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ON THE L-BEHAVIOR OF THE MAXIMAL OPERATOR
FOR THE CLASS OF MARTINGALES
ADAPTED TO A GIVEN FILTRATION
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To the memory of Alberto Calder6n

ABSTRACT. We study the boundedness in L of the maximal operator of the class of martingales for a
fixed incre.asing or decreasing filtration. We obtain necessary and sufficient conditions for several classes
of martingales.

1. Introduction

The starting point of this investigation was the observation that in the discrete
case, for the standard decreasing filtration on N, the maximal (martingale) operator
is bounded on L It is well known that on any probability space, for any filtration
(whether increasing or decreasing), the corresponding maximal (martingale) operator
is always bounded in Lp with bound p/(p 1) (for < p < o), and is weak-type
1-1 (the maximal inequality). Similar statements hold for the maximal ergodic oper-
ator and the Hardy-Littlewood maximal operator. Furthermore it is known that for
the maximal ergodic operator (in the case when the underlying measure-preserving
transformation is ergodic) and for the Hardy-Littlewood maximal operator we have
Mf L if and only if f L log+ L (see the important papers [5] and [4], re-
spectively). These considerations motivated our interest in the further study of the
maximal (martingale) operator from the point of view of its boundedness on L

In a certain sense, the problem considered in this paper can be regarded as a dual
converse to the problem considered by Blackwell and Dubins. In their celebrated
paper [1 ], Blackwell and Dubins start with a function f L I, f L log+ L and
look for a filtration such that for the corresponding maximal (martingale) operator,
Mf . L In many situations however, the filtration is given, and it is more natural
to ask if there is f L such that Mf L .

Let us make the notation precise. Let (fl, .T’, P) be a probability space. We shall
write L L(f2, .T’, P) and L+ {f L; f > 0}. All the or-algebras considered
below will be contained in .T’.
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MAXIMAL OPERATORS FOR MARTINGALES 569

If is a a-algebra and f L , we write E(f O) for the. conditional expection
operator with respect to . By an increasing filtration on f2 we mean a sequence
(.T’,),,>_l of a-algebras such that

By a decreasing filtration on we mean a sequence (.,,),,>_ of a-algebras such that

Let (.T’,)n>_l be an increasing (resp. decreasing) filtration on f2. For f L consider
the (increasing) (resp. reversed) martingale (E(f ,,)),,>_ and define the maximal
operator

Mf sup IE(f ,,)1.

If (Xj)j is a family of real random variables on our probability space, we denote
by

a((x)j)

the smallest a-algebra making every X, j J measurable.
In what follows we shall often consider the discrete probability spaces (N, .T’, P),

where
fl l {1,2,3 n },
.T is the the collection of all subsets of 1,
P =(p, p p, is a probability on N with p,, P({n}) > 0 for all n 1.

Here is a brief outline of the paper. In Section 2 we consider discrete probability
spaces and we show that, for the standard decreasing filtration, the maximal operator
is bounded on L (Proposition 1). In Section 3 we first establish two key lemmas
for general probability spaces giving quantitive estimates for the maximal function
corresponding to a finite decreasing filtration (Lemmas and 2). As a first application
we show that for an independent sequence of random variables, both in the case of
the decreasing filtration and in the case of the increasing filtration associated with
the sequence, the corresponding maximal operator is unbounded on L . Next we
consider discrete probability spaces and for a decreasing filtration (respectively an
increasing filtration) we give a simple criterion (necessary and sufficient condition) for
the maximal operator to be unbounded on L these are Theorems and 2. In Section 4
we discuss a number of examples where the previous criteria apply. In Section 5 we
consider non-atomic probability spaces. We show that for any decreasing non-atomic
filtration for which the tail a-algebra is trivial, the maximal operator is unbounded
on L; this is Theorem 3.
We are indebted to Donald L. Burkholder and David Gilat for valuable suggestions

and comments regarding the subject matter of this paper.
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2. The discrete case; the standard decreasing filtration

The starting point of our investigation is the following observation.

