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ON THE IMAGE OF THE GAUSS MAP OF AN IMMERSED
SURFACE WITH CONSTANT MEAN CURVATURE IN ]3

NEDIR DO ESPRITO-SANTO, KATIA FRENSEL AND JAIME RIPOLL

ABSTRACT. We prove, generalizing a well known property of Delaunay surfaces, that if the Gauss image
of a cmc surface in the Euclidean space is a compact surface with boundary, then any connected component
of sphere minus the image is a strictly convex domain. We also obtain conditions under which the Gauss
image has a regular boundary. These results relate to the question, raised by do Carmo, of whether the
Gauss image of a complete cmc surface contains an equator of the sphere.

1. Introduction

A well known problem in differential geometry is to describe the Gauss image of a
complete surface of constant mean curvature (cmc) in R3. When the mean curvature
is zero, that is, in the minimal case, there is already a large literature on this problem.
A striking result, due to H. Fujimoto [4] asserts that if the surface is not a plane then
the Gauss image can omit at most four points of the sphere. As we know, in the
nonzero mean curvature case, there are just the works of R. Osserman, R. Schoen
and D. Hoffman [5] and W. Seaman [6]. This last paper contains a description of the
Gauss image of a complete helicoidal surface of cmc and in [5] it is proved that if
the Gauss image of a complete immersed surface with cmc in 3 is contained in an
open hemisphere of the sphere then the surface is a plane and if it is contained in a
closed hemisphere and is not a plane then it is a right circular cylinder. Connected
to this problem, there is the question raised by Manfredo do Carmo asking if the
image of a complete cmc surface always contain an equator of the sphere. The
papers [5] and [6] and the known examples of complete surfaces of cmc show that
there is a drastic difference between the zero (minimal) and nonzero mean curvature
case.

In our work we extend to immersed cmc surfaces a peculiar property presented by
the Gauss image of a Delaunay surface, namely, that any connected component of the
complement in the sphere of this image, or the image of a sufficiently big compact
piece of the surface, is a convex domain (in fact a disk in Delaunay case).

1.1 THEOREM. Let M be an immersed surface (without boundary but not neces-
sarily complete) with nonzero cmc in 3 and let N" M $2(1) be its Gauss map.
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IfN M) is a closed surf.ace in S2 with C2 bounda. then any connected component
of S2 \N(M) is a convex domain in S2 ).

A crucial hypothesis in Theorem 1.1 is the regularity of 0N(M). Although we do
not know if this hypothesis is satisfied on an arbitrary complete cmc surface in 3, it
is possible to prove the regularity of 0N(M) assuming additional hypothesis on the
surface. We obtain:

1.2 THEOREM. Let M be a compact su.rface with bounda, contained in an open
subset ofa cmc su.rface -- immersed in 3, and such that

(a) OM {p M K(p) O} (K: Gaussian curvature),
(b) Nlom is injective,
(c) N(M)-- N(M).

Then, either N(M) S2, or any connected component of S2\N(M) is a convex
domain with regular bounda.

Remark. It is also proved in Theorem 1.1 that the geodesic curvature kg of
ON(M), with respect to the normal vector pointing to the exterior of N(M), sat-
isfies kg > inf{IVK(p)l P M, K(p) 0}. In the case of a surface of Delaunay,
one has kg IVK(p)I, where p is any point of the surface with K(p) O.

As a consequence of the above theorems, one has the following result which
answers do Carmo’s question in special cases.

1.3 CORO.LLARY. Let M be an immersed surface satisfying the hypothesis of
Theorem l.l or 1.2. Let us assume further that ON(M) has at most two connected
components. Then N M) contains an equator ofthe sphere.

