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POINTWISE MULTIPLIERS FROM THE HARDY SPACE
TO THE BERGMAN SPACE

NATHAN S. FELDMAN

ABSTRACT. For which regions G is the Hardy space H2(G) contained in the Bergman space L(G)?
This paper relates the above problem to that of finding the multipliers of H2(D) into L(D). When G is
a simply connected region this leads to a solution of the above problem in terms of Lipschitz conditions
on the Riemann map of D onto G. For arbitrary regions G, it is shown that if G is the range of a function
whose derivative is a multiplier from H2(D) to L (D), then HE(G) is contained in L, (G). Also, if G has
a piecewise smooth boundary, then it is shown that H2(G) is contained in L(G) if and only if the angles
at all the "corner" points are at least zr/2. Examples of multipliers from H(D) to L(D) are given; and
in particular, every Bergman inner function is such a multiplier.

Preliminaries

If G is a region in the complex plane C and _< p < o, then the Bergman space
LPa(G) is the space of all analytic functions f on G so that Ifl p is integrable with
respect to area measure on G. Endowed with the usual Lp norm, Lap (G) becomes
a Banach space. The Hardy space Hp(G) is the space of all analytic functions f
on G so that fl p has a harmonic majorant. Among all the harmonic majorants of

fJP there is a smallest one, uf, called the least harmonic majorant. In order to put
a norm on HP(G), first choose a point a G, then define [[fl[,, uf(a). With
this norm HP.(G) becomes a Banach space. For p 2, both the Bergman space
and Hardy space are separable Hilbert spaces. See [5] and [6] for more information
on Hardy spaces and Bergman spaces, both on the unit disk and in more general
regions.

This paper addresses the problem of characterizing those regions G with the prop-
erty that HP(G) is contained in LP(G) when < p < o. For example, if G is a
bounded by a finite number of smooth curves then HP(G) c_ LP(G); see [3], p. 21.
More generally, if G is a region so that every positive harmonic function on G is
integrable with respect to area measure, then since functions in Hp(G) have har-
monic majorants, HP(G) c_ LPa(G). However, there are simply connected regions
G where HP(G) c_ LP(G), yet not every positive harmonic function is integrable.
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The integrability of positive harmonic functions has been studied by several people;
see [14] and the references there. Also, Axler and Shields in [2] construct a region
G bounded by a rectifiable Jordan curve so that the Dirichlet space is not contained
in the Bergman space on G, thus necessarily H2(G) is not contained in L2(G).

This work relates the containment problem mentioned above to multipliers of
HI’(D) into L,J(D). These multipliers have been characterized by Stegenga [13].
We, however, are interested in a different type of characterization of the multipliers
and it will not depend on his work.

If # is a positive regular Borel measure on G and X is a Banach space of analytic
functions on G, then we say that/x is a p-Carleson measure for X, if X c_ L’ (). The
usual definition of a Carleson measure, in our terminology, is simply a 2-Carleson
measure for H2(D). It is well known that if is a measure on the open unit disk D,
then is a p-Carleson measure for Hp (]]3)) if and only if there exists a constant C
such that/x(Sl,(0)) < ChforeveryCarlesonsquareSh(O) {z D" l-[zl < h and
0 h < arg(z) < 0 + h }. See [7], p. 156 or [9], p. 33 for a proof. In particular since
the condition above on Carleson squares is independent of p, we see that a measure
/z is a p-Carleson measure for Hp (D) if and only if is a 2-Carleson measure for
H2(D).

I. Basic properties of multipliers

In this section a relation is given between the containment ofthe Hardy space inside
the Bergman space and multiplication operators that map Hp (D) into Lp (I). Also
certain growth conditions are given for functions that multiply HP (D) into Lp (/I).

PROPOSITION I. 1. Suppose G is a simply connected region and r D G is a
Riemann map. Thenfor < p < o thefollowing are equivalent:

(a) HP(G) c_ LP(G);
(b) (r’)2/pHP(D) c_ LaP(D); that is (r’)2/P f Lta’(D).for each .f HP(D);
(c) /z Ir’12dA is a p-Carleson measure.for HP(D).

