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LOCAL THEORY OF FRAMES AND SCHAUDER BASES
FOR HILBERT SPACE

PETER G. CASAZZA

ABSTRACT. We develope a local theory for frames on finite-dimensional Hilbert spaces. We show that
for every frame (f/" for an n-dimensional Hilbert space, and for every > 0, there is a subsetJi=l
C 1,2 m} with Ill > (I )n so that (fi)iel is a Riesz basis for its span with Riesz basis constant

a function of , the frame bounds, and (llf I1’:’ but independent of m and n. We also construct an
example of a normalized frame for a Hilbert space H which contains a subset which forms a Schauder
basis for H, but contains no subset which is a Riesz basis for H. We give examples to show that all of our
results are best possible, and that all parameters are necessary.

1. Introduction

Casazza and Christensen [3] have shown that there is a tight frame for a Hilbert
space which does not contain a Riesz basis. Later [4], they observed that this frame
does not even contain a subset which is a permutation of a Schauder basis. It follows
from these results that there are normalized frames for an n-dimensional Hilbert space
H,, (with quite good frame bounds of 1/2 and 2) so that any subset of the frame which
forms a Riesz basis for Hn has Riesz basis constant at least /ff. That is, even a "good"
frame for Hn need not contain a subset which forms a "good" Riesz basis for H,,.
However, we will show that such frames always contain a subset which is a good Riesz
basis for a subspace of H,, whose dimension is a percentage (arbitrarily close to one)
of n. We will produce similar results for Schauder bases for H,,, but now the Riesz
basis constant will also depend upon the Hilbertian constant of the basis (and this is
a necessary constraint). We also give examples to show that all our results are best
possible and all the parameters are necessary. Finally, we construct the first example
of a normalized frame for a Hilbert space which contains a Schauder basis for H bttt
does not contain a Riesz basis for H. This means that our sequence is a normalized
frame for H and contains a subsequence which is a Schauder basis for H, but any
subset of the frame which is a Schauder basis is no longer a frame (Since separated
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sets which are flames are automatically Riesz bases for H with frame bounds equal
to the square of the Riesz basis bounds).

Our work relies heavily on some deep results of Bourgain and Tzafriri [2] on
restricted invertibility of linear operators acting on finite dimensional ep-spaces. For
completeness, we will state the result from [2] which is used in this paper. We will
denote by (ei)iel an orthonormal basis for a finite or infinite dimensional Hilbert
space.

THEOREM 1.1 (BOURGAIN AND TZAFRIRI). There is a constant c > 0 so that
whenever T" g.2" e2n is a linear operatorfor which IlTeill I,for < < n,
then there exists a subset a of{l, 2 n} ofcardinality lal >_ so that

ja ja

for any choice ofscalars (aj)je,.

This paper explores the relationship between frames and the local theory of Banach
spaces. We now direct some comments towards the reader interested in further
explorations of these connections. The result of Bourgain-Tzafriri above fails for
ep as stated (see the discussion at the end of Section 2). But, with slightly stronger
hypotheses, it can be done for < p < 2 (see Theorem 7.2, [2]). Theorem 2.1
below was certainly known to Bourgain-Tzafriri and to specialists in the area, but
does not seem to have been formally written down. The corresponding result of
Theorem 2.1 (even with the stronger hypotheses needed to get the Bourgain-Tzafriri
result above) is unknown for ep, p 2. The problem is that to pass from having a
"fixed proportion" of your set of vectors being well equivalent to the unit vectors in et,

to having an arbitrarily close to one proportion with this property, requires being able
to produce a good projection onto your set of vectors. In a Hilbert space, this property
is free, while in ep there may not be such projections in general. The arguments in
this paper are similar to the so-called proportional Dvoretzky-Rogers factorization,
as used for example by Szarek and Talagrand [9]. The result from [9] was improved
by Giannopoulous [5]. Also, one can see these ideas in the paper of Bourgain and
Szarek [1 ]. Finally, in a paper in preparation, Litvak amd Tomczak-Jaegermann [6]
describe the Dvoretzky-Rogers factorization for non-symmetric bodies which give
even stronger results than some of ours, but are much more technical. Finally, there
are connections between frames and convex geometry relating tight frames to the
so-called John’s decomposition. This is a bit technical for this paper and we refer the
interested reader to [7] and [10].
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2. Local theory of Schauder bases

We say that two sets of vectors (fi)it and (gi)il are K-equivalent if for every set
of scalars (ai)ie! we have,

A sequence (fi, fi*)iet in H is called a biorthogonal system with constant d if IIA
1, and IIf,.* _< d- for all s I, and < f/*, fy >= ij for all i, j I. This is
equivalent to (f/)ie being a set of vectors in H satisfying

d infj inf {ll.t f II" f s span(fi)ij > O.