2. Proof of the results

The following facts will be used in the course of our proofs.
Let M be a complete surface in/3,with cmc H 1, which is not a cylinder. Let

p 6 M be a nonumbilic point. It follows from [3] that there exists a local conformal
parametrization X" U C 12 M C R3, with p 6 X (U), whose coordinate curves
are curvature lines, and a C function w: U -- R such that:

(i) the induced first fundamental form g in U is given by

e2U,
g = ---(du2 + dv2), w U,

where u and v are local parameters of X;
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(ii) the second fundamental form A is given by

e2u’- e2U’+
A dtt2 +---dv2

4 4

(iii) w satisfies the sinh-Gordon equation

/xw + sinh w cosh w 0. (1)

We assume that X (U) is a bounded open subset of M. We have

Xuu w,,Xu woXo + eN

Xoo -wuXu + woXo + gN
Xuv wvXu W wuXv

(2)

and

Nu -(1 e-2U’)Xu
No -(1 + e-2u’)Xv
K e-4u’

(3)

It follows from (3) that K 0 if and only if w 0. We then observe that the subset
of U where K vanishes is the nodal set of the nonzero function w, which satisfies
the linear elliptic equation/xw / (sinh to cosh to/w)w 0. We can therefore apply
Theorem 2.5 of [2] to conclude that the set T := K- {0} N {p 6 U VK(p) 0}
is an embedded one dimensional submanifold of U which has a finite number of
connected components. Furthermore the set K-(0) q {p 6 J VK(p) 0} is
finite. Since/xto -I- sinh to cosh to 0 is a quasi linear analytic elliptic equation, it
follows from [1 that to is a real analytic function in U and hence that T is a real
analytic submanifold of U.

The following lemma proves that a curve in $2(1) which is locally strictly convex
is globally strictly convex. The equivalent statement for the Euclidean plane has a
very simple proof that doesn’t seem to be the case for the sphere.

2.1 LEMMA. Let C be a Jordan curve C embedded in S2 which is the bound-
ary ofan open connected subset Q ofS2 ). Given anypoint p C, assume that there
is a neighbourhood Ap of p in SZ(l)such that (Ap f) gp) {p} C $2(1)\’, where
gp is the geodesic ofS2(l) passing through p and tangent to C. Then gp f’l {p},
for all p C. In particular the region Q is convex; that is, given points p, q Q,
the minimal geodesic segment connecting p and q is contained in Q.

Proof By way of contradiction, let us suppose the existence of p 6 C such
that the geodesic g of $2(1) passing through p and tangent to C intersects C in
another point. We can assume that g intersects C in some other point whose distance
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tO p is smaller than rr. In fact: otherwise g intersects C in only one point q with
d(p, q) rr, where d denotes the spherical distance. We then consider the middle
point r in a subarc of C comprehended between p and q. Let R be the connected
component of int(H) t-I ($2(1)\) whose boundary contains r, where H is the closed
hemisphere of $2( having g as boundary and such that (A__/, fl C) C H. Let h be the
geodesic tangent to C at r. Since h is locally contained in R, h has at least more two
intersections with OR, and one point of this intersection necessarily belongs to C,
say s. Therefore, the geodesic h intersects C in two points r and s with d(r, s) <
since r int(H)and s H.

Thus, let us consider p C such that the geodesic g tangent to C at p intersects
C in a point q such that d(p, q) < zr. We inductively define a sequence of points
p,,, q,, C, a sequence of geodesics g,,, a sequence of closed hemispheres H,, and a
sequence of subarcs C,, of C as follows.
We set p-- p, g g, H H as above, R the connected component of

int(H) r’l ($2(I)\) with p OR such that OR f’l C has thesmallest length. Set
q g n (SR {p}) and C C n 8R.

Let p2 be the point of C such that l(p, p2) =/(p2, q), where is the arc length
ofC, and let g2 be the geodesic tangent to C at P2. Since, by hypothesis, g2 is locally
contained in R, it follows that g2 has at least more two intersection points with 8 R.
Since d(p, q) < 7r, g2 intersects g n R at most in one point and it follows that
C n g2 has more than one point. Let H2 be the closed hemisphere having g2 as
boundary and such that (At, n C) c H2. Let R2 be the connected component of
int(H2) n ($2(1)\) with p2 e 8 R2 such that 8R n C has the smallest length. Set
q2 g2 n (8 R2 p2 }) and C2 C n 8 R2. We observe that q2 C \{p, q since
8R2 f’l C has the smallest length and d(p, q) <

Using the same reasoning as above, we can inductively define the middle point
p,,+ of C,,, obtaining a sequence of subarcs C C D C,, D of C,
C,,+ C (C,,\{p,,, q,, }), and regions R D R2 3 such that each C,, has p,, and
q,, as ending points, p,, :/: q,,, and each region R,, is bounded by C,, and by the
minimizing geodesic subarc g,, connecting p,, and q,,. By compactness, we can take
a subsequence {P,,k converging to a point P0 C t. We claim that P0 C,, \{p,,, q,,
for all n. In fact, choose no > 1. According to the previous construction, p,, C, C
C,,,,+ C (C,,,,\{p,,,,, q,,,, }), for all n > no + 1. Again, from the compactness of C,,,,+,
P0 C,,,,+, proving our claim.