Proo.f. Let h Ht’(G). Since r is univalent, by the usual change of variables
we have

(*) f Ihl" da fo Iho rl p Ir’l 2 da.
Now as h varies over all of HP(G), h o r varies over all of HP(D), since the Hardy
spaces are conformally invariant. So, if (a) holds then each f in HP (D) has the form
f h o r for some h in HP(G), thus (r’)2/P.f (h c r)(r’)2/p and the LP(]I)) norm
of this last expression is exactly the right hand side of (,). But by (a), the left hand
side of (,) is finite, so (a) implies (b).
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Now if (b) holds, then for each f in HP(I), (r’)a/l’f Lt’(I). Thus

fo IflPlr’ladA < cx and hence HP(D)

_
Lp(), where/z Ir’12dA. So is

a p-Carleson measure for HP (/I)) and (c) follows. Finally, if (c) holds, then the right
hand side of (.) is finite for each h in HP(G). Hence the left hand side is also and so
(a) follows. 121

COROLLARY 1.2. If < p < o and G is a simply connected region, then
HP(G) C_ LPa(G) ifand only if n2(G) c_ L2a(G).

This can be seen by checking condition (b) above or by observing as mentioned
before that a measure/z is a p-Carleson measure for np() if and only if # is a
Carleson measure for Ha(/D).

In view ofCorollary 1.2 we will mainly restrict our attention to p 2, occasionally
considering or commenting on other values of p > 1.

Proposition 1.1 makes precise the relation between the containment of HP(G) in
Lp (G) and multipliers on the unit disk. Notice that when p 2 and r G is
a Riemann map then Ha(G) L2(G) if and only if r’ is a multiplier of Ha(D) into

L2 (]D). Thus we shall try to understand which functions multiply H2(D) into La2 (]I)).
In particular, motivated by the univalent case, we want to understand which functions

4 have the property that 4/is a multiplier of H2(/I) into La2 (I). Unless otherwise
stated, whenever we say multiplier we mean an analytic function on the unit disk that
multiplies H2(D) into L2(/I)). Let M(Ha, L2) denote the set of multipliers. Each
multiplier f induces a multiplication operator, denoted by Mr.

THEOREM 1.3. (a) Iff is a multiplier ofH2 (I) into L2a (), then f L,2 () and
there is a constant C such that (1 -Izl2)lf(z)l2 < C for all z in I.

(b) Iff is any analytic.function on
and only if there is a constant K so that fs, Ifl2dA < Kh for each Carleson square
Sh ofsize h.

Proof. (a) Iff M(Ha 2La), then, since the constants are in H2(D), f must

be in L2(D) Let Ko, t-a,z) and Bu, t-l.’la)t_a,z): be the normalized reproducing
is thekernels in H2(D) and L2(D), respectively. Since fK, is in L2(I) and ti-,z)

reproducing kernel in L] (/I)), for each w in I we have

I(fK,, n,)l (I -Iwl2) I(fK,)(w)l (I -Iwl2) /2 If(w)l
It follows that for all w in/D,

(**) (I -Iwla) ’/= If(w)l I(fKu,, B,,,)I I(MfK,, B.,) <_ IIM,.II
Hence (a) holds.
Now suppose f is analytic on I, then f M(H2, La) if and only if

fo Ihlalfl2dA < x for each h H2(]])). But this is equivalent to/z IfladA
being a Carleson measure and condition (b) is exactly the condition mentioned in the
previous section that characterizes Carleson measures. I-I
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Recall that the Dirichlet space D(G) consists of all analytic functions on G whose
derivative is in L,2,(G). Also a function f defined on a region G is Lipschitz of order
ot if there is a constant C so that If(z) f(w)l < CIz wl for all z, w G.

