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ON MODULATED ERGODIC THEOREMS FOR
DUNFORD-SCHWARTZ OPERATORS

MICHAEL LIN, JAMES OLSEN AND ARKADY TEMPELMAN

ABSTRACT. We investigate sequences of complex numbers a {at‘} for which the modulated averages

"t‘=l at, Tt‘ f converge in norm for every weakly almost periodic linear operator T in a Banach space.
For Dunford-Schwartz operators on probability spaces, we study also the a.e. convergence in Lp. The
limit is identified in some special cases, in particular when T is a contraction in a Hilbert space, or when
a {st‘4,()} for some positive Dunford-Schwartz operator S on a Lebesgue space and4, L2. We also
obtain necessary and sufficient conditions on a for the norm convergence of the modulated averages for
every, mean ergodic power bounded T, and identify the limit.

1. Introduction and preliminaries

Let (f2, .T’, #) be a a-finite measure space, and let T be a Dunford-Schwartz
operator on LI (tz) (i.e., a contraction ofL (/z) which is also a contraction ofL(/z)).
T is then also a contraction of each Lp(/Z), < p < cx:, and the Dunford-Schwartz

n Tkpointwise ergodic theorem yields a.e. convergence of k= f for every f
Lp(lZ), < p < c. Convergence in Lp-norm, for < p < cx, follows from the
reflexivity of L,(#), and yields L-norm convergence for # finite.

For fixed p, we will be interested in sequences a {a of complex numbers,
which yield modulatedergodic theorems--convergence, for every Dunford-Schwartz
operator T and every f L,, either almost surely or in the mean, of the "modulated"

n Tkaverages of the form = a f. In case the limit

L(a, T)f lim - Tt’
"= ak f

n---<:x r/
k=l

exists for every f L,(/z), we would like to identify it.
If we want convergence of the modulated averages to hold at least for all rotations

’ a exists for all , with I.1of the unit circle, we must have that lim,,_ =l
and denote that limit by c(.). In that case, we say that the sequence a {a} has
Fourier coefficients, call c(.) c(., a) the Fourier function of a, and, following [K-2,
p. 72], call .a a Hartman (almost-periodic) sequence. The spectrum of a Hartman
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sequence a {ak} with Fourier function c(,k) is the set tr (a) := {.: c(,k) 0}. By
[K- ], the spectrum is countable. A simple proofforbounded Hartman sequences, due
to Boshemitzan, is given in [Ro, Theorem 41 ]. In fact, the proof applies (precisely)
to Hartman sequences in the class W2 defined below.

For < p < cxz, let Wp be the class of complex sequences a {ak} such that the
n ipseminorm Ilallwp, given by (lim supn Yk= la )7 is finite. W denotes all

bounded sequences. Clearly Wp C Wp2 for < P2 < P < c, and positive Hartman
sequences are in W. We denote by W/ the W-seminorm closure of Up> Wp. An
adaptation of the proof given by Marcinkiewicz [M] for functions defined on R (see
also [Le, Theorem 5.10.1]) shows that all the sequence spaces Wp are complete.
We look also at operators more general than Dunford-Schwartz operators, and the

problem is, for a power-bounded operator T on a Banach space X and a sequence
a {a }, to obtain the norm convergence

L(a, T)x := lim ak Tkx exists for every x X.
n---o n k=l

(l.l)

n TkWhen a Wl, we have SUPn

_
a < o for every T power bounded in a

nBanach space X, so the set of x X for which k=l ak Tkx converges is closed.
The next proposition follows from Lemma of [T- (see also [tLO] for its second

part).

PROPOSITION 1.1. Let T be a power-bounded operator in X. If a) W
satisfies (1. l)for each N, and IlaC/v) all wl -- 0, then also a (which is necessarily
in W) satisfies (l.l), andlimN I[L(av), T) L(a, T)II 0.

By Proposition 1.1, the set of Hartman sequences in Wl is a closed subspace of
WI.

Recall that T is called weakly almost periodic (WAP) if for every x X the orbit
Tkx is weakly conditionally compact. Power-bounded operators on reflexive spaces

are WAP. An important tool in the study of ergodic properties of WAP operators is
the Jacobs-Deleeuw-Glicksberg decomposition [Kr, [}2.4]:

X [closed lin. span{y: Ty ,ky, I1 l}]{z: TnZ 0weakly for some{nj}}.