Let g be the geodesic tangent to C at p0 and assume that g is oriented. Let
q, q’ g\{p0} be such that q is the first point of g f’l (C\{p, q}) on the right
side of p0 in g and q’ is the first point of g r’l (C \{p, q }) on the left side of p0 in
g. It is clear that at least one of the points q or q0 exists.

Since P0 R,, and g is locally contained in R,,, g has at least two more intersections
with 8 R,,. Moreover, g can not intersect g,, fl int(H in more than one point, so that
(C,,\{p,,, q,,, P0}) -7: 0, foralln. Thus, we can assume thatq gt-I(C,,\{p,,, q,,, P0}),
for every n big enough. Since l(C,,) O, it follows that q P0, which is a
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contradiction! This proves the first part of Lemma 2.1. The remaining part is easy to
prove, so that the proof of Lemma 2.1 is concluded.

In the next lemma, the point P0 is a fold point for the Gauss map which, under
the hypothesis of the lemma; is an excellent map, as defined by H. Whitney in [7].
Although it is a result that follows from Theorem 15A of [7], we present another
proof specific to our case.

2.2 LEMMA. Let M be an immersed cmc surface in 3 and let , C M be a
regular curve ofM such that K (p) 0for all p ,. Let us suppose that there is

Po ’ such that VK(p0) Oarid NI" ’ --+ $2(1) is an immersion. Then, there is
an open set V ofM, Po V, such that N(?’ f3 V) C ON(V).

Proof Since P0 is not umbilic, we can find a local parametrization X: U M
as in the beginning of Section 2. Let us assume that ?, is parametrized (regularly)
in a neighbourhood of p0 by ?,(t) (u(t), v(t)), 6 (-e, e), ?’(0) P0. Since

NI: ’ -- $2(I) is an immersion, we have v’(t) # 0, (-, ). Moreover, since
K cannot have the same sign in both sides of ?’ (otherwise VK would vanish in a
open set of ,), we may. suppose without loss of generality, that the orientation of ,
is such that the points which are locally in the right side of , have K > 0.

For a fixed t, and for s small enough, we define acurve t(s) (s +u(t), v(t)) and
set 4t(s) N(/3(s)), fi(s) (q(s)- q,(0), n(t)), where n(t) v’(t)Xu(F(t)).
Note that n (t) is tangent to the sphere and orthogonal to (No, )’ (t) -2v’ (t) Xo (’ (t) ).
We then have fi (0) 0 and f/(0) 0. Moreover, since

ft’(S) --(1 e-2w) (Xu(flt(s)), n(t))

we obtain

f, (0) -2w.u’(t) (x, x.) w. (t).

If v’(t) > 0, since the points on the right side of y have K > 0 and VK points to
the region with K > 0, we must have wu > 0 (note that VK 4Vw at ’).

If v’(t) < 0, the same reasoning shows that wu < 0. In both cases, we must have
f/’(0) < 0, for all (-e, e), this implying that ft(s) < 0, for some et > 0 and for
all s (-et, e). Taking the Taylor series of fi(s) with respect to s ats 0, we have

f,(s)
lim" =--wu(?’(t))v’(t) < M < 0
s---> 0 S2 4

for some 30 > 0 and for all (-30, 30). Hence, there is 0 > 0 such that fi (s) < 0,
for all 6 (-30, 30) and for all s (-0, 0), s 0. It follows that, for all these
values of s and t, 4 (s) is contained in the hemisphere of $2(1) having as boundary
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the geodesic of $2(I) passing through N(y,(t)) orthogonal to n(t) and whose normal
exterior vector is n(t). Therefore,

V U ,(s) U (s + u(t), v(t))
t(-o,o), S(-o,o) t(-&,o), S(-o,o)

is an open set containing ?’(-3o, 30) such that N(?’(-o, 30)) C ON(V).