PROPOSITION |. Let (N, , P) be a discrete probability space (no restriction
on P). Let (f’,)n> be the standard decreasing filtration on N, that is .T’n is the
a-algebra generated by the partition

[l,n], {n + 1}, {n + 2}, In + 3}

(here 1, n 1,2 n ]). Then the maximal operator

My sup [E(f ’,)1, f L
n>l

satisfies

IIMflll < 1+ IJflJ, fLI. (2.1)

Hence M f Mf is a boundedsublinear operator on L with bound + (1 /pl ).

Prot Let Pk Pl d- d- Pk for k >_ 1. Let fk denote the indicator function
of {k }. We first calculate Mfk. It is clear that E (fk 5rn) fk for n < k. For n >_ k,

for
E(A ,)(j)

0 for

As pk/P,, decreases with n, we obtain

Thus

j<n
j>n.

for j<k-I
(Mf)(j)= for j=k

for j>k.
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Since the first factor in the right-hand side of the previous inequality does not depend
on k, the subadditivity and homogeneity of M easily imply

IIMf I1 _< -I- f I1 for all f L+.
For arbitrary f L 1, note that 0 < Mf < M(Ifl). Hence (2.1) follows and the

proof is complete.

3. Criterion for unboundedness of the maximal operator

Let (Ft, .T’, P) be a probability space.

LEMMA 1. Let 2 t be a finite decreasing filtration on Ft. Let
D .T" and assume that

E(ID Gj) tjlBj,
where tj IR+ and Bj Bj(D) Gj for < j < I. In addition assume that

(3.1)

(,)
,P(Bj+)

>2 for <_ j < l.
P(tj)

Then we have

1+1
sup E(IolG)II >_ 2 II1o11. (3.2)
<k <l

Proof. Clearly% P(D)/P(Bj)andwemayassumethatB C B2 C C Bi.
Thus the maximal function sup <k<t E o k) takes the value P(D)/P(B) on BI,

the value P(D)/P(Bk) on B\Bk- for k 2 I. Since

P(Bk\BI-) P(BI-)
=1-- >l--=-

P(B) P(Bk) 2 2

it follows that

sup E(I o k)ll
<k<!

P(D)
P(Bk\Bk-I)P(D.___) P(B) + E P(B--P(BI) k=2

P(D) I+E P(Bk)k=2

> P(D) l+(l--l) 2

and the lemma is proved.
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We also have the following result in the opposite direction.

LEMMA 2. Let l :) 2 m be a finite decreasing filtration on [2. Let
D E " and assume that

E(lo j) cj IB (3.3)

where aj I+ and Bj Bj(D) j for < j < m. In addition assume thatfor
some < < rn/2 we have

sup E(lo gTk)ll >_ 21111DIll. (3.4)
<k<_m

Then there exists a chain oflength l, <_ k < k2 < < kl < m such that

(.) P(Bkv+,) > 2 for < v < 1- 1.
P(Bk,,)

Proof As before, aj P(D)/P(Bj), B C B2 C C Bm and the
maximal function suPl<k<m E(Io ) takes the value P(D)/P(B) on B, the
value P(D)/P(Bk) on Bk\Bk_ for k 2 m. Let k 1. If kv has been
determined for some v < 1, set

