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INJECTIVITY AS A TRANSVERSALITY PHENOMENON
IN GEOMETRIES OF NEGATIVE CURVATURE

FREDERICO XAVIER

ABSTRACT. The global asymptotic stability conjecture in dynamical systems was solved recently and
independently by Feller, Glutsiuk and Gutierrez. Crucial to the approach of Gutierrez is the following
theorem of his: A local diffeomorphism f: 11 1 for which the eigenvalues of Df(x) miss (0, x) must
be injective. The present paper gives a partial generalization of this theorem to local diffeomorphisms
between Hadamard surfaces, the spectral condition being replaced by transversality conditions among
certain foliations associated to horocycles. The proofs use arguments from global analysis.

Introduction

The question often, comes up of determining if the local diffeomorphisms in
a particular class are injective. Recent results of this type are the counterexam-
pie to the strong real Jacobian conjecture in 2 by Pinchuk [8], the solution of
the global asymptotic stability conjecture by Gutierrez [6], Fessler [4], Glutsiuk
[5], and the global injectivity theorem with nearly spectral hypothesis of Smyth-
Xavier [9].

In this paper we approach the problem of injectivity of two dimensional local
diffeomorphisms from the point ofview ofgeometries ofnegative curvature. Theorem
below gives a set of sufficient conditions for injectivity of a local diffeomorphism

f: M M2 between non-compact simply connected surfaces which is based
entirely on certain simple transversality conditions to be satisfied by the horocycle
foliations associated to metrics of variable non-positive curvature on M and M2, and
the pull-backs under f of such foliations. Theorem provides a geometric setting
for some of the results of [6] and [9]; in particular, it gives a partial extension of [6]
to the case of Hadamard manifolds.

Our arguments represent a refinement, on the analytic side, of the method intro-
duced in [9] to show injectivity of local diffeomorphisms of/" that satisfy certain
algebraic and nearly algebraic conditions. In the present paper however our condi-
tions are entirely geometric and we work in the context ofcomplete simply-connected
Riemannian surfaces of non-positive curvature (Hadamard surfaces). The underlying
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principle is that the Busemann functions of a Hadamard manifold play a role similar
to the one played by linear functionals in euclidean spaces. In particular there are
enough ofthem to separate points. The question of injectivity of a map f then reduces
to the problem of selecting a point at infinity whose Busemann function distinguishes
between f(a) and f(b) when a :p- b. This is done using degree theory.
We now give a broad outline of the proof of Theorem which, as we mentioned

before, is based on the technique introduced in [9]. In order to show that a map f is
injective we first construct an auxiliary map, to be denoted p. , whose surjectivity
implies the injectivity of f. The map. is naturally embedded in a family c,.." ot >
1, 0 < s < obtained by taking integral curves of a suitable 3-parameters family of
vector fields. For c > 1, the maps p,.. satisfy a coercivity condition and topological
degree theory is then used to show that they are surjective. A careful geometric
analysis allows us to prove that , is surjective when ot also.

Before we state our results we must introduce a few concepts. We begin by
recalling that if v is a point in the unit circle T a v-horocycle (relative to the Poincar6
metric on the open unit disc D) is a euclidean circle in D that i,s tangent to T at v (the
point v itself being excluded). Horocycles will be oriented in the counterclockwise
sense. The foliation of D by v-horocycles will be denoted by Hr. The region between
two distinct v-horocycles will be called a v-horoannulus.

The notion of horocycle can be defined purely in terms of the hyperbolic geometry
of D. Actually, this and other classical concepts of hyperbolic geometry are best
understood in the more general context of Hadamard mangfolds. By definition these
are complete simply connected Riemannian manifolds M of non-positive sectional
curvature. A Hadamard manifold with curvature bounded from above and below by
negative constants has many structural and analytic properties similar to the Poincar6
disc. This analogy has been pursued vigorously in recent years, revealing many
fruitful connections with analysis, topology and ergodic theory (see [3] for a recent
survey). In this paper we will be concerned with the two dimensional case only.
We shall briefly review the basics on Hadamard manifolds. A full account of the