Remark. According to the notation of Lemma 2.2, if we parametrize ?, in such a
way that the region with K > 0 is locally at the right side of ?,, then v’(0)X,(t, (0))
points to the exterior of N(V).

ProofofTheorem 1.1. Let us assume that M has mean curvature H 1. We will
prove that through any point of 0N(M) passes a geodesic of $2(1) whose intersection
with some neighbourhood of this point in $2(1) is contained in N(M). The theorem
follows then from Lemma 2.1. Set

A {p MI VK(p) is a multiple of a principal direction

having nonzero principal curvature and N(p) ON(M)}.

Since K(p) :/: 0 implies that N is a diffeomorphism in a neighbourhood of p, we
must have A C {K 0}. Clearly, A is a closed subset of M. We will prove that A is
discrete. Let p 6 A. Since p is not umbilic, we can get a parametrization X" U M
as before, with p 6 X(U). We use the same notation as in beginning of Section 2.

Since vgllr=01 4(Wu, wo)llr=ol is a multiple of the principal direction havin/
nonzero principal curvature if and only if w, 0, it follows, by analyticity, that
p is either isolated or there is an open subset E of K 0 with p 6 E such that
w. e 0. In the second case, we can further assume that VK (p’) 0 if p’ g: p,
p’ 6 E. We will prove that if the second alternative holds then N(E\{p}) C int(M) if
VK(p) 0, and N(E) C int(N(M)) if VK(p) -. 0. This proves that A is discrete.

Let P0 (u0, v0) E with VK(p0)
be a regular parametrization of a neighbourlaood of p0 in E with y,(0) P0 and
such that VK(y,(t)) 7 0, (-6, 6). Since Wu(y’(t)) 0 and w(y,(t)) 0 we
obtain v’(t) 0, for all (-6, 6). Given t, the curve t(s) N(u(t), vo + s)
satisfies/3t(0) q0 N(po) and 13(0) -2Xo(u(t), vo). If qo ON(M), then
/3(0) )(t)/36(0), for some scalar g(t) (observe that the rank of dNpo is l). But
since I/3(0)1 2lXv(u(t), v0)l it follows that ,k(t) const which shows that
Xv(u(t), vo) does not depend on t. Taking the derivative with respect to and using
(2), we obtain w(u(t), v0) 0, for all (-6, 6), so that VK vanishes in an open
set of E, contradiction! Therefore, it is proved that A is a closed discrete subset of
U and ON(M)\N(A) is dense.in ON(M).

Let q ON(M)\N(A) and p M\A be such that N(p) q. We can get a
parametrization X: U M as before with p X (U) and a regular curve },(t)
(u(t), v(t)), (-6, 6), which is assumed to be parametrized by arc length (in the
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metric induced by X), such that K(y(t)) 0 for all (-, e) and ,(0) p.
By choosing e small enough, we can assume, since v’(0) 0, that v’(t) :/: O. Since
(N o y)’(t) -2v’(t)X(y(t)), (t) := N(y(t)) is a regular curve.

In order to compute the geodesic curvature of or, we introduce a convention. Given
an oriented 2-dimensional Riemannian manifold M, we denote by J the operator on
the tangent bundle of M which rotates any vector of TM of an angle of rr/2 in the
positive orientation.

The geodesic curvature of or(t) in $2(I) in the J(ot’l,t))/llJ(ot’(t))]] direction is
given by

kg(ot(t))
ila,(t)ll3 (a"(t), J(ot’(t))). (4)

Since ot’(t) -2v’(t)X,, and since {X,, Xo} is an oriented base of M we have
J(’(t)) 2v’X,,. Using (2), we have,

a" -2v"X,, 2v’ (u’Xuv + v’Xoo)
-2v"Xv 2v’(u’wvXu + u’w, Xo v’wuXu + v’woXo + v’gN)

so that

(c", J(c’))= 4(v’)2 ((u’, v’). (-wo, wu))(X,,, X,) (v’)2 (y’. J(Vw)), (5)

where ’.’ denotes the usual inner product in the plane.
Now, let us analyse the sign of this last inner product. We first observe that since

vK is not zero in ?’(0), there is a neighbourhood V of ?’(0) such that V\y has a
connected component, say V+, in which K > 0. We choose the orientation of y such
that the points of V+ are in the right side of ?, for increasing values of the parameter
t. Since Vw points towards increasing values of K, it points to V+.

