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DENSE SUBSETS OF BANACH ,-ALGEBRAS

BERTRAM YOOD

ABSTRACT. Some subsets of a Banach *-algebra A are shown to be dense. In the special case of the
algebra of L(H) of all bounded linear operators on a Hilbert space H, the set of all T in L(H) for which
T is quasi-normal for no positive integers n is dense in L(H).

1. Introduction

We study dense subsets of Banach ,-algebras in order to obtain results which
are new and relevant even in the case of the well-studied L(H), the algebra of all
bounded linear operators on a Hilbert space H. As in [5, p. 69], T L(H) is called
quasi-normal if T permutes with T*T. See also [4, Chapt. II]. This notion was first
introduced and studied (under a different name) by A. Brown [2].
Now let A be a Banach ,-algebra. It is natural to say that x A is quasi-normal

if x permutes with x*x. Our results, when applied to L(H), show that the set (R) of
all T L(H) for which Tn is quasi-normal for no positive integer n is dense. Let W
be any ,-subalgebra of L(H), closed or not, which is not commutative and contains
the identity operator E. Then the set of scalar multiples of E lies in the closure of
(R)fqW.

It is not difficult to exhibit T (R). In the case of the algebra of all two-by-two
matrices any matrix with a zero row (column) where the entries of the other row
(column) are all non-zero is in (R). More involved examples involving shifts can be
readily devised.

For Banach ,-algebras we provide a more general pattern in which the above
result lies. We restrict our discussion to the case where A is not commutative and
has no nilpotent ideal -5/: (0). Say a A is anti-central if the set of x A for
which [am, xn 0 and [am, xn*] 0 for all positive integers m and n is dense.
(Here [x, y] xy yx as usual.) The set L of anti-central elements of A is dense.
Moreover, C L as well as some dense subsets ofL such as the set ofx A where
Ix, (x’x)n -7/: 0 for all positive n and the set of x A where [xm, x*n -7/: 0 for all
positive m and n.
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2. On quasi-normality

Throughout, A will be a complex Banach ,-algebra with involution x --> x*. We
denote the center of A by Z. We set p(x) lim IIx /. In [3, p. 420] the involution
in A is said to be regular if p(h) 0 and h self-adjoint imply that h 0. It is
readily verified that A is semi-simple if A has a regular involution. Also A has such
an involution if A has a faithful ,-representation as bounded linear operators on a
Hilbert space.

Here and below we use the following fact. Let p(t) =0 aktl be a polynomial
in the real variable with coefficients in A. Let M be a closed linear subspace of A.
If p(t) M for an infinite subset of the reals then each ak M.

THEOREM 2.1. Suppose that A has a regular involution. Then either A is com-
mutative or the set ofx A for which [x’, xn*xn Z for no positive integer n is
dense in A.

Proof. Suppose that the set of x A in question is not dense. Then there is
a non-void open set G where, to each x G, there corresponds a positive integer
n n (x) with [xn, xn*xn Z.

For each positive integer m let

Wm {x A [xm, xm*xm]} Z.

As A is semi-simple the involution is continuous l, p. 191 ]. Thus each Wm is open.
If every Wm were dense then, by the Baire category theorem, the intersection of all
the sets Wm would also be dense, contrary to the existence of G. Hence there is a
positive integer n with Wn not dense. Let f2 be a non-void open set in its complement.

Pick a f2. For any y A we have a + ty f2 for infinitely many real values of
t. For these values of t,

[(a d- ty)n, (a* d- ty*)n(a d- ty)n] Z.

The coefficient of the highest power of in this polynomial is [y’, y,nyn]. Thus
[yn, y,ny] Z for all y A.
Now let y h + itk where h and k are self-adjoint and is real. Set B= hJkhn-l-j. Then yn hn d- Bt +... and y,n hn Bt +..., where we

have omitted the terms involving higherpowers of t. A direct calculation shows that
[h,B]--[hn, k].