COROLLARY 1.4. Ifo is an analyticfunction on D and o’ M(H2, La2), then
is in the Dirichlet space and is Lipschitz oforder 1/2.

Proof. Clearly tp’ e La2 (D) as tp’ is a multiplier, so o is in the Dirichlet space.
The fact that o is Lipschitz of order 1/2 follows from [7], p. 74 since Theorem 1.3 (a)

c Elimplies that there is a constant C such that Io’(z)l _<

COROLLARY 1.5. Suppose G is a simply connected region and r D G is a
Riemann map. If H2(G) c_ L2(G) then r is Lipschitz oforder 1/2. In particular r
is continuous on the closed unit disk and G is bounded.

The previous corollary gives many examples of simply connected regions where
H2(G) is not contained in L,2,2 (G). For example, such a containment fails whenever 0G
is not locally connected, because then the Riemann map will not extend continuously
to 0D.

Corollary 1.5 also raises an interesting question about the boundedness of G, when
G is not simply connected. Namely, if G is any region such that H2(G) CL,(G),
does G have to be bounded? Clearly since HE(G) contains the constants, G must
have finite area. As noted above, if G is simply connected, then G must be bounded,
but for arbitrary regions of finite area it is not clear that boundedness holds.

By a compact multiplier we mean a function f whose multiplication operator Mr
is compact.

THEOREM 1.6. (a) Iff induces a compact multiplier of H2(D) into L2a(D), then
(1 -IzlE)lf(z)l2 0 as Izl 1.

(b) Iff is an analyticfunction on D, then f induces a compdctmultiplier ofH2

into L,, (D) (fand only (f fs,, Ifl2dA o(h) as h O.

Prot (a) Consider the normalized reproducing kernels, Ku, and B, as in The-
orem 1.3. Since Mr is compact and K, converges weakly to zero as Iwl 1, we
have that fK, converges to zero in norm in L2(D). Thus since B, has norm one,
I(Mr K,, B,)I 0 as wl 1, thus equation (**) above gives the desired conclu-
sion. To see that (b) holds, notice that Mr is compact if and only if the inclusion of
H(D) into L2(Ifl2dA) is compact, and this means, by definition, that Ifl2dA is a
"vanishing Carleson measure". Further, these measures are characterized exactly by
the condition stated in (b); see [15], p. 172. El

Notice that the estimate in (a) of Theorems 1.3 and 1.6 can also be proved by
using the Carleson measure estimate, part (b) from Theorems 1.3 and 1.6, together
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with the subharmonicity of [f[2. This technique works for other values of p where
reproducing kernel arguments are not as readily available.
We are interested in finding to what extent the necessary conditions ofCorollary 1.4

are sufficient to guarantee that 99’ is a multiplier. We shall see that a stronger condition
holds on the valence of 99. Although, if 99 is univalent, the conditions of Corollary 1.4
are both necessary and sufficient.

2. The valence function

In Corollary 1.4 it was shown that if 99 is analytic on 13 and o’ is a multiplier, then
o is in the Dirichlet space and is Lipschitz of order 1/2. In this section it is shown
that the converse holds for a large class of functions, including the univalent ones.

In order to do this, we need a change of variables formula for non-univalent
functions. So suppose 99 G -- C is an analytic function on an open set G. Define
its valence function or counting function n(w) as the number of points, counting
multiplicity, in the pre-image, 99- (w). So n(w) is defined on all of C, but is zero off
the range of 99. Also, notice that 99 is univalent precisely when n,(w) < everywhere
on C and that n(w) may equal infinity. The following is a change of variables
formula for non-univalent functions. It is well known in geometric measure theory
and is useful in the study of analytic functions. We include a proof for completeness.

THEOREM 2.1. Suppose 99 G ---> f2 is a non-constant analytic.function with
valencefunction n,(w). If f f2 [0, oo) is any Borelfunction, then

f(o(z)) Iqg’(z)[ dA(z) f(w)no(w)dA(w).