THEOREM 1.2. Let a {ak} be a Hartman sequence. Ifa Wl/, thenfor every
weakly almost periodic operator T on a Banach space X,

L(a,T)x := lim ak Tkx existsfor every x X.
no n k=l

Proof If Ty .y with I,k] 1, then L(a, T)y exists, by the existence ofFourier
coefficients for a. On the space X0 of the flight vectors of T (the vectors z with a
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subsequence of Tnz} converging weakly to 0), the limit in (1.1) exists and is zero
for all Wp sequences (p > 1), by the proof of Theorem 4.1 of [(LO] for that part
the existence of the Fourier coefficients is not needed. Hence, for the flight vectors
the limit exists and is zero also when a Wl/, by Proposition 1.1.

Thus, convergence holds on the linear manifold Y generated by X0 and the eigen-
vectors {y: Ty .y, I,1 }. Since Y is dense in X by weak almost periodicity,
convergence holds on X (because a Wl).

Remark. The Wp sequences which approximate a W/ need not be Hartman.

Example. A Hartman sequence in W which is not in WI+.
We define a {ak by ak 0 if k is not a square, and aj2 j. For j2 < n <

(j + 1)2 we have -]=l ak -]iJ=, --+ 1/2, so a W. Suppose b Wp with
p > 1, and lib allw, < 1/4. Then Ilbllw, > 1/4. We may assume that b 0 for k not
a square, as this will only improve the approximation. For n j2, using H61der’s
inequality we have

}bi} " Ib21 < Ibk p Ibi p

n
i=1 k=l J " k=l j i-l/p n i=1

This contradiction shows that a W+. We now show that a is Hartman. Let .
have an irrational angle. By Weil’s equidistribution theorem for the squares [KuN,

np. 27], k=l ’ "-+ 0. Using Abel’s summation by parts, we can prove that if
n _. n

__
-]k_ d 0, then _k- kd 0. Hence, for with Irrational angle, our a

satisfies Ek-i ak’ ’]- k’ -’+ O, where j [x/if]. For k a root ofunity
of order t, the onvergence s shovn by representing each k ts + r with 0 < r < t;
we omit the computations.

Recall that T is called almost periodic if for every x X the orbit {Tkx} is
conditionally compact (in the norm). In that case, IlTnxll --+ 0 for every x X0
(this property characterizes the almost periodic operators among the weakly almost
periodic ones), and (1.1) holds for any Hartman sequence a e Wl.

PROPOSITION 1.3. Let a {ak be a sequence ofcomplex numbers. Iffor every
n Talmost periodic operator T in a Banach space SUPn _-- a < x, then a

Wl.

Proof Define T in co (the space of sequences converging to 0) by the shift
T({Xk]) {Xk+l}. Clearly Tn converges to 0 strongly, so T is almost periodic.
For a # 0, define x(n) (0, sign al, sign a2 sign an, 0, 0 co (where
signa z/lal for a # 0 and sign0 0). Then Ilxt)ll (for n large enough), and

n akTkx(n) nthe first coordinate of ; -=l is = lak I. Hence

sup lal < sup aT < sup aT < cx.
n n k-.l n n k=l n n k:l
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PROPOSITION 1.4. A sequence a {ak satisfies (1.1) for every almost periodic
operator T in a Banach space X ifand only ifa is a Hartman sequence in

Proof. Let a satisfy (1.1) for every almost periodic T. Then a Wl by the
previous theorem, and it is Hartman because rotations on the unit circle F "= {
C: I,X.I l} yield almost periodic operators on C(F). The converse was observed
above.
A complex-valued function t on the integers is called a trigonometric polynomial

if there exist complex numbers .l ,kn with all Ijl l, and complex numbers
b bn, such that t(k) bL] +... + bnkn for all k. If < p < o and a
is in the Wp closure of the trigonometric polynomials, a is called p-Besicovitch.
l-Besicovitch sequences will be called just Besicovitch sequences, and every p-
Besicovitch sequence is Besicovitch. Since trigonometric polynomials are bounded
Hartman sequences, every Besicovitch sequence is in W+, and Proposition 1.1 shows
that it is a Hartman sequence, and also that it has countable spectrum. However, there
are many bounded Hartman sequences which are not Besicovitch [K-2, p. 73]. The
second part of the next proposition yields specific constructions.