P(Bk)
> 2}kv+l inf k; kv < k < rn and

P(Bk,)

if the set in the brackets is non-empty, and k+ +x otherwise. The proof
is complete if we can show that kt < m. Suppose otherwise. Then there exists
< r < with kr+ +x. Now observe that we have the following estimate for

the maximal function

sup E(lolk) < E(lol)+ sup (E(lo}j)-E(lo Iv))+
l<k<m v=l v=l kv<j<kv+

+ sup (E(lolgj)-E(lolgj))+. (3.5)
kr<j<m

The integral of each one of the first r summands is P(D). Now look at a summand
of the form

sup (E(lo I{j)- E(lo k))+. (3.6)
kv j <kv+l

The function E(10 ) takes the value P(D)/P(B) on the set Bk. For ko <
j < kv+ the function E(1 o j) takes the value P(D)/P (Bj) < P(D)/P (Bkv)
on Bj. Thus (E(lo j)- E(ID k))+ is0on Bk and < P(D)/P(B) on
Bj \Bk (kv < j < k+). By construction, the union of the sets Bj\B(k < j <
k+) has measure at most P(Bv). It follows that the integral of (3.6) is at most
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P(D). A similar argument applies to the last term on the RHS of (3.5). Hence we
obtain

sup E(lo k)lll < 2rP(D) 2rllloll.
<k<m

As r < k, this contradicts (3.4) and finishes the proof of Lemma 2.

Remark. There are analogous versions of Lemmas and 2 for finite increasing
filtrations (this is immediate by relabelling).

We say that M is bounded on L if there exists a constant C > 0 such that
IIMf I1 _< C f lit holds for all f L It is easy to see that this is true iff M maps
L into L In the opposite case, M is called unbounded on L

The groundwork is now done to completely settle the boundedness of the maximal
operator in the case of discrete probability spaces and also in the case of arbitrary
probability spaces when the filtration is generated by independent random variables.
We begin with the latter.

COROLLARY 1. Let (Xn)n>l be an independent sequence of(non-constant) ran-
dom variables on the probability space (f2, .T’, P). Let (.T’n)n>l be the decreasing
filtration on f2 given by

ffn o’(Xn, Xn+! ).

Then the maximal operator M is unbounded on L

Proof. It is enough to show that given any integer > we can find g 6 L+ such
that

/+1
Mg JJl >_ g ill.2

Let Dj {Xj Ej }, Ej some Borel set of , such that 0 < P(Dj) < 1/2 for
< j < (such a Dj exists since Xj is non-constant). Let D Di n D2 n... n DI

and g o. Set Bk Dk n... n Dt for < k < l; in particular BI D. Note that

E(lo ,T’l)= 1o

and by independence, for 2 < k < l,

E(lo ) P(DI n... n D-l)lokn...no, P(DI n... f’l,Dk_l)lBk

where B .T’k and B C B2 C Bt. Also note that

P(Bk+l) P(Dk+l n n Dl)
(*)

P(B) P(D n n O) P(D)
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for < k < 1. Taking k .T’k for k 1,2 l, we see that the assumptions
for Lemma are satisfied and therefore

1+1
sup E(lo ’)11 > Illo11.
l<k<l 2

COROLLARY 2. Let (Xn)n>_l be an independent sequence of(non-constant) ran-
dom variables on the probability space (f, , P). Let (n)n>_ be the increasing
filtration on f2 given by

a(X, X2 X.).

Then the maximal operator M is unbounded on L

Proof. As before, given any integer > we show the existence of g L+ such
that

/+1
Mg I1 >_ g I1.2

Again, let Dj Xj Ej }, Ej some Borel set of, such that 0 < P Dj) < 1/2, for
< j < I. Let D D f3 D2 tq... f’l Dt andg lo. Set B D tq D2 fq... tq D

for < k < l; in particular Bt D. Note that by independence, for < k < 1,

E(lo ) P(Di+t fq. N DI)lo, no2n...nok P(Dk+ f3 fq Di)lak

and that

E(Io t)= 1o IB,,

where

Bk F, B D B2 D... D Bt,

and

P(Bk) P(DI fq... fq Dk)
(.) > 2.

P(B+) P(D f3 tq D+) P(D+)

The conclusion now follows from the analog of Lemma for finite increasing filtra-
tions.

We can now formulate the criteria for the unboundedness of the maximal operator
in the case of discrete probability spaces.