discussion below can be found in 1] or [2]. A Hadamard surface M is diffeomorphic
to IR2 and can be compactified in a natural way by the introduction of M(o), the
circle at infinity, or ideal boundary. An element of M(o) is an equivalence class of
geodesics that remain at a finite distance from each other as time goes to +o. The
geodesics of the Poincar6 metric are arcs of circles perpendicular to the unit circle
and in this case M(o) can be naturally identified with T. Given a point at infinity v
and a point p in M, there is exactly one geodesic F through p in the class of v and we
write , ,v. Furthermore, if the curvature of M is bounded away from zero there is
exactly one geodesic joining any two distinct points of M(o). The ideal boundary
can be topologized in such a way that for every point p in M the natural identification
between the unit circle in the tangent plane at p and M(cx) is a homeomorphism.
Given v 6 M, a v-horocycle through p 6 M is the boundary of the region formed
by taking the union over all > 0 of the geodesic balls centered at ’v(t) and having
radius t, where , (0) p. This definition coincides with the previous one in the case
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of the Poincar6 disc. As before, one can consider the horocycle foliations Hr. They
are orthogonal to the foliation of all geodesics in the class v. Again, a v-horoannulus
is a region between two v-horocycles. For instance, in the flat plane a v-horoannulus
is a strip bounded by lines perpendicular to v.

An important alternative way to define a v-horocycle is as a level set of a Busemann
.function Bv. Fix a point o M and let , be the geodesic emanating from o that belongs
to the equivalence class v. Let, for p M, Bo(p) limt(d(p, ,(t)) t), where
d stands for the Riemannian distance. The Busemann function Bo enjoys some
important properties: it is a function of class C2 [7], its gradient has length one and
-VBo(p) determines a geodesic in the class v. If M is an oriented Hadamard surface
we can orient the v-horocycle Ho (p) through p by declaring a unit tangent vector to

to Hv to be positive if the oriented orthonormal basis {VBo(p), to} is positive.
In order to state our results we need a concept weaker than transversality:

Definition. Two smooth oriented planar foliations (line fields) are said to be
loosely transversal if, for every point p in their common domain of definition, either
their leaves are transversal at p or they are tangent there but have opposite orientations
at p.

THEOREM 1. let f: (M, g) (M2, g2) be an orientation-preserving local
dgffeomorphism between oriented Hadamard su.rfaces. Then f is injective, provided
there is a continuous map h: M (0) M2(o) such that:

(i) For every v MI (cx), the horocycle foliation Ho and the pull-back foliation
.f* Hhto) are loosely transversal.

(ii) For every v M (o), the set where Hv and f* Hhto) are tangent intersects
every v-horoannulus in a compact set.

The above theorem represents a partial generalization to Hadamard surfaces of
the Gutierrez theorem [6] (see below). In order to see this, in Theorem take
(MI, g) (M2, g2) the flat plane and h the identity. It is easy to see that
condition (i) is equivalent to the spectral condition [0, cx) tq Spec (Df(x)) f
for all x in the plane, where A denotes the transpose of A. In order to see this,
let {v, v+/- be a positive orthonormal basis and suppose, by way of contradiction,
that for f as in the theorem we have Df(x)tv Zv, where . > 0. It follows that
Df(x)v+/-

#v
+/- for some real number/z. The map f preserves orientation so that

the basis {Df(x)v, Df(x)v+/-} {Df(x)v, lzv+/-} is positive. Since (Df(x)v, v) > 0
this implies that/z > 0, which is a contradiction to loose transversality.

Condition (ii) means that the set of points in R2 that has v as an eigenvector of
(Df(x))t intersects any strip in the plane with sides perpendicular to v in a compact
set. In particular [9, Theorem 3] f is injective if the spectra of the linearizations of f
miss the non-negative real axis everywhere and miss the real line in a neighborhood
of infinity. In fact, the central result in the recent important paper of Gutierrez [6]
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states that the spectral condition [0, o) f3 Spec Df(x) alone suffices to prove
that f is injective. An important consequence of the theorem of Gutierrez (see also
[4] and [5]) is the affirmative solution of the global asymptotic stability conjecture in
the theory of dynamical systems: if f is a smooth vector field in/2 with a singularity
at p and if the linearizations of f are everywhere stable then the stable manifold of
p is the entire plane.

In view of the developments described in the paragraph above, it is natural to ask
if condition (ii) of Theorem is superfluous. If this can be shown to be the case one
would have a full generalization of the theorem of Gutierrez to Hadamard surfaces.
We would like to thank Brian Smyth for conversations on matters relating to this

work.

I. Proof of the theorem

Let Dr(x)" TxM Tftx)M2 be the differential of f at x and denote by
Df(x)t" Tftx)M2 -- TxM the transpose of Df(x), defined in the usual way.