PROPOSITION 1.5. Let 0 be an ergodic measure preserving transformation of a
probability space (f2,.T’, lz). If 4 Lp(lZ) for < p < cxz, then for a.e. to, the
sequence a {4(0kto)} is a Hartman sequence, which is in Wp. Furthermore,
if 0 is weakly mixing, and 4 is non-constant, then for a.e. to the sequence a is a
non-Besicovitch Hartman sequence.

Proof When p < x, the sequence {q(0kto)} is a.e. in Wp by the pointwise
ergodic theorem applied to 14,1 p. The Wiener-Wintner Theorem (e.g., [W]) implies
that for almost every to, the sequence a {qb(Okto)} is a Hartman sequence. Its proof
also shows that for a.e. to, the Fourier coefficients of a are E(,k)q(to), where E(.) is
the ergodic projection of Lp(#) on the eigenspace of ,k, and thus the spectrum of a
is {,k E(.)q 0}. This shows that if 0 is weakly mixing, the Fourier coefficients
of a, except at 1, are all zero (see also [BO, Theorem 5.2]), so the sequence is riot
Besicovitch.

Remarks. 1. The first part of the proposition is true without ergodicity, when the
probability space is a Lebesgue space.

2. For p 1, the sequences a obtained in the proposition are in fact in W+ (see
details in the proof of Theorem 3.6 below).

3. Proposition 1.5 is true also for a {Pk4(to)}, when P is a transition proba-
bility operator for which/z is an ergodic invariant probability (this follows from the
construction of the Markov shift- see [tLO]). When the space is a Lebesgue space,
we can replace P by any Dunford-Schwartz operator on L(fl,/z) [tLO].

The following lemma, known for 2-Besicovitch sequences, is proved by standard
approximations (using HiSlder’s inequality).
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LEMMA 1.6. Let < p < x and q p/(p 1). If a Wp is a Hartman
nsequence and b is q-Besicovitch, then limn " Y’k--I akb exists.

nIt follows from Lemma 1.6 that < a, b > := limn -=l a/ exists when a and b
are 2-Besicovitch, and the completeness theorem yields that the equivalence classes
of 2-Besicovitch sequences form a Hilbert space with inner product < a, b >, in
which the sequences {,k} (I,1 1) form an (uncountable) orthonormal basis. Thus,
for a 2-Besicovitch sequence a with spectrum {j} we have Ilal122 .j Ic(j)l2, and
it follows from the Riesz-Fisher theorem that for any sequence {,kj with I,1 and
{cj} with -j Icj 12 < o there is a 2-Besicovitch sequence a with spectrum {.j} and
cO,j) cj (see [Bes, p. 110] for functions defined on R).

2. Series representation of the limit

In this section we study the problem of identifying the limit in Theorem 1.2. We
saw that for the flight vectors of a weakly almost periodic operator T the limit in (1.1)
exists and is zero for any a e Wl/. Thus, on the dense linear manifold Y generated
by the space X0 of flight vectors and the eigenvectors {y: Ty .y, I.1 = the
value of the limit operator L(a, T) is known: the limit is 0 for the flight vectors,
and obviously, for any Hartman sequence, L(a, T)()-= yj) E=I c(j)yj when
Tyj .j yj with I.jl-- 1.

For T power-bounded in X with .T mean ergodic, I,1 1. the limit E(;k, T)x
n klim= Tx is the projection onto the eigenspace Xx {y" Ty .y}, along

()I T)X. When T is understood, we write E()0 for E(., T). It is immediate that
if .T is mean ergodic for every I,1 (we call T totally mean ergodic), then for
,k .2 we have E(,)E(.2) 0. For such a T, for any x e X the set of . of unit
modulus with EOOx 0 is countable (since in the separable T-invariant subspace
generated by {Tx}, the restriction of T has at most countably many eigenvalues
[Ja]).

THEOREM 2.1. Let a {a be a Hartman sequence which is in W. Then (1.1)
holdsfor any contraction T in a Hilbert space H, and we have

L(a, T)x c()OE()x (2.1)

(with countably many non-zero terms, and strong unconditional convergence of the
series).