Let w (yn + yn*)/2, then [w, y,nyn] Z for all y. Now w hn+ terms
involving to powers two and higher. Then we have

[hn +..., (hn + itB +...) (h" -itB +...)] z
for all h, k self-adjoint. (Here again we omitted terms in powers of greater than
one.) This gives

[hn d-..., h2n h-it[B, hn] d-...] Z
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for all h, k self-adjoint. The coefficient of in the polynomial here is [hn, i[B, hn]].
Therefore [hn, [hn, B]] Z and consequently

[h, [h", [h", B]]] 0

for all h, k self-adjoint. Recall that [a t’, [aq, b]] [aq, [a t’, b]] for all a, b. Therefore

[h", [hn, [h, B]]] 0

and so

[hn, [hn, [hn, k]]] 0

for all h, k self-adjoint.
We employ the Kleinecke-Shirokov theorem [1, p. 91 which asserts that if [a,

[a, b]] 0 then p([a, b]) 0. This gives p([h, [hn, k]]) 0. Now [hn, k] is skew
and [h, [h", k]] is self-adjoint. By hypotheses we have [hn, [h, k]] 0. Again
using the Kleinecke-Shirokov theorem we have p([h, k]) 0 so our hypothesis on
p(x) shows that [h", k] 0 for all h, k self-adjoint. Consequently [hn, x] 0 for
all h self-adjoint and all x 6 A. Thus hn Z for all h self-adjoint. We then use [9,
Lemma 3.1 to see that x" 6 Z for all x 6 A. By standard ring theory [7, Theorem
3.22] we see that A is commutative.

Theorem 2.1 is applicable to all group algebras of locally compact groups as well
as to C*-algebras.

COROLLARY 2.2. Suppose that A has a regular involution. Then the set ofx A
for which [xn Xn*xn Z for no positive integer n is dense ifand only if the set of
x A for which [xn xn*xn 0for no n is dense.

Proof.
by (0).

The proof of Theorem 2.1 carries through if everywhere we replace Z

In the following theorem we drop the requirement of completeness. Let B be a
normed .-algebra with an identity e and let (R) be the set of x 6 B such that x" is
quasi-normal for no positive integer n.

THEOREM 2.3.
in the closure of. If B is not commutative then the set of scalar multiples of e lies

Proof Since .x 6 (R) whenever x 6 (R) for any scalar Z :/: 0 it is enough to show
that e is in the closure of 5 whenever B is not commutative.

Suppose otherwise; then there is a neighborhood fit of e disjoint with (R). Let
x 6 B. There is an interval [0, c], c > 0 so that, for each t, 0 < < c, e / tx fit.
To each such there corresponds a positive integer n(t) where

[(e + tx)n(t), (e + tX*)n(t) (e + tX)n(t)] O.
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For each positive integer rn let Wm be the set of [0, c] where n(t) m. At least
one Wm, say Wr, must be infinite. Hence

[(e + tx)r, (e + tX*) (e + tX)r] 0

for infinitely many values of t. We omit powers of at least two in the expansions of
(e -1- tx) and (e + tx*) to have

[(e + rtx +..., (e + rtx* +...)(e + rtx +...)] 0

so that

[rtx -I-..., rt (x -b x*) -t-...] O.

Therefore [x, x + x*] 0 [x, x*] for all x B. Let x u + v where u and
are self-adjoint. We see that [u, v] 0 for these u, v and so B is commutative.

3. Anti-central elements

Henceforth we assume that A has a continuous involution x x*. We use M
to represent a closed linear subspace of A where M M*. Our final conclusions
involve M (0) and M Z. We adopt the following notation of Herstein [7, p. 5].
We set T(M) {x A [x, A] C M}. Of course T(M) Z if M (0). T(Z) is
more interesting algebraically.

Consider A as a Jordan algebra AJ under the Jordan multiplication a. b ab+ba.
By the standard definition of the center of a non-associative algebra [8, p. 18],
inasmuch as a b b a, the center ZJ of A is the set of all z A where

(z, x, y) (x, z, y) (x, y, z) 0

for all x, y A. Here (a, b, c) is the associator of a, b and c:

(a, b, c) (a. b). c- a. (b. c).

A straight-forward calculation shows that

(a, b, c) [b, [a. c]].

Then Z is the set of all z A such that, for all x and y,

[x, [z, y]] [z, [x, y]] [y, [x, z]] 0.

For z ZJ, [z, x] Z for all x or z T(Z).
Hence Z C T(Z). Conversely suppose z T(Z) so that [[z, x], y] 0 for all

x, y A. The Jacobi identity gives [[x, y], z] + [[y, z]x] + [[z, x], y] 0 for all
x, y, z so that z Z. Therefore T(Z) = Z.
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THEOREM 3.1. IfA has no non-zero nilpotent ideals then Z ZJ.

