative or the set W of its anti-normal elements is dense.

Proof. Suppose W is not dense. As in the proof of Lemma 4.2 there are positive integers m and n so that $\left[y^{m}, y^{* n}\right]=0$ for all $y \in A$. It follows that $\left[y^{r}, y^{* r}\right]=0$ for $r=m n$ and all $y \in A$; that A is commutative follows from [9, Theorem 3.6].

References

1. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
2. A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728.
3. P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math. 9 (1959). 415-436.
4. J. B. Conway, The theory of subnormal operators, Math Surveys and Monographs, no. 36, Amer. Math. Soc., Providence, RI, 1991.
5. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1967.
6. I. N. Herstein, Non-commutative rings, Carus Math. Monographs, no. 15, Wiley, New York 1968.
7. -, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
8. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., no. 39, Providence, RI, 1968.
9. B. Yood, Commutativity theorems for Banach algebras, Mich. J. Math. 37 (1990), 203-210.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802