Therefore, by definition of J, ?" and J (Vw) are colinear and point to the same
direction so that

,’. J(Vw) II"(t)llllJ(Vw)ll IVKI

since I1"11 2 and IIJ(Vw)ll (I/2)IVKI, where is the Euclidean norm of the
plane and is the norm in the surface. From (4) and (5),

kg(ot(t)) >_ IVK(?’(t))l > O. (6)

It follows from the remark after Lemma 2.2, that J(ot’(0)) 2v’(0)X, (?, (0))
points to the exterior of N(V) at c(0). Hence we have proved that given a point q
of ON(M)\N(A), q N(p), the geodesic curvature of ON(M) at q with respect
to the exterior unit normal is positive and greater than or equal to IVK(p)I > 0. By
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continuity, since ON(M) is of class. C2, the geodesic curvature kg of ON(M) with
respect to the unit exterior normal vector is everywhere nonnegative and satisfies

k > infllVK(p)llp M, N(p) ON(M)}

> inf{IVK(p)llp M, K(p) 01.

To conclude the proof of Theorem 1.1, in view ofLemma 2.1, it is enough to prove
that in each point q of ON(M) there exists a neighbourhood W of q in $2(1) such
that Wtq g C N(M) and W fq g fq ON(M) {q}, where g is the geodesic tangent
to )N(M) at q. To do that, let/: (-, ) S2(1) be a C2 parametrization by arc
length of ON(M) in a neighbourhood of q with/(0) q. Let n(s) be the exterior
unit normal to ON(M) at/(s). We know that for all so e (-e, e), kg(6(so)) > 0 and
there is a dense subset set of (-e, e) where kg (/) > 0. We take the Beltrami map
whose domain is the hemisphere having q as pole, that is, B is the radial projection
from this hemisphere over the tangent plane to $2(1) at q. It is easy to see that B
preserves the sign of the geodesic curvature. Set ,k B(/). Parametrizing L by arc
length and defining f(s) (,k(s), m(0)), where m(s) is the unitary normal vector to. at X(s) and such that m(0) dBq(n(O)), we obtain f(0) f’(0) 0 and

f"(s) k(s) (m(s), m(0))

where k(s) is the plane curvature of X with respect to m. Since f"(s) > O, for all s in
a neighbourhood of 0 and f" > 0 in a dense subset of this neighbourhood, it follows
that f (s) > 0 in a neighbourhood of 0, s - 0. This proves that X is locally strictly
convex at q and this implies that/ is strictly locally convex at q. This concludes the
proof of Theorem 1.1.

Proofof Theorem 1.2. Let us suppose that N(M) - S2 (1). Let C be a connected
component of gN(M). Since N(M) C N(gM), it follows, by the injectivity of
NIaM, that C C N(C) where C is a connected component of OM, and simple
topological arguments prove that in fact C N(C). From Lemma 2.1, it is enough
to prove that C is regular and at each ILoint q of C, the geodesic tangent to C atnq is
locally contained in N(M). Let p C be such N(p) q, and let X: U - M be
a local parametrization around p as before. Let ?’(t) (u(t), v(t)), (-, ) be
a regular analytic parametrization of C in a neighbourhood of p, ’ (0) p and set
or(t) N(y(t)). We have

a’(t) u’Nu + v’No -2v’Xv

so that N I’ is not an immersion at p if and only if v’(0) 0.
If v’ (0) :p- 0 then C is regular at q and, according to the proof of Theorem I. 1, the

geodesic tangent to C at q is locally contained in N(M).
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If v’(0) 0 then, from the analyticity of v(t), v’(t) 0 in a neighbourhood of
0 (otherwise v’ 0 in a neighbourhood of 0, implying that t(t) q, for all

in this neighbourhood, contradicting the injectivity of
If v’(t) doesn’t change sign in a neighbourhood of 0, we can write v(t)