Proof. Let a ZJ. As noted above, [a, x] Z for all x A. Hence a permutes
with [a, x] for all x A. By a result of Herstein [7, p. 5] we see that a Z.
We say that a A is anti-central modulo M if the set of x A for which

[am xn M and [a’n, x’* M for all positive integers rn and n is dense in A. We
use X(M) to denote the set of anti’central elements modulo M.

THEOREM 3.2. A is the union oftwo disjoint sets, X(M) and the set ofx Afor
which some power ofx lies in T (M).

Proof. Suppose that a X (M). We use the general strategy as in the proof of
Theorem 2.1 by applying the Baire Category Theorem to the open sets

Wm,n,r,s {x A :[am, xn] M and [ar, xs*] M].

so that at least one of them, say Wm,n,r,s, is not dense. Then, for each y 6 A, either (1)
[am, yn] M or (2) [ar, yS,] M. Hence A is the union of two closed sets where,
respectively, (1) and (2) hold. At least one of these must contain a non-void open set.
From this we see that either [am, x’] M for all x 6 A or [ar, x M A for all
x A. By [9, Lemma 2.1 there is an integer p so that ap T(M).

Let S(M) denote the set of x 6 A for which xn is quasi-normal modulo M for no
positive integer n.

3.3 COROLLARY. S(M) C X(M).

Proof. Let a S(M) so that [an, an*an] M for no positive integer n. Then
there is no integer p so that [ap, x] M for all x 6 A. Theorem 3.2 then shows that
a X(M).

3.4 COROLLARY. IfA has no non-zero nilpotent ideals then either A is commu-
tative or S(Z) is dense.

Proof. Suppose S(Z) is not dense. Then, by Theorem 3.2, there is a non-void
open subset G of A where, to each x G there corresponds a positive integer
n n(x) so that [x", y] Z for all y A. By [9, Lemma 2.2] there is a fixed integer
n so that x e T(Z) for all x A. But T(Z) Z by Theorem 3.1. Hence A is
commutative [7, Theorem 3.2.2].
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4. On some dense subsets

4.1 THEOREM. Either there exists a positive integer r so that x E T(M) for all
x A or the set ofx A such that [x, (x’x)n Mfor no positive integer n is dense
in A.

Proof. Suppose the set in question is not dense. We apply the Baire Category
Theorem to the sets Hn {x A Ix, (x’x)n M] to see, reasoning as above, that
for some positive integer r, [y, (y,y)r] M for all y E A.

In dealing with [y, (y,y)r] M we set y u + itv where u and v are self-adjoint
andt is real. Then y*y u2 +t2v2 d-i[u, v]t. For convenience we set u2 +t2v2 w
and z i[u, v] so that (y,y)r (to d- tz)r. Let Qk be the sum of the terms in the
expansion of (to + tz) for which the sum of the exponents of the z factors is k. Then
(y,y)r -=0 Qktk"

As [u + itv, (y,y)r] M also [u itv, (y,y)r] M for all u, v self-adjoint and
real; thus [v, (y,y)r] M for all v, y in question. We have

[v, Qo + tQl +... + Qr] M

for all v self-adjoint and real. Notice that Q0 w (u2 + t2v)r. Letting 0 we
see that [v, u2r M for all u, v self-adjoint. Thus [h2r, y] M for all h self-adjoint
and y 6 A; it follows from [9, Lemma 3.1 that Ix2r, y] M for all x, y E A.

Say a 6 A is anti-normal modulo M if for all positive integers m and n we have
[am, a*n] M.

4.2 LEMMA.
empty.

The set W ofx A, x anti-normal modulo M, is either dense or

Proof Suppose that the set in question is not dense. By applying the Baire
Category Theorem to the sets ar, {x A [xr, x*’] M} we can, by reasoning
as above, deduce that there are positive integers m and n so that [ym, y,n] M for
all y E M. This shows that if W is not dense then W is void.

Next we consider the case where M (0).

4.3 THEOREM. Suppose A has no non-zero nilpotent ideals. Then either A is
commutative or the set W of its anti-normal elements is dense.

Proof Suppose W is not dense. As in the proof of Lemma 4.2 there e positive
integers m and n so that [ym, y,n] 0 for all y 6 A. It follows that [yr, y,r] 0 for
r mn and all y A; that A is commutative follows from [9, Theorem 3.6].
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