A sequence of vectors (fi)i is a Hilbertian sequence with Hilbertian constant L if

ai L lai

for all sequences of scalars (ai)iel. A sequence of vectors (fi)ie/.is a Besselian
sequence with Besselian constant B if

for all sequences of scalars (ai)is. The sequence ()is is called a Riesz basis for
its span with Riesz basis constant M if

lai ai fi M lail
il

for any choice of scalars (ai)il.
In several places in the paper we need ceain conditional bases for a Hilbe space.

We will write down these bases now without verifying their propeies. The proof
can be found, for example, in [8].

Let H Le[-, and let 0 < a < 1/2. Then

f2n(x) [xl -ae-inx, f2n+l(X) Ix -aeinx, n=0, 1,2

is a Besselian but non-Hilbeaian bounded basis of H. Also,

gn (x) Ix aeinx, gn+l (x) Ix [ae-inx, n 0, 1,2

is a Hilbeaian but non-Besselian bounded basis of H.
We now show that finite separated, bounded, Hilbertian sequences have large

subsets which are Riesz bases for their span. We will give an explanation for the
inner workings of this proof fight afteards.
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THEOREM 2.1. There is a function g(x, y, z): R3 -- R+ with the following
property: Let (fi, f/*)’i be any biorthogonal system with constant d, 0 < d <_
and Hilbertian constant L in an n-dimensional Hilbert space Hn and let 0 < < I.
Then there is a subset 0. C {1,2 n}, with Irl >_ (1 )n so that (fi)is, is a
Riesz basisfor its span with Riesz basis constant g(e, d, L).

cdProof By defining an operator T" -- by T(ei) fi and letting b
in Theorem I. l, we obtain a set 0.1 C l, 2 n} wita [0.1 bn so that

aj fj > c laj 12

for any choice of scalars (aj)j,.,,. Here, and for the rest of this proof, to simplify
notation we will ignore the fact that bn may not actually be an integer. By working
with the greatest integer function, we can make this more exact, but the notation
becomes unnecessarily cumbersome. Let P be the orthogonal projection of Hn onto

spanj, 3. By the definition of the biorthogonal constant, we have

(3.1) II(t- P)J)II >_ d,

for all j E 0.[. Define an operator

by

Tl ei
(t- P)fi
I1(/- P)J%

for all E 0., where (el) is an orthonormal basis for nlr;. I. Note that by (3.1), for all
sequences of scalars (ai) we have

<- aifi <--.

LThus, IITII .
Now we apply Theorem 1.1 to the operator T and obtain a set 0"2 C 0" with

I0"21 b(l b)n so that

aj fj > cd lay 12

for any choice of scalars (aj)j.a2. Let P2 be the orthogonal projection of (I Pl )H,
onto spanj, 3 and observe that (! P2)(I P is the orthogonal projection of H,
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onto the. orthogonal complement of spanjmvc,2.t), so again by the definition of the
biorthogonal constant, we have

I1(1- e2)(l- Pt)./%ll > d,

for all j e (at U 02)" We continue to get disjoint sets (oi v" and orthogonalJi=l

projections (PV" such that:Ji=l

(I) [l-(l-b)’’’-] > I-e.
(2) Ioil >_ b(I b)i-ln, for all < < m.
(3) (! Pi) (I Pi- )"" (I P is the orthogonal projection of H,, onto the

orthogonal complement of span{3" j 6 U,=ok }, for all < < m.
U ),’(4) I1(I P)./)II >_ d, for all j =cr for all _< _< m.

(5) For any _< _< m and any choice of scalars (aj)j,i we have

7i

Now let o U’i"=oi and note that

m-

1o] =bZ(l-b)in [(1-(1-b)’"-’]n > (1-e)n.
i=0

It remains to show that (.f)ie,, is Besselian with constant a function of the stated
parameters. For later reference in the proof of Theorem 4.3, the reader should note
that the rest of the. proof relies only on that fact that we have a disjoint family of
subsets of {1,2 n} satisfying (1) through (5) above. To see this, choose real
numbers r > 2, and a so that 2L < cd(r 1) and rm+a < 1, and choose any set of
scalars (aj)jcr with

(3.2) Y laj 12 I.
jcr

Now choose < i,, < rn largest so that

)
I/2

(3.3) lajl 2 > rm-i"a.