In what follows, Bu, will denote the Busemann function corresponding to w 6

M (0) or M2(o), for a fixed choice of base points in M and M2. Given ot > 1, s 6

[0, 1] and v M (0), we define a vector field Gv.,,.. on M by

(1) Gv..s(X) VBv(x)
s Df(x)’VB,v)(f(x))
a IOf(x)tBh<o(f(x))l

Since Busemann functions are C2, the vector field Go... is C and therefore its
local trajectories are uniquely determined. In fact, since IGo.,,..I _< 2 and Mt is
complete, the trajectories are defined for all times. We also observe that G... varies
continuously with the parameters v, c and s. In particular, the associated flow also
varies continuously with these parameters.

Now, suppose that f(a) f(b) with a # b and denote by 40.. the integral
curve of G v.,.. passing through a at time 0. Hence qo.,.. solves the initial-value
problem k Go... (x), x (0) a.

Letting a > 1, x qo.,.. (t) and using IV Bo 1, we have

d s Df(x)tVBhtv)(f(x))
d-’ By(x) (VBv(x), VBv(x)

ot IDf(x)tVBht,,)(f (x)l
)>_I

Integration between 0 and gives

(a- 1)
(2) Bo(4o.,.s(t))- By(a) > t,

valid fort >0, ct > 1, 0<s < I, v6M(o). Forct > 1, 0<s < l, wedefine
a (continuous) map @,.." MI M by

[o(a.w).o,.s(d(w, a)), w # a
o,.s(w)

[ a, w a.
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Here d is the Riemannian distance and for to a, v(a, to) stands for the point
at infinity corresponding to the unique oriented geodesic joining a to to. From the
definition of p,,,, and (2) we have

(u- 1)
(3) Bo(a,w)(q,,(w)) Bo(a,to)(a) >_ --’--’d(w, a).

Ford > we consider the homotopy K" [0, 1] x Mi Mi, given by K(s, to)=
pa,,(to). Ifs. [0, 1] and w, M are sequences and lim d(to, a) cx, then
it follows from (3) that

lim d(Ka(s., w.), a) .
Hence the (continuous) homotopy Ka is proper. In particular, the continuous maps
K(0, .) and Ka(l, .) are also proper maps of M. It is then possible to define their
topological degree. Then the invariance of the degree under proper homotopies gives

(4) deg(ap.,) deg(ap,o).

Clearly P.,0 is the geodesic symmetry about the point a. The latter is a diffeomor-
phism of M and by (4), deg(p.,) deg(ap.,0) is non-zero. In particular, p,. is
surjective. Therefore for every c > there exist r, > 0, v,, e M such that

(5) 4o=,a, (0) a, qbo=,a,l (ra) b.

At this point in the proof we analyze two alternatives.

Alternative 1. lim inf.l r. < o.

Let c. be a sequence tending to such that r,,, c < o and v,,,, v for some
c and v. From the continuous dependence of the flow on parameters and from (5) we
have

(6) qo, , (0) a, o, , (c) b.

Letting x o,,(t) we have

d
d-- Bh(o)(f(x)) (VBh(o)(f(x)), Df(x)Jc),

which is equal to

Df(x)’VBh(o)(f (x))
(Of(x)’VB(o)(f (x)), VBo(x)

iOf(xi-VBh(v)(f(x))l) < O,

since VBo 1. The inequality will be strict provided

Df(x)’VBh(v)(f (x))
(7) VBo(x) ID--)-VB(o)(f(x))I
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If (7) is violated then

(8) Df(x)tVBht,,)(f(x)) [3(x)VBv(x),

where/(x) is positive. We want to show that (8) leads to a contradiction. Let w
(resp. w’) be a positively oriented tangent vector to the v-horocycle at x (resp., the
h(v)-horocycle at f(x)), so that the bases {VBv(x), w} and {VBhtv)(f(x)), w’} are
positive.

From (VBho)(f(x)), Df(x)w) 0 we have Df(x)w #w’ for some non-
zero /z. In particular, f*Hhto) is tangent to Ho atx. For0 < < we let
Xt tDf(x)VB(x) + (1 t)VBhv)(f (x)). From (X,, VBh)(f(x)))
+t(x) > min{I,/5(x)} > 0 we see that {Xt, w’} is abasis for0 < <

and that the orientations of {X0 w and {X are the same. It follows that
{X, w’}= {Df(x)VBo(x),-ff Df(x)w} is a positive basis. Since f preserves orien-
tation, this forces/z > 0. But this contradicts hypothesis (i) on loose transversality.
Hence (7) is satisfied.