Proof. IfZ {z G o’(z) 0}, then Z is a discrete set in G and hence has area
zero. So 99 is univalent on some small disk about each point of G Z. Using Vitali’s
covering lemma we can find a sequence of disjoint disks B,, inside G so that 0lB,, is
univalent for each n and the area of G 1,3,,__, B,, is zero. If XE is the characteristic
function of the set E, then n(w) -’n__ XoB,,) a.e. (area). This is because the B,,’s
cover almost all of G and since analytic functions always map sets of area zero Onto
sets of area zero, their images 99(Bn) cover almost all of the range of 99. Also, this
expression for n0 shows that it is a measurable function. So for each n, since 991B, is
univalent, the usual change of variables formula gives fB,, f(o(z))lo’(z)12dA(z)
f.,, f(w)dA(w). Since the disks are pairwise disjoint, we get

f (qg(z)) Io’(z)[ da(z) f(w)da(w) f(w)Xo8,,)dA(w)
n B,, n

f(w) X.o(B,,)dA(w) f(w)no(w)dA(w).
n=l
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Notice that we are allowed to change the integral and the sum because everything is
positive. I-I

COROLLARY 2.2. Ifo G f2 is a non-constant analyticfunction andn is its
valencefunction, then fG I’(z)lZdA(z) f n(w)dA(w).

Notice this says that q9 is in the Dirichlet space if and only if its valence function is
an L function. Thus assuming a function is in the Dirichlet space is simply imposing
a restriction on the growth of its valence function.

Now, consider an analytic function q9 on D that is Lipschitz of order 1/2 and in the
Dirichlet space. Is such a function a multiplier? If we impose a stronger condition
on the valence of the function qg, then the Lipschitz condition will guarantee that o is
a multiplier. We will consider the case when no is essentially bounded, that is, there
is a constant C so that n(w) < C for all to except a set of area zero.

THEOREM 2.3. If tp is analytic on I and n is essentially bounded, then tp’ is a
multiplier ifand only if tp is Lipschitz oforder 1/2.

Proof. In view of Corollary 1.4 and Theorem 1.3 (b) it suffices to show that if
is Lipschitz of order 1/2 then # lo’12dA is a Carleson measure. So, if Sh is a

Carleson square of size h, then by Corollary 3.2 we have

tX(Sh) fs Iqg’12 dA
s,,

no(w)dA

_< IlnllArealo(s)} _< zr [Inlloiamls)lz <_ Ch

where the constant C depends only on the norm of no and the Lipschitz constant of
o. Thus # is a Carleson measure on D. I-’!

Notice that the assumption that no is essentially bounded is stronger than assuming
that o is only in the Dirichlet space, that is no 6 L But there is still an ample supply
of such functions. First, all the univalent functions are in this class and also for any
bounded region G, there is an analytic function o on/i) so that o(lI) G and no is
essentially bounded. So such functions come in all shapes and sizes.

COROLLARY 2.4. If q9 is a univalent function on I, then o’ is a multiplier of
H2(II)) into LZa(D) ifand only ifo is Lipschitz oforder 1/2.

COROLLARY 2.5. IfG is a simply connected region and r D -+ G is a Riemann
map, then HE(G) c_ L2a(G) ifand only if r is Lipschitz oforder 1/2.
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Smith and Stegenga in 12] have given a geometric characterization, in terms of the
hyperbolic metric, of simply connected regions for which the Riemann map satisfies
a Lipschitz condition.
Now suppose that G is bounded by a finite number ofpiecewise C -smooth disjoint

Jordan curves, each having one-sided derivatives at the "comer points". Consider the
angles Oj, where 0 < 0j 2zr, formed by the tangent lines at the corner points. So,
if 0j 0 at a comer point to, then there is an outward cusp at to and if 0j 2zr there
is an inward cusp at to. However, if 0 rr, then the curve is actually smooth at to.

COROLLARY 2.6.
for all j.