Such an io must exist, for otherwise,

<_ Z ria <_ rm+la < 1,
i=l
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contradicting (3.1) above. Now we have

(3.4)

By our choice of i,, largest satisfying (3.3) and from our construction, and (5) above
we can continue inequality (3.4) as

> aj(l Pi,,)(l Pi,,-I)"" (I PI). L Z r’"-ia
j cri,, =i,,+

> cd ylajl2 -L
r-|

L rm_i,,a L rm> cdrm-i,,a_ > -t,,a,
r-I -r-I

where the last inequality follows from our choice of r. Since r’"+a < I, it follows
that for every sequence of scalars (aj)j, we have

This completes the proof of the theorem.

We feel that a discussion of the inner workings of the proof of Theorem 2.1 is
in order since on the surface such a proof should not work. That is, we divided a
birothogonal system into subsets each of which is a good Riesz basis for its span and
then took the union of these sets to get a larger Riesz basis. Normally, such a process
would fail for a biorthogonal system since our assumption is only that each vector is
far from the span of the others while what we need is that the span of certain subsets is
far from the span of the others. What is actually happening is the following. We take
an orthogonal projection P onto the span of a subset (f/)i,x of our set of vectors and
use "biorthogonality" to discover that the vectors ((I P)fi)ie/v. are well bounded
below in norm and hence have a subset (I e)fi)iA, forming a good Riesz basis
for their span. Since (fi)iA, has Hilbertian constant L, it follows that (fi)izx, is also
a good Riesz basis; i.e., ((! P)fi)iA, is well equivalent to (f/)izx,. It is not hard
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to see that this implies that the span of (fi)ia is a "good" distance from the span of
(fi)iea, which is what we need.
A sequence (fi" with m finite or rn o, is a Schauder basis for H,,, if for-i=1’

every f H,,,, there is a unique set of scalars (ai.i=’" so that

f -’ai.fi.
i=1

In the finite-dimensional case, this is not particularly interesting since this is equivalent
to the sequence being linearly independent. What is important in this case is a
quantitative measure ofthe behavior ofthe basis. The basis constantK ofthe Schauder
basis (fi):" is the smallest constant satisfyingt--I

<K aifi
i=1

for every natural number n < rn and every choice of scalars (ai)" It is easily-i=1"
checked that if (fi)ie/ is a Schauder basis with basis constant K, then (fi)i! is a
separated set with constant > -. To get a separated set of vectors which is not
a Schauder basis, take any conditional Schauder basis (.f/)i for H and choose a
permutation cr of the natural numbers so that (,fcr(i))i__l is not a Schauder basis for
H. Then this set is still separated but is no longer a Schauder basis for H. The next
result is an immediate consequence of Theorem 2.1.

COROLLARY 2.2. There is a function g(x, y, z): R -- R+ with the following
property: Let () be any normalized Schauder basisfor an n-dimensional Hilbert
space H, with basis constant K and Hilbertian constant L, and let 0 < < I. Then
there is a subset cr C {l, 2 n}, with Icr >_ (l e)n so that ()ia is a Riesz
basisfor its span with Riesz basis constant g(e, K., L).

Corollary 2.2 (and even Theorem 1.1) do not generalize to et,. For example, if
< p < 2, there is a constant K > 0 so that for all n e2’’ contains a normalized

sequence (xi)’i’-_ which is K-equivalent to the unit vector basis of e. Defining
T" e2’’ -- e2’’ by Tei xi for < < .n and Tel 0, for n + < < 2n-p -p

it follows that T yet we do not have a large subset of (xia" which is well-i=l

equivalent to the unit vector basis of e" This shows that our results do not work in
general outside of Hilbe space.