Integrating d Bho)(f(x)) < 0 between 0 and c ( > 0 in view of of (6) since
a -7/: b) and using (7), we have Bh(v)(f(b)) < Bh(v)(f(a)) which is a contradiction
to .f(a) f(b). We have therefore finished the proof of the theorem under the
assumption that Alternative prevails. It remains to analyze the other case.

Alternative 2. Lim,

We are going to show that this case cannot happen either. Let 06, be a sequence
tending to with r,, r,,, oo and v,, v,,,, vo. We claim that

(9) u,,= o,,.,,.t ([0, r,,])

is an unbounded subset of M. Suppose, by way of contradiction, that the union
above is contained in a fixed compact set K.

Letting x ,,.,,. (t), we have

d

d-- By,, (x) (V By,, (x), V By,, (x) Df(x)’VBh,,,,)(f(x))

It follows from c,, > 1, VBo,, 1, Schwarz’s inequality and loose transversality
(see the discussion of (8)) that as long as the trajectory qo,,.,,. (t) remains in K there
is a positive number 3, depending on K but not on n, such that

Integrating this inequality between 0 and r,, and using (6) we have By,, (b) Bv,, (a) >
r,,, a contradiction to r,, o and the fact that IV Bo 1. This establishes that the

set in (9) is unbounded.
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A truncation of a closed v-horoannulus Lo is a closed subset To bounded by
the horocycles in the boundary of Lo and by two distinct o-geodesics. Let d
maxot,t IBo(a)- Bo(b)l d(a,b). For all v Ml(o), consider the
horoannulus L,,. B([Bo(a) 2d, Bo(a) + 2]). In particular, a, b L,,.
for all v MI (e). Let oo be as before. By hypothesis ii) in the theorem, it is
possible to find a truncation To,,. of Lo,,. that contains both a and b, and such that

(10) Lo,,. q {points where Ho,, and f* Hl,o,,) are tangent} C T’,,..
Here To’,,. is obtained from To,,.a by deleting the v0-geodesics in its boundary. As
n o, Lo;,. Lo,,. uniformly over compact sets. Clearly, it is also possible to
find truncations To,,.a of Lo,,. that contain a and b and converge to To,,..

Let now K be the union over all v 6 M (o) of all the truncations To,,. of Lo,,.a
given above. Since K is a bounded set, it follows from (9) that the set (M \ K)
o,,.,,. ([0, r,,]) is non-empty for all large enough n. In particular,

(I 1) (M \ To,,.) f3 bo,,.,,,. ([0, rn]) /,n > N.

Since TBo,,(qbo,,.,,.)(t) > 0, the trajectory qbo,,.,,.t([O, r,,]) is transversal to the
horocycle foliation and by (5) we have

(I 2) qo,,.a,,. ([0, r,, ]) C Lo,,..

Since a and b belong to all truncations, it follows from (I I) that the trajectory
bv,,.,,.([O, r,,]), n > N, must exit and then re-enter To,,.. Bye(12), the exit and
entrance points cannot be on the v,,-horocycle boundaries of the truncation. By
passing to subsequences we may assume that the exit and entrance points lie in.the
same geodesic component ?,,, of the boundary of To,,.. In particular, the vector field
G o,,.,,. becomes tangent to ,,, somewhere. In the limit we conclude that the vector
field G v,,. . becomes tangent to a v0-geodesic at a point x0 in the v0-geodesic that is
part of the boundary of Lo,,. \ To,,.. Hence there exists such that

(13) Go,,..(xo) IVBo,,(xo), xo c= (Lv,,. \ T,’,,.).
It follows from (13) and (1) that there is ,k such that

Df(xo)tVBho,,)(f (xo)) .VBo,,(x0), xo (Lo,,. \ T’,,.).
As explained in the discussion immediately following (8), this implies that the fo-
liations Ho and f*H,to) are tangent at the point xo (Lo,,.\t’o,,.), a contradiction
to (10) and ultimately to the fact that we assumed f(a) f(b) with a -7/: b. Thus
Alternative 2 also leads to a contradiction and the proof of the theorem is complete.
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