THEOREM 1. Let (N, ’, P) be a discrete probability space. Let (.n)n> be a
decreasing filtration on N andfor each N and n > let An(i) be the (unique)
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atom ofo’n containing i. Consider the maximal operator Mf suPn>_ IE(f -’n)l,
f L Then thefollowing assertions are equivalent:

(1) The maximal operator M is unbounded on L
(2) For each integer > them exists an 1 and a chain oflength l, <_ k <

k2 < < k! such that
e(a.+(i)) > 2 for < v < l- 1.(*) l’A.ti))

Proof. (2) = (1). Start with C > 0 and choose an integer > such that
(1 + 1)2 > C. Consider the finite decreasing filtration D 2 l, where

.T’k,, 2 .T’k: t .T’k,. Fortheset D {i} with Bj Akj(i), < j <
l, the assumptions of Lemma are satisfied and hence by Lemma (with 3 Iil),
we have

1+1
sup E(f .T’k,)ll >- 2

IIf,’ I1 >- CIIf I1.
l<v</

Since

Mf/ > sup E(35 ’k,)
l<v</

we deduce

proving (2) = (1).
(1) = (2). Let > and let C = 21. Since we do not have unboundedness on

L the maximal operator M cannot be bounded on the set {f/; 6 N}. Hence there
is 6 N and m large enough, m > 21, such that

sup E(fi .T’k)ll >-- 2111J I1.
<k<m

Consider the finite decreasing filtration 2 ::) m, where .T’, 2
.T’2 m .T’m. ForthesetD {i}withBj Aj(i), <_ j <_ m, the assumptions
ofLemma 2 are satisfied, and hence by Lemma 2 we conclude that there exists a chain
of length l, _< k < k2 < < kl < m such that

P(Ak,+,(i)) >2 for l<v</-I(*)
P(Ak(i))

proving (1) = (2).

An entirely similar argument based on the analogs of Lemma and 2 for finite
increasing filtrations yields the next result.
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THEOREM 2. Let (N, yc, p) be a discrete probability space. Let (.T’n)n>_l be an
increasingfiltration on 1%I andfor each E 1%I andn > let An (i) be the (unique) atom
ofn containing i. Consider the maximal operator Mf SUPn>l E(f ’)1, f E
L Then thefollowing assertions are equivalent:

(1) The maximal operator M is unbounded on L
(2) For each integer > there exists an 1 and a chain of length l, < k <

k2 < < kt such that
P(Akv(i)) > 2 for < v < 1-(g) e(Ak’v+ (i))

4. Examples

In this section we discuss several examples where the criteria of the previous
section apply.

(1). Consider the discrete probability space (1t, ., P) (no restriction on P) and
the standard increasingfiltration (."n)n> 1, that is U is the the trivial a-algebra {, N}
and for n > 1, .T’n is the a-algebra generated by the partition

{1 }, {2} {n 1}, [n, o)

(here of course [n, o) {n, n + 1, n + 2 }). Let

R, Pn P([k, x)).
n=k

As R, "N 0, it is clear that for each > there is a chain _< k < k2 < < kl
such that Rk. >_ 2Rk.+, holds for _< v _< I. Take any [kt, cx). Then the
geometric growth condition (.) of (2) in Theorem 2 is satisfied. Hence the maximal
operator M is unbounded on L

(2). We now give an example where the unboundedness on L ofthe maximal oper-
ator depends on the probability P. Consider the discrete probability space (N, .T’, P)
and consider the blocks

BI {l }, B2 {2, 3}, B3 14, 5, 6}

In other words we split N into disjoint consecutive blocks Bn with card (Bn) n.
We have

where

Bn {an, an + 1, an + 2 bn

an= -(n- l)n+ l, bn =-n(n+ l).