It is well known that there are conditional Schauder bases (even Hilbertian ones)
(),= for a Hilbe space. This means that the Riesz basis constant of (t )i=’’ goes
to infinity with n. The main point of Theorem 2. is that the Riesz basis constant is
independent of the dimension of the Hilbe space. That is, although ()’i itself
need not be a Riesz basis for H,, with Riesz basis constant independent of n, at least
it has a subset spanning an (arbitrarily close to one) percentage of the dimension of
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the space which is a Riesz basis for its span with Riesz basis constant independent of
n (but of course a function of the percentage). Each of the variables in the function
g(x, y, z) are necessary for Theorem 2.1 and Corollary 2.2 to hold. The preceeding
discussion shows that e is necessary in these results. Bourgain and Tzafriri [2] (the
remark on p. 165) give an example of a Besselian Schauder basis (f/)i for H which
has no subset of positive density which is a Riesz basis for its closed linear span. This
means that (fi):’ does not contain a percentage which is a Riesz basis with Riesz/--I

basis constant independent of n. Finally, the separation assumption in Theorem 2.1 is
necessary since otherwise we could consider (el, ei)’i’= in H2,, and have no subset at
all Which is a Riesz basis for more than half of H2,,. If we want our set to be linearly
independent, we can use (e2i-i, e2i-i -I- 1/4e2ifi=l in H2,, and easily observe that this
is a linearly independent set spanning H2,, for which any subset containing more than
half the elements has Riesz basis constant /n.

3. Every frame is equivalent to a tight frame

The results of this section have been part of the folklore in this area for some time,
but do not seem to be broadly known. Recall that a sequence (fi)iet in a Hilbert
space H is aframe for H with frame bounds A, B if

mllfll 2 I<f, ,f/)l 2
i!

_< BIIfll 2, .f H.

If A B, we call this a tightframe. If (fi)it is a frame, then defining S.f ,it
< f, fi > .;6, for all f 6 H, we obtain an isomorphism of H onto H. S is called the
.frame operator for the frame. This leads to theframe decomposition

f ss-’f <f, s-’f,. s-’f, )f,., v f H.
il i!

It follows that

(3.1) (f, S-t f) I(s-f, f/)l2
il

As a consequence of (3.1), we can see that a frame is tight if and only if the frame
operator is a multiple of the identity. The frame operator S is easily seen to be a
positive operator on H and therefore real powers of S make good sense. This leads
to the following general result.

THEOREM 3.1. Let ()i! be aframefor H withframe operator S. Thenfirany
real number a, (S"-z fi)it is also aframefor H withframe operator Sa.

Proof. Since S is a positive operator and an isomorphism of H onto H, so is St,

for any real number b. Hence, (sbfi)it is a frame for H. Letting b 2, for all
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f e H we compute

E(’f’iel sb fi)sb fi Sb (E(’f’ii sb fi) fi)
sb (il(Sb.f,.fi)fi) sbs(sbf) sl+2bf-- saf.

This shows that (S"-’.)iet is a frame for H with frame operator S".

Letting -i, we get a 0 in Theorem 3.1. This yields:

COROLLARY 3.2. If (fi)it is a frame with frame operawr S, then (S-I/2 fi)ie!
is aframe with the identity asframe operator. That is, for every f H,

f E(f, S-I2.D)S-I2fi.
i!

Therefore, everyframe is equivalent to a tightframe.

There are many places in the literature on frames where authors find (or the reader
is asked to find) "tight frame" examples of an existing example in frame theory.
Corollary 3.2 renders all this as unnecessary, despite its relatively soft proof.

COROLLARY 3.3. Aframe f )it is a Riesz basisfor H (fand only if S- /2 fi )i et
is an orthonormal basisfor H.

Proof. (S-/2fi)iet is an orthonormal basis for H if and only if

That is, (S-I/2fi)il is an orthonormal basis for H if and only if (S- f/, f,)it is
a biorthogonal sequence in H. But, it is well known [11] that this is equivalent to
(f/)it being a Riesz basis for H.

4. Local theory of frames

Casazza and Christensen [3], [4] (also see Lemma 5.1 below) have shown that
"+ for H,, with 1/2 < 11.;6 < 2 for which any subsetthere exist tight frames (fiji= _-

which spans H,, has Riesz basis constant > That is, a frame for a finite-4
dimensional Hilbert space (even a tight frame with good bounds on the norms of the
frame elements) need not contain a subset which is a Riesz basis for the space with
Riesz basis constant independent of the dimension of the space. However, in this
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section we will show that such frames contain "good" Riesz bases for a subspace
"almost" equal to the whole space. These results are just an application of the results
of Section 2. To apply the results of Section 2, we need two elementary observations.
The first result relates the dimension of the space to the lower frame bound and and
the maximum of the norms of the frame elements.