Proof. For any contraction T in H, the E(k, T) are orthogonal projections, by
the mean ergodic theorem. Orthogonality of the eigenspaces yields directly that for
fixed x H only countably many E(k)x are non-zero. Since Ic()l < Ilallw, for
I;1 l, the orthogonal series on the fight hand side of (2.1) converges in norm.
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We first prove the theorem for U unitary. By the spectral theorem, for every x e H
we have a (vector) measure crx on the unit circle such that

ak Ukx
n k=l :141-

akZkdax(.).
II n =

n n
Since sup, I k= a.l -< sup. = lal < , the strong convergence follows
from Lebesgue’s bounded convergence theorem, with L(a, U)x fl.:l.l-ll c(.)de.
But c(.) 0 except for countably many values )j, so

L(a, U)x c(Xj)a(12jI) c(Xj)E(2j)x.

Now let T be a contraction in H. By the dilation theorem, there exist a Hilbert

space H containing H and a unitary operator U in H, such that T PUk for every
k, where P is the orthogonal projection from Hi onto H. Hence -ffk=.aTx

n kP(1/4-=laU x) converges in norm for every x e H, by continuity of P and (since
clearly E (,k, T) P E (), U)) we obtain

L(a, T)x P L(a, U)x c()j)P E(kj, U)x c(j)E(.j, T)x.
j

Remarks. l. For 2-Besicovitch sequences, the theorem was proved in [T- for T
unitary (in the context of unitary representations of LCA groups). It was extended to

contractions in a Hilbert space in [O] (still for 2-Besicovitch sequences), but without
mentioning that P E(), U) E(,k,T).

2. Even for a contraction in a Hilbert space, the method of [tLO] yields I. and

(2. l) only for a Hartman sequence a in W,+. In the more general case of a e W,, it is

not clear how to use that method to prove convergence to 0 on the space H0 of flight
vectors.

3. The special case of the theorem obtained in [T-l] was applied in [T-2] to the
consistency of least square estimators in linear regression models with 2-Besicovitch

regressors. Applications of Theorem 2. (and of Theorem 2.7 below) to more general
regressors will appear elsewhere.

For a Hartman sequence a in W/ and T weakly almost periodic in X, we saw

that the limit L(a, T)x equals the right-hand side of (2.1) for x in.the dense linear

manifold Y generated by X0 and {y: Ty ,y, I;1 }. Thus, by continuity of the

limit operator (which is defined on all the space by Theorem 1.2), the problem of the
identification of the limit is reduced to proving the convergence of the right hand-side
of (2.1) for every x e X.

THEOREM 2.2. Let a {ak be a 2-Besicovitch sequence with spectrum {)j }. Let
T be a totally mean ergodic power-bounded operator in a Banach space X. Then
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j% c(j)E(-j) converges in operator norm, andfor every x X,

ak Tkx c(kj)E(j)x O.
n

k=l j=l

Proof. Since {ak} is2-Besicovitch, Ejee__l Ic(.j)l2 < c. DefineatN) {aN)}>_l
by aS’= v=, c(Xj)Z. Then

Ila- amll, Ila- amtl IC(j)I2NO.

Since T is totally mean ergodic, for eve x X we have

L(a(N), T)x lira -1 a)Tx
n

k=l

lira c(X) Xrx c(X)E()x.
n

j=l n k=l j=l

Proposition 1.1 now yields both asseions of the theorem.

Remarks. 1. Any weakly almost periodic operator is power-bounded and totally
mean ergodic. The identification of the limit for T WAP follows from (the ideas of)
[LO].

n2. By Proposition 1.1 (see also [LO]), the convergence of k-- aTx holds
even for a l-Besicovitch sequence a. The difficulty in obtaining the identification
of the limit for every x is in proving that lim__, Ila- aCN)llw, 0 for the {a(N)
defined in the previous proof. It is an interesting open problem at the moment whether
we have this latter convergence even for p-Besicovitch sequences, < p < 2.

3. Any contraction T in L with mean ergodic (ME) modulus is totally ME, by
[IL], since the modulus of gT is that of T.

Example. A totally mean ergodic Markov operator on C(K) which is not WAP.
The example was provided by I. Kornfeld. Let 0 be a uniquely ergodic minimal