For _< k < n let B,,,k {bn (n k) + bn} be the subblock of Bn
consisting of the n k largest numbers in Bn.
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For k > let k be the a-algebra generated by all singletons {i} with

<_bk

and by those with

an < < an -I- (k 1)(-- bn (n k)) for some n>k

and by the subblocks Bn,k with n > k.
If P is given by a sequence (p, P2 Pn which decreases fast enough (for

instance p,, 1/2n), we have

P(Bn,-I)
>2 for 2<k<n.

P(Bn,k)

In this case the condition P(Ak-l (j))/P(Ak(j)) >_ 2 is met for j bn and 2 _< k <
n. Hence Theorem 2 applies and it follows that for such a probability measure P the
maximal operator is unbounded.

On the other hand if the probability measure P has the property that Pb. >

(2/3)P(B,), then

P(Bn,k) P(Bn) 3

P(Bn,z) ()P(Bn) 2

for all < k < < n. It follows that condition (,) of (2) in Theorem 2 fails. Hence
in this case M is bounded.

(3). For notational convenience we work here with No {0, 1,2 instead of
N 1,2, 3 }. Consider the discrete probability space (No, .T’, P) (no restriction
on P). Each No admits a (unique) dyadic representation

Xn(i)2n

n---0

where X(i) {0, and all but finitely many of the X(i)’s are equal to 0. For each
n > 0 let

n tY(Xn, Xn+l, Xn+2
Clearly .To tr(X0, X, X2 contains every {i},i , N0 and thus ’0 .T’.
Consider the decreasing filtration (’n)n>_. The atoms of .T’n are given by {Xn
x, Xn+ Xn+, Xn+2 x+2 }, where xv e {0, and all but finitely many xv’s
are equal to 0, i.e. they are the sets of the form

{m.2n,m .2n+l,m.2n+2 (m+l).2n-1},m> 1.

Thus (.T’,)>_, is the dyadic filtration on N0.
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As usual for N0 and k > 0 let A,(i) denote the atom of ’, containing i.
We show that statement (2) of Theorem holds and thus the maximal operator M is
unbounded on L I. Let > and consider the atom

Bt={0,1,2 2t-l}=lXt=Xl+l =Xt+2=’"=O} of ..
We have

Bt (Bt N {Xt-i 0}) LI (Bt {Xt-i = l})(disjoint union).

Thus there exists Xl-I . {0, 1} such that

P(Bt f3 {Xt-i xt-i}) < -:P(Bt).

Set Bl-1 Bt tq {Xl-i xt-i and continue the process. In this manner we find
Xl-i, xt-2 x l, xo such that

P(Bv) < -P(Bv+I), v 0, 1,2

where By B+I tq {Xv xv} is an atom of.’v. Set

I-I

xv2v.
v----0

Then Xo(i) xo, Xl(i) xl Xt-I(i) xt-I and Xt(i) Xt+(i)
X/+2(i) 0. Thus B0 {i} Ao(i), B Aj(i) Bt- At_(i), Bt
At(i) and by construction the chain A (i) At(i) satisfies the geometric growth
condition (,) in statement (2) of Theorem 1.

(4). For nonatomic probability spaces ([2, ’, P) one can also give examples of
decreasing (respectively) increasing filtrations (n)nr on f such that for each n N,
(2, ’n, P ’,,) is nonatomic, but for which the corresponding maximal operator M
is bounded on L

5. Decreasing nonatomic filtrations

We now study the maximal operator for reversed martingales in nonatomic prob-
ability spaces. Our aim is to prove the following.

THEOREM 3. Let ([2, ’, P) be a probability space and (.T’n)n>_j a decreasing
filtration on 2. Assume that

(i) P restricted to n is nonatomicfor each n > 1,
(ii) the tail a-algebra .Too tqn>_ .T’n is trivial.
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Then the maximal operator

Mf sup IE(f ’)1
n>l

is unbounded on L There exists an integrable f for which Mf is not integrable.