LEMMA 4.1. Let (fi)it be aframefor H,, with lowerframe bound A and IIf, <
,for all I. Then

n < --III.
Proof. For any <j <n,

Therefore,

A < I(e, .t)l.
i!

j=l i!

i! j=l i!

Our next preliminary result relates the cardinality of the number of frame elements
to the upper frame bound, the dimension of the space and the minimum of the norms
of the frame elements.

LEMMA 4.2. Let (fi)iet be a frame for H:, with upperframe bound B and ot <

II./ II,jr all I. Then

B
I11 _< -n.

Proof. We compute

i! i.! j=l

y I(ej, f/)l2 < Bllejll2= nB.
j=l i! j=l

Now we are ready for the main result of this section.
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THEOREM 4.3. There is afunction g(v, w, x, y, z)" R5 --> R+ with thefollowing
property: Let (fi )k be anyframefor an n-dimensional Hilbert space H,, with framei=1
bounds A, B, < II.f _</, for all <_ <_ k, and let 0 < < I. Then there is a
subset r C {I, 2 k}, with Irl >_ (I )n so that (fi)i, is a Riesz basisfor its
span with Riesz basis constant g(e, A, B, c, /5).

Proof. By Lemma 4.2,

B
k<

o2
n"

Now choose 8 > 0, a function of our stated parameters, so that

(4.1)
A c2 -2

<

Since a frame is Hilbertian with constant < B, by Theorem I. there is a universal
constant c and a constant d c/B2 so that we can choose cr C {I, 2 k} with
Icrl > dn and

i, ai f >_ c lai 12

for all choices of scalars (ai)ie,. Let P be the orthogonal projection of H,, onto the
span of (fi)i,,. If

I{i r, "ll(t- e,)f,ll >_ ,s]l >_ n,
then applying Theorem 1. again we can find a2 C a -n so that

i2 ai f > c8 lai

for all choices of scalars (ai)i,2. Let P2 be the orthogonal projection of H,, onto the
span of (fi)i2, and check if

I{i (,, u 2)": I1(*- P2)(l- e,)fill >_ a}l >_ n.
We continue this construction, stopping after m steps as soon as one of the following
holds"

(I) m is the first natural number so that

Ir,,,/ _< n
where

(4.2)
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(2) dn + (m l)rn > (I -e)n.
Now, let

O" ,.,j= crj

We finish the proof in two steps.

Step 1. lal > (I )n.

There are two cases to be examined here.

dCase l. dn + rnr-n > (I )n

In this case,

d
n > (1 -)n

O-
j=l

Case H. rn is the first natural number so that

l[ (Uj=I’Jl t1(I- Pm)(l- Pro-,)"" (I- P’)f," > 811 < :n

In this case, let P,,,+ be the orthogonal projection of H,, onto the span of (fi)i6,,,,+,.
It follows that,

for all e (a U a,,,+)". Now applying Lemma 4.1 and then Lemma 4.2 and then
inequality (4.1) we have

82 82 B

Combining this with inequality (4.2) yields

dim (span(fi)i,,.) < n.

Therefore, since (fi)it spans Hn, it follows that lal > (I )n.
The proof will be finished with the next step

Step H. (fi)ie, is a Riesz basis for its span with constant g(v, w, x, y, z).

But, the (end of the) proof ofTheorem 2.1 works here to show that our set is a good
Riesz basis. That is, the (ai) above satisfy (3) through (5) of the proof of Theorem
2.1, and hence from that proof form a good Riesz basis for their span. This completes
the proof of the theorem.
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Again, the important point in Theorem 4.3 is that the Riesz basis constant is a
function of the frame bounds, the max and min of the norms of the .frame elements,
and e, but is independent of the dimension of the space. It is easily seen that all
the parameters are necessary in Theorem 4.3. Our earlier examples with Hilbertian
Schauder bases show .all this except the boundedness assumption. But the frame
given at the beginning of Section 5 below shows that the boundedness assumption is
also necessary in Theorem 4.3.