at" + O(t"+), a 0, n odd. Therefore, setting t(s) s /’’, it is easy to see that
t(t(s)) is a C regular reparametrization of ct which is Cat s - 0. Moreover,
according to the proof of Theorem I.I, the geodesic curvature of a(t(s)) at s 0 is
positive (with respect to the exterior of N(M)). It follows from an argument similar
to that used in the final part of the proof of Theorem I. I, that the geodesic tangent to
C at q is locally contained in N(M) (although now, the curve ot(t(s)) is C2 at s q: 0
but just C at s 0).
Now we prove that the case where v’(t) < 0 for (-e, 0) and v’(t) > 0 for
e (0, ) can not occur. Let V be an open set containing q such that V\N(?,) has

two connected components, V and V2. We also require, by choosing V small enough,
that one of the connected component i contained in N(M) and the other is disjoint
to N(M). Let H be the open hemisphere of $2(1) whose boundary is the geodesic
tangent to Xu(p) at q and whose exterior normal at q is Xo(p). We observe that
N(,(t)) H for 0, 0. In fact, setting f(t) (N(,(t)) -q, Xo(p)), we
obtain f’(t) -2v’(t) (Xo(’(t)), Xo(p)) so that f’(t) > 0 for (-e, 0) and
f’(t) < 0 for (0, e), that is, f(t) < 0, (-e, e) {0}. This proves our claim.

Let V be the connected component of V\N(,) which is contained in H, and let
us consider the one-parameter family of functions

g,(s) (N(u(t), v(t) + s)- q, Xv(p))

We then have gt (0) .f (t) < 0 if -# 0 and 0 if 0. Also,

gt(O) --(I -I-e-2u’tutt)’t,)) (Xo(u(t), v(t)), Xo(p)) -2 (Xo(u(t), v(t)), Xo(p))

so that we can take 8 > 0 such that g (0) < I/4 for all It < 8. Since

lim
gt (s) gt (0)

s0 s
g(0) < 4’

there is . > 0such that if0 < s < ,k and Itl < 8 then gt(s) < -(l/4)s + gt(O) < 0
if (S, t) -# (0, 0). Furthermore, we can assume that gt (s) V for 0 < s < . and
Itl _<.

Let s" [-8, 8] --> [0, .] be a continuous function satisfying s(-8) s(8) 0 and
s(t) > 0 for (-8, 8). The curve/(t) "= N(u(t), v(t) + s(t)) belongs to V \{q}
for (-8, 8), since/(-8) N(,(-8)),/(8) N(/(8)), and/([-8, 8]) C H
(note that q H). Furthermore, at 0, one has

go(s)
lim
s0 s 2

so that go(s) > 0 for s < 0, s 0, showing that the curve N(u(0), v(0) + s) is
contained in V2 for these values of s. We therefore conclude that there exist points
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of N(M) belonging to both V and V2, which is impossible since N(,) is at the
boundary of N(M). This concludes the proof of Theorem 1.2.

ProofofCorollary 1.3. If ON(M) has just one connected component C, then it
follows that C is contained in an hemisphere of S2(l) so that N(M) contains an
equator of the sphere. Suppose that 0N(M) contains two connected components C
and C2.
We know that C is entirely contained in an open hemisphere H of $2(1). Let p

be the center of H and let p0 be a point belonging to the connected component of
S2(I)\N(M)) having C as boundary. Let Bp" H rr be the Beltrami map at p;
that is, r is the tangent plane to $2(1) at p and Bp(x) is the radial projection of x
over zr. Given e [1,0), set

C, B- (t(Bp(C) Bp(po)) + Bp(Po)).

If C, N C2 for all > then C, C N(M) for all > so that the geodesic

g := lim Ct

is contained in N(M). If Ct fq C2 for some > 1, set

to := inf{tlCt f3 C2 : }
and choose q e Ct N C2. Let g be the geodesic of $2(1) passing through q and
tangent to both C,,, and C2. From Lemma 2.1, g intersects C2 only at q, and is locally
contained in N(M). Since the curves Ct are obtained by homotheties and the Beltrami
map is a geodesic preserving map, the geodesic g intersects Ct,, only at q. It follows
that g is entirely contained in N(M), finishing the proof of the corollary.
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