homeomorphism of a compact metric space K, with invariant probability #, such that
0 is weakly mixing in L2(/z) (such homeomorphisms exist---by Jewett’s theorem, ev-
ery weakly mixing probability preserving invertible transformation has a topological
model with such a 0). Define P on C(K) by Pf f o 0. Since 0 is uniquely
ergodic, P is ME. Since 0 is weakly mixing, mean ergodicity of .P, for every . :
with I,1 1, follows from [As-2]; see [R] (and also [W]). Thus, P is totally mean
ergodic. P is irreducible, by minimality of 0. If P were weakly almost periodic,
it would be almost periodic [Kr, p. 182], and by weak mixing we would then have
II pnf o 0 for any f C(K) with f f d/z 0, contradicting the invertibility of
P. Hence P is not WAP.
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THEOREM 2.3. Let Icy be a sequence ofcomplex numbers with -t IcJl2 < o,
and let T be a totally mean ergodic power-bounded operator in a Banach space X.
Then for any sequence (of unimodular eigenvalues) {kj }, the series -j= cj E(j)x
converges stronglyfor every x X.

Proof. Fix the operator T and the sequence {,kj }. Since j= Icj 12 < o by as-
sumption, by the Riesz-Fisher theorem (see there exists a 2-Besicovitch sequence
b with spectrum {j and Fourier function c(.), such that c(,kj) cj for every j. By
the previous theorem we have the required convergence.

Remarks. 1. The stronger condition =t Icjl < yields the theorem trivially.
2. For a contraction T in a Hilbert space, the orthogonality of {E(.)1 yields the

convergence oft cE(.j)x for any bounded sequence {c 1.

THEOREM 2.4. Leta {ak} W+ beaHartmansequence. Ifxj,ta)lC(Lj)l2 <
cx, thenfor any weakly almost periodic operator T in a Banach space X and x X,
we have

L(a, T)x c(.j)E(j)X

(with countably many non-zero terms, and unconditional strong convergence of the
series).

Proof. The series converges to L(a, T)x for x in a dense subspace. The spectrum
of a is countable, and let {.j} be an enumeration. Since joo__t ic(.j)12 < oo by
assumption, the previous theorem yields that the series converges for every x, which
is equivalent to the claimed equality.

Remarks. 1. The condition j%t Ic(Lj)l2 < cx does not imply boundedness of
{ak }. For example, let a if k # 2n, a2,, n + 1. Then the spectrum consists
only of,k 1.

2. Sequences a obtained from ergodic probability preserving transformations as in
Proposition 1.5, with $ L2, satisfy the hypotheses ofTheorem 2.4. A more general
case is treated in Theorem 3.15 in the next section.

If T is an operator in an Lp space, we can ask also for a.e. convergence on the
fight-hand side of (2. I). This question seems to be independent of the question of a.e.
convergence in (1.1) (treated in the next section; see [LO], where earlier references
are given).

THEOREM 2.5. Let T be a contraction ofL2(, lz). If-j= Icjl2 < oo, thenfor
every sequence {,j ofunimodular complex numbers andfor every f L2, the series

’j=l Cj E(-j f is absolutely convergent a.e., and also converges unconditionally in
L-norm.
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Proof. By the definitions, )_.jT(E()j)f) EOj)f. Hence the sequence {E(Zj)f}
is orthogonal in L2. Each E(q) is an orthogonal projection, and E(.j)L2} are
orthogonal subspaces. Hence for every n,

f 2 >_ E(j)f 11E(j)f 2,
j=l j=l

sofj=t" IE()fl2 dU Ilfll 2. Hence by Lebesgue’s theorem y4=llE(-j)fl2(w)}O <
cx a.e. By the Cauchy Schwarz inequality,

Hence the series is a.e. absolutely convergent, since Y-= [cj 12 < o by assumption.
Since limj cj O, , IlcjE(-j)fll 2 < Ilfll2 maxj IcjI 2, and the orthogonality

yields the unconditional norm convergence of }-4= c E()f.

A function f Lp is called an Lp-flight vector (1 < p < o) for a Dunford-
Schwartz operator T in a probability space, if there is a subsequence such that Tk f
converges to zero weakly in Lp. The last part of the following proposition is probably
known (its first part is standard), but we have no reference for it.

PROPOSITION 2.6. Let T be a Dunford-Schwartz operator in a probability space.
Then T is weakly almostperiodic in L , every Lp-flight vector f is a flight vector in
L l, and the set of L2-flight vectors is dense in the set of L-flight vectors.

Proof For any contraction in a Banach space, standard approximation arguments
show that the set of vectors with weakly sequentially compact orbits is closed. For
f 6 L2 the sequence {Tn f} is weakly sequentially compact in L2, hence, since

L C L2 C L l, it is also weakly sequentially compact in L I. Hence T is weakly
almost periodic.