5. Frames containing Schauder bases but not Riesz bases

It is easy to construct a tight frame for a Hilbert space which contains a Schauder
basis but does not contain a Riesz basis. Just consider

}e,, e2, e2, e3, e3, e3,.
This frame has a subset e,, ),,= which is a Schauder basis for H. But, any spanning
subset of this frame is not bounded below in norm and hence is not a Riesz basis for
H. However, to construct an example of this type which is normalized is much more
difficult, and has been open for quite a time. We will give such an example below.
But we will first state the results needed for the example. The first is due to Casazza
and Christensen [4], Lemma 3 (this is not exactly what their lemma states, but it is
what their proof yields).

LEMMA 5.1. Let (ei)in___l be an orthonormal basis for an n-dimensional Hilbert
space H,1. Define

fi ei njlej.= fir i=1,2 n,

and let

fn+l- -’ jl
Then (fj"+,j= is aframefor Hn with bounds A B 1, and any subset oftheframe
which contains n-elements has basis constant greater than or equal to 4

We also need a particular example of a conditional Schauder basis for finite di-
mensional Hilbert spaces.

LEMMA 5.2. There are universal constants c, L so that for every > 0 and
every natural number k, there is a natural number n and a normalized Hilbertian
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Schauder basis (gi ):’ for H,, with basis constant c and Hilbertian constant L andt--I
there is a subspace E C H,, with dim E k, and

"[(gi, f)l2 _< Ellfll z, V f E.
i=1

Proof Let (hi)i be a normalized conditional Schauder basis for H with basis
constant c and Hilbertian constant L. Since (hi )i= is not a Riesz basis, it follows
that for every E > 0 and every natural number k, there is a natural number m and an
vector h

_
span<i<mhi with Ilhll and

tn

I(h hi)l 2 <
k

i=1

Let

j=l e2

Then the following sequence (fij)i=m.jt,_ forms a Schauder basis for H,, with basis
eonstant c and Hilbertian constant L"

{(h,, 0 0), (h2, 0 0), ., (hm, 0 0),

(0, hi, 0 0), (0, hm, 0 0),’"

(0 0, h,), "", (0 0, hm)l.

Let f (h, 0 0), f2 (0, h, 0 0),..., fk (0 0, h), and let E
span <i <k f/. For any

k

f -ajfj E,
j=l

with

we have

k

Ilfll 2 lal2 1,
j=l

m k
?

i=l j=l

This completes the proof of the lemma.
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Now we are ready for the promised example.

PROPOSITION 5.3. There is a normalizedframe (fi)= .for H which contains a
Schauder basis but does not contain a Riesz basis (and hence does not contain any
subset which is an unconditional basisfor H).

Proof. Let e,n decrease to 0, and by Lemma 5.2, choose nm and Em C H,,.... with
dimEm m, and (gi-m’"’")i= satisfying Lemma 5.2. Let

m= f2

and let Pm be the orthogonal projection of H onto Era. Choose the tight frame
(f/m)m+i= for Em C H as in Lemma 5.1 and let (e’"’"-m-i= be an orthonormal basis for
(I P) Hn,,, C H. Now, (e ’’" m+lmji=, (f/mji= forms a tight frame for H,,,, C H and
(g;")"’" is a Schauder basis for H,,,,, C H with basis constant c and Hilbertian constanti=1
L. Although not all the vectors here are normalized, they all have norms between
and 2, and so if we establish that they satisfy the requirements of the proposition,

then normalizing them .later will be sufficient. From our observations above, the set
of vectors

(g;n)7,_,, (e;n,n,,, (f/m,,n+,Ii=l’ Ii=l

forms a frame in H which contains the Schauder basis {t,,m,,,,ii=! }m=l’ NOW we need
to show that this frame does not contain a Riesz basis for H. Suppose that (hi)i=l is
a subset of this frame which spans H. For each m l, 2 let (f/m)iea,,, be the
elements from (f/mw+,i= contained in (hi)i=l Then for each m ,2, we have
two possibilities.

Casel. Aml=m-

In this case, by Lemma 5.1, the Riesz basis constant of (hi)i= is > 4
CaseH. Aml <m.

mIn this case, (f/)iea,,, does not span Em, so there is a vector g c: Em with Ilgll
and so that

But, g _1_ span(e) so

I(g, f/m)12 0.
Am

Y. I(g, e’)l2 0.
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Finally, by our construction,

I(g, g’)l2 -< 6rn.
i=1

That is, in Case II, the Riesz basis constant of (hi)i= is > --.
Combining Cases and II for every m, we see that (hi o)i=1 is not a Riesz basis

for H.
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