Proof. It is enough to show that, for any integer m > I, there exists gm e L_
and an integer N(m) for which

satisfies

Sm sup E (gin .T’j)I
I<_j<_N(m)

m-I
E(sm) > E(gm). (5.1)

2
Since Mgm > sin, this implies that there is a sequence of nonnegative numbers am
such that f amgm is integrable, but Mf is not integrable.

To construct gm we use an inductive argument. The reversed martingale theorem
implies that, for any integrable h, the sequence (E(h .T’n)),>_ converges a.e. and in
L I-norm to the constant function f h dP. (Note that .T’ is trivial.)

Let k and let A be an .T’-measurable set with P(A) 1/2. Given > 0,
there exists k2 > k i, with

IP(A) E(IA, I.T’)IdP < . (5.2)

If C A’, we also have

lP(C) E(lc, I’)ldP < . (5.3)

Ifk and Ao .T’k,, have been determined for some v >_ 1, we can find k+ such that

lP(Ej.v) E(le.,.,, I.T’k,,/,)ldP < e (5.4)

for all sets Ej.,(I < j < v) of the form Fjn... f3 Fo, where each Fi is either equal
to Ai or to Ci A’. Let A+ be any ’k,,+,-measurable set with P(A,,+) I/2.
The construction continues until we arrive at Am and kin. We set N(m) km and

gm= 1Ain...nA,,,.

We shall show that (5. l) is satisfied if (m) > 0 is small enough. Consider the
sets B C BE C C Bm where

B Ai N A: N N Am
B2 A2N...NAm
Bj Aj’"fqAm

Bm Am
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and the difference sets

D B A f3.’.t’)Am

D2 B2\BI CI f’) A2 fq f’) Am
Dj Bj\Bj_ Cj_ N Aj fq fq Am

for 2 _< j _< m. We have gm o,, hence Sm takes the value on DI. For 2 _< v _< rn
we have

s,n > E(gm I-Fk,,) IA,,n...nA,,,E(IAn...nA,,_ ff=’k,,).
Thus

Sm >_ E(IA,n...nA,,_, ’,,) on A n...nAm, henceon D; (5.5)

since the sets D Dm are disjoint, all we have to show is that (5.4) supplies
enough "approximate independence" to give a convenient estimate for P(Dr) and
the integral of E(IA,n...nA,,_, .F,,) on Dv.
We first show inductively on v that

IP(Ej,,)- 2-(v-J+)[ < ve (5.6)

for any set Ej.,,(I < j < v) ofthe form described in (5.4). The assertion is trivial
for v since P(A0.= P(C) 1/2. Suppose the assertion has been verified for
v and consider Ej.,+ with < j < v + 1. If j v + 1, there is nothing to prove
since P(A+) P(C,,+) 1/2. If j < v and Ej.+ is of the form Ej., f3 A,+,
by (5.4) we have

2-v+-J+) f [E(IG.,, .T’k,,+,) 2-(-j+)] deIP(Ej.+I)
JAv+

[ P G, }I dP
dAv+

/ dP
v-Fl

_
e+v=(v-l-l).

The argument for the case Ej./ Ej.v C/ is essentially the same.
Finally we can estimate the integral of s. We have

s, dP P(D) E(g).

By (5.5) we know that Sm >_ E(IA, .F) on D and by (5.6), IP(D) 2-ml < m,
IP(D) 2-’I +/- me, so that

> -P(D)-(m+I)= E(gm)-(m+l)e.
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For 3 < < m, note that by (5.6), (5.5) and (5.4),

IP(Di) 2-(m-i+2) < me

and

smdP > fD E(IA,n...CA,_, I.k,)dP

> /o P(AI fq.." fq Ai-I) dP e

>- fo 2-(i-I)dP ie > 2-(i-I) [2-(m-i+2)

> 2-m-t -2me

> -P(D)-3me= E(g)-3me

Summing all these estimates, we arrive at

sm dP > E(gm) [1 + 2
3m2e"

This yields the desired estimate (5.1) for small enough e > 0.

me] ie
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