The Jacobs-Deleeuw-Glicksberg decomposition of T in L yields a bounded pro-
jection Eo on the space of L -ttight vectors. The same decomposition in Lp (and its
uniqueness) yields that if f Lp, then Eof Lp. Now let f 6 Lt be a flight vector,
and let f/ 6 L2 converge to f in L. Then f E0f limi E03].

THEOREM 2.7. Let a {ak be a Hartman sequence which is in W. Then for
every Dunford-Schwartz operator T in a probability space and every f Lp, <

n Tp < o, L(a, T)f "= limn -ff k= ak f exists in Lp-normfor every f Lp,
and L(a, T)f 0 for every L-flight vector f For f L2 we have (with L2
unconditional convergence ofthe series)

L(a, T)f E c(,j E(j f (2.2)
.ir(a)
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Furthermore, if the Fourier function of a satisfies ’]x.j,ta) Ic(.J)l2 < <x, then
(2.2) holdsfor every f Lp, with Lp-norm unconditional convergence ofthe series,
andfor f Lz, the series converges also a.e.

Proof. T is a contraction of L2, so by Theorem 2.1 limn__, -]=j ak Tk f exists
in L2 norm for every f 6 L2. This implies convergence in Lp-norm, for < p < 2

,1 Tkand f L2. Since the sequence of operators g )-]k=l ak is bounded in norm, we
have the Lp convergence for every f Lp when < p < 2.
Now let p 2 + or. Fix f 6 L, and put g L(a, T)f. Then g L, and

g
n k=

p

a fg
n =

g
n

,atTk f Ilgll + sup- lakl Ilfllog
n k=l 2

n n k=l

t 0.

aT f d#g-nk=

Hence we have convergence in Lp norm for bounded functions, and therefore, as
before, for every f Lp.

The limit operator L := L(a, T) on L is bounded, and Lf 0 for any L2-flight
vector f. Since the L2-flight vectors are dense in the L -flight vectors, Lf 0 for
every flight vector f L j. Since T is a contraction in L2, (2.2) holds for f e L2 by
Theorem 2.1.

Assume now j= Ic(.y)l < o. For < p < o, the right hand side of (2.2)
converges in Lp by Theorem 2.3, and equals L(a, T) on the dense subspace L, so
(2.2) holds.

Finally, the a.e. convergence of the series, for f L2, follows from Theorem 2.5.

COROLLARY 2.8. Let T be a Dunford-Schwartz operator in a probability space,
and let a {a be 2-Besicovitch with spectrum {.j }. Thenfor every f L2, the se-
ries Y’]j=tc(j)E(-j )fconverges a.e. (and in L2) to L(a, T)f limn-+o ,’=(z Tf.

Problems. 1. Under the assumptions of the corollary, is the a.e. convergence of
the series in (2.2) valid for f e L i, or at least for f Lp, p > 1? (Theorem 2.7
yields Lp-norm convergence ).

2. If T is a Dunford-Schwartz contraction in a probability space, for which func-
tions can we obtain a.e. or norm convergence of the series j=l cj E(y)f, when

-]j=i [cj p < x for some p > ? Of course, the norm convergence problem is only
forp > 2.
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For a positive Dunford-Schwartz operator r in a probability space (i.e., a Markov
operator with invariant probability/z), E 1, r)f is Eu (f 2)--the conditional expec-
tation of f with respect to the a-algebra 2" of r-invariant sets [Kr, p. 129]. M. Akcoglu
has noted that for a Dunford-Schwartz operator T in a probability space, the structure
of Ll-contractions given in [ABr] (see also [Kr, p. 163]), and the fact that T and ,kT

have the same linear modulus, yield the following representation of the projections
E(Z, T).

THEOREM 2.9. Let T be a Dunford-Schwartz operator in a probability space
(2, Y:, lz) with linear modulus r, such that r 1, and let 2" be the a-algebra of
r-invariant sets. Then for every ) with I,1 there exist a set Ax E Z and a
complex-valued 2"-measurablefunction h, with Ihxl A, such that

E(A, T)f h;E(l, r)(h;f) hxEz(hxf 12") Vf E LI.

Remark. If, in the above theorem, r < 1, then both the conservative and dis-
sipative parts of r are absorbing. Thus, Theorem 2.9 applies to the restriction of T
to the conservative part of r. On its dissipative part D, r has no fixed points, so
o E(., T)f 0 a.e. for every f L.