IfG is as above, then H2(G) c_ L2a(G) fand only (fOj > re/2

Proof First suppose that G is simply connected and bounded by a piecewise
smooth Jordan curve having comers at the points {wj} forming angles {0j }. Let
r D G beaRiemannmapandzj ODsatisfy r(zj) toj. If the angle
0j cjzr where 0 < otj < 2, then (z zj)-.Jr’(z) has a non-zero finite limit at

zj; see Pommerenke[l 1], p. 52. However as previously mentioned, r is Lipschitz of
corder 1/2 if and only if Ir’(z)l < (l_lzl2)i/’ holds for some constant C; see [7], p. 74.

Thus r is Lipschitz of order 1/2 if and only if aj > I/2 for all j. This, together with
Corollary 2.5, gives the desired conclusion in this case. The general case when G is
finitely connected may be reduced to the simply connected case because H2(G) may
be decomposed as a direct sum of Hardy spaces over simply connected regions in a
canonical way; see Conway [4].

Example. If G is a triangle, then H2(G) L2(G); however if G is a rectangle,
then H2(G) c__ L2(G). If G has an outward cusp (0 0), then H2(G) L2(G).

It is interesting that it is rather difficult to construct a region G bounded by a
rectifiable Jordan curve such that the Dirichlet space on G is not contained in the
Bergman space on G, see Axler and Shields [2].
Now it is shown that there is a slightly stronger necessary condition on an analytic

function 99 in order to have 99’ a multiplier. Corollary 1.4 shows that if 99’ is a multiplier,
then o is in the Dirichlet space; that is, n0 6 L . Thus, if we let/z n(w)dA(w),
then Corollary 1.4 says that/z is a finite measure whenever 99’ is a multiplier. It is now
shown that whenever 99’ is a multiplier # is a Carleson measure for H2(G), where
G qg(I).

THEOREM 2.7. Suppose q9 is analytic on and G qg()). Iftp’ is a multiplier of
H2(]])) into La(D), then the measure lz n dA is a Carleson measurefor HE(G).
That is, Hg-(G) c_ LE(/z).

Proof. Let h H2(G). Sinceo" D-- G is analytic, we have h(tp(z)) H2(D)
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and, because qg’ is a multiplier, h(o(z))tp’(z) L2a(ID). So by Theorem 2.1 we have

h(w)lE n(w)dA(w) L Ih((z))lE dA(z) <

Thus, h L2(/z) and so/z is a Carleson measure for H2(G). rl

This theorem has a very nice corollary.

COROLLARY 2.8. Suppose o is an analytic function on ID and G o(]D). If o’
is a multiplier, then H2(G)

___
LEa(G).

Proof. Since no > on G the theorem gives HE(G) c L2(G, nedA) cc_ L2a(G).

Theorem 2.3 and Corollary 2.4 give some examples of multipliers to which Corol-
lary 2.8 may be applied. Also, it will be shown in Theorem 3.3 that if f is any
function in H2(ID) or L4 (ID), then f is a multiplier. Hence if o is a primitive of f,
then Corollary 2.8 applies to give H2(G) L2(G) for G o(]D). See Corollary 3.4.

3. Examples

In this section some examples of multipliers are given. The main tool used to show
functions are multipliers is the Carleson measure condition of Theorem 1.3.

Since HE(ID) La2(ID) it is clear that every bounded analytic function on ]D is a
multiplier. We next show that much more is true. Recall that Thedrem 1.3 shows that

c In Theorem 3 below we show that aif f M(H2, L2), then If(z)l < (_1zl2,/2.
slight improvement on this condition implies that f is a compact multiplier..

THEOREM 3.1. If f is analytic on ]I) and If(z)l _< P(Izl), where p LE(0, I),
then f induces a compact multiplierfrom H2(]D) to L2a(])).