THEOREM 2.10. Let T be a totally mean ergodic power-bounded operator on
L(2,/z). If ,j= Icjl < c, then for every sequence {,j} of unimodular complex
numbers andfor every f L, the series ’j= cj E(j)f is absolutely convergent
a.e., and in L i.

Proof.
we have

Define M "= supt Tk II. Clearly E()II M for I1 1. For every n

Icg())fldt Icl IIEO)flI _< MIIflI Icl.
j=! j=l j=l

Hence we have the L absolute convergence, and by Lebesgue’s theorem also the a.e.
absolute convergence.

Remark. If T is a contraction of L() with mean ergodic linear modulus, then
it is totally mean ergodic It,Ll.

3. Pointwise modulated ergodic theorems for Dunford-Schwartz contractions

Pointwise modulated ergodic theorems in Lp (p > 1), forLCA group actions, were
first obtained by Tempelman [T-1 ], with modulation by (not necessarily bounded) q-
Besicovitch sequences (where q p/(p 1) is the dual index). For T induced
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by a measure-preserving transformation, Ryll-Nardzewski [RN] obtained (indepen-
dently of [T- ]) pointwise convergence for L functions, with modulation by bounded
Besicovitch sequences (denoted oo-Besicovitch; these are in fact p-Besicovitch for
every < p < oo [BeLo],[JO],[LO]). Baxter and Olsen [BO] showed that a bounded
sequence which modulates pointwise all L functions for any measure preserving
transformation also modulates for all Dunford-Schwartz operators. Most of the sub-
sequent research was for L functions with modulation by bounded sequences (see
[tLO] for aditional references). The celebrated "return times theorem" [BoFKaOr]
shows that the sequences generated by measure preserving transformations (as in
Proposition 1.5) are pointwise modulating sequences.

B. Weiss (oral communication) has noted that there are bounded Hartman se-
n okquences {ak} forwhich { -k= af o mayfail to converge a.e. for some probabil-

ity preserving 0 and f Lc: Thouvenot and Weiss (unpublished) have constructed a
weakly mixing shift invariant probability on , := 1,2, 3, 4}r and a corresponding
generic point a, which is a Hartman sequence by [OrWe, pp. 120-121], with that
property.

PROPOSITION 3.1. Let T be a Dunford-Schwartz operator in a probability space
(f2, tz). Fix p, < p < oo, and let q =e-r. If a {a} is a sequence in Wq

n k
v-,-_ a,T f converges a.e. for every f Loo(lz),(with Wo oo), such that -ff

nthen -ff ’= a, T*f converges a.e. for every f Lp(#).

Proof. We first assume < p < cx, and fix {a,} as in the statement of the the-
n l.k p)orem. For f Lp(f2,/z), -’,=t (Ifl converges a.e. by the Dunford-Schwartz

theorem, where r is the linear modulus of T. By H61der’s inequality, for a.e. w we
have

l rka, f(w)
n k=l

(3.1)

with the last inequality by Irfl p <_ r(lfl p) a.e. [Kr, p. 65, Lemma 7.4]. Hence, for
every f Lp we have

sup
n

a f(w)
n k=l

< cx a.e.

n TkBy assumption, -ff= ai f(w) converges a.e. for every f Lo(f2,/x), so the
Banach principle now yields a.e. convergence for all f Lp.
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Now let p 1, so q cx. Then for a.e. w we have

sup ak f(w)
n k=l

_< Ilalloo sup rlfl(w) <
n lrl k=l

and convergence again follows from the Banach principle.

PROPOSITION 3.2. Let T be a contraction of Lo(lz), let biN) {bN) be se-
n bN)Tk foreveryquences in Wi such thatfor every N, limn -ff= f exists a.e.

f L, and let a {a} with limv--,o libt) allw, 0. Thenfor every f L,
nlimn--, -]= aTkf exists a.e., and the limit operator L(a, T)f is bounded on

Lo.

n TProof Fix f Lo. We prove the convergence of =l a f by the method
of [JO] (which applies a.e. the inequalities obtained in [T- for norms): for a.e. w,

ak f(w) akTf(w)
n k=l m k=l

1 bV))Tt< (a f(w)
n k=l

+ Tf(w) bV)Tkf(w)
n k=l m k=l

1 bV))T+ (a f(w)
m k=l

_< lak Illfll +- la IIIflln k=l m k=l

+ Tf(w)
n k=l m k=l

n Tkf(w)} is a Cauchy sequence, and hence converges, for a.e.Hence { -]k=i ak
W. Denote this limit by Lf(w). Clearly, IILII _< Ilallw,, since we have a.e.