Proof. Let [gn C H2 (]D) and suppose g,, 0 weakly. So {g,, is norm bounded
in HE(ID) and g,, 0 uniformly on compact subsets of ]D. We must show that
Ilfg,, 11/.2 - 0 as n --+ cx. So

Ilfg,,ll If (rei)g,,(rei)[ 2
dOr dr < Ig,,(rei)l 2 dOp(r)2r dr

fo’ ME(g,,, r)Ep(r)Er dr,

where ME(g,,, r)E f Ig,(rei)lEdO. But, ME(g,,, r)Ep(r)’r --* 0 as n -- x for
each r, because g,, -- 0 uniformly on compact sets in I. Also, there is a constant
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C so that M2(g,,, r)2 _< C for all n and r, because the set {g,} is norm bounded in
H2(]I)). So the integrand of the last integral above is dominated by an integrable
function, namely Cp2. Thus the Lebesgue Dominated Convergence Theorem says
that the last integral goes to zero as n tends to infinity. I’-I

c forsome e, C > 0COROLLARY 3.2. Iff is analytic on Iand If(z)l _< tn-i.l>,/-.
and all z in D, then f induces a compact multiplier.

The previous results give a large number of examples of compact multipliers
and Theorem 3.3 below even gives more. However, not all multipliers are compact

is a multiplier that is not compact, see Theorem 1.6.because f(z) _z.),/

THEOREM 3.3. (a) H2(D)
_

L4(D).
(b) Eachfunction in L4a () induces a compact multiplier.

Proof (a) It is a classic result due to Hardy and Littlewood that H’(D) _c L2ap (I);
see Duren [7], p. 87.

(b) If f 6 L4(D) and g 6 n2(]), then Ilfgll _< Ilfllt41lgllt4 < cllfl[tnllglln2.
Thus we see that f 6 M(H2, L2) and IIMtll _< Cllfl[/4 for an absolute constant C.
It follows from Theorem 3.1 that every polynomial induces a compact multiplication
operator. Since the polynomials are dense in L4a (I), we may choose p, f in

La4 (/I)). Thus from the above estimate we see that Mp,, Mf in operator norm,
hence Mt. is compact. I-I

The following result follows from Theorem 3.4 and Corollary 2.8.

COROLLARY 3.4. If tp is an analytic map on the disk , G o() and tp’
L4a.(D), then H2(G) c_ L2a(G).

A function 0 in L](I) is a Bergman innerfunction if fo u(z)l(z)l2dA u(O)
for every bounded harmonic function u on D; see [I] or [8]. It is known that if A4 is
an invariant subspace of the Bergman shift and o 6 A/[ tq (zA4) +/- has norm one, then

o is a Bergman inner function. Next we show that every Bergman inner function is a
multiplier. This also appears in Hedenmalm’s 10] work, although this proof is easier
and more direct.

THEOREM 3.5. Every Bergman innerfunction induces a contractive multiplier

Proof. Let tp be a Bergman inner function. Thus fo u(z)l(z)l2dA u(0) for
every bounded harmonic function u on D. If u is a positive harmonic function on
D and Ur(Z) u(rz), then ur u pointwise as r 1, so Fatou’s Lemma easily
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implies that fo u(z)lgo(z)l2dA < u(O) for all positive harmonic functions on I. If
f H2(II)) and u.t, is the least harmonic majorant for Ifl, then we have

l.f(z)go(z)l dA < ft uf(z) Igo(z)l 9- dA < uf(0) Ilfll h2

Thus, go is a multiplier and IIM011 1.

We close with a few natural questions that remain open.

Question 1. IfGisaregionsuchthatH2(G) cc_ L2(G),thenmustGbebounded?

Question 2. If G is a region such that H2(G)
___

L](G), then must there exist an
analytic function go on/I with go’ a multiplier and go(I])) G? That is, is the converse
of Corollary 2.8 true?

Question 3. If go is an analytic function on I that is Lipschitz of order 1/2 and

n dA is a Carleson measure for H2(G), G go(D), then must go’ be a multiplier?

Notice that Questions and 2 both have an affirmative answer when G is simply
connected

The author would like to thank the referee for many helpful suggestions in writing
this paper.
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