Lf(w)l <- lim sup
n---*oo n k=l

THEOREM 3.3. Let T be a Dunford-Schwartz contraction in a probability space,
and let a {a} be a l-Besicovitch sequence. Then for every f L,

nlimn -ff -]= aTf exists a.e., and the limit operator Lf is bounded on L.
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Proof. Let b(N) {bN) be trigonometric polynomials with

lim libtN) allw, 0.
N--)

n bt)TkBy the Dunford-Schwartz theorem (for each ,kT), limn-, t--I f exists

a.e. (and equals Lvf ’=1 ’I,Aj )EtAj )f, where {,k}N) < j < JN} is the

spectrum of btN)). The Theorem now follows from the previous proposition.

Remark. Ll-norm convergence holds for every f L [(LO].

COROLLARY 3.4.
{.j }, then

for every f Lo.

If in the above theorem, {at} is 2-Besicovitch with spectrum

Proof
rem 2.2.

For the approximating sequence b:7) in the proof, take a#) of Theo-

THEOREM 3.5. Fix p, <_ p <_ o, and let q p,_. If {at} is q-Besicovitch,
thenfor every Dunford-Schwartz operator T in a probability space (f2,/z) and every

n Ttf Lp(), "-t=l at f converges a.e.

Proof. For p o, q and this is Theorem 3.3. For p < o, combine
Proposition 3.1 and Theorem 3.3.

Remarks.

# {w: supn
n

E atTt f(w)n k=!

1. In fact, we have a weak maximal.inequality in Lp, (1 _< p < o)"

> < /z w: sup rt(IflP)(w >
n k=l

K (a) f< IflPdlz

by the maximal inequalities for the Cesaro averages in L (the constant K (a) depends
only on a {at }, not on T or f).

2. The theorem is true without requiring # to be finite. The modulus r splits the
space into two absorbing sets: on one of which r has an equivalent finite invariant
measure, and Theorem 3.3 applies; on the other r has no absolutely continuous

n .kinvariant measure, so on that set =l f converges to zero for all f Lp
(1 _< p < cx), and our inequalities (3.1) imply the result.
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3. The theorem was first proved in [T-1 ], for < p < o and T induced by a
measure preserving transformation (in the context of group actions of LCA groups),
without using the Banach principle. The proofof [T- can be adapted to our situation
(using the inequality [rlfl]p < r(Ifl p) ), but it does not give the theorem for p 1.
For p and T induced by a measure preserving transformation, the theorem is due
to Ryll-Nardzewski [RN] (with a different proof).

THEOREM 3.6. Let (,, m) be a Lebesgue space, and let S be a Dunford-Schwartz
operator on Ll(m). Let < p < o with dual index q. Then for ck Lq(m) there
exists a null set Z, such that for q Z the sequence ak skck() is in Wq, and
has the property thatfor every Dunford-Schwartz operator T on a probability space

n Tk(f, lz) and every f Lp(lZ) we have a.e. convergence of -ff= a f

Proof. For p (W is e), this is Theorem 3.2 of [LO], which depends on
the return times theorem [BoFKaOr] (and on [BO]). Fix < p <
and fix Lq(m). Let {N} be a sequence of bounded measurable functions on
with 14’1 _< 14,1 a.e., which converges to pointwise and in Lq (m)-norm. Let S be
the linear modulus of S. For a.e. " we have (using [Kr, Lemma 1.7.4] again)

limnSUp -nl k- IS() Iq < limsup -n k_

[k Il()lq < liml-n __ k (lblq)()’

which is finite a.e. by the pointwise ergodic theorem, so for a.e. the sequence
{S()1 is in Wq.

Let C and D be the conservative and dissipative parts of S, which are both absorbing
[Kr, p. 131 ]. Since the limit in the ergodic theorem is zero on D and on the conservative
absorbing set Co on which has no finite invariant measure, for a.e. D t_J Co the
sequence S() has Wq seminorm 0, and (3.1) yields the desired convergence.

Let C be the maximal support of a finite invariant measure for , and let 0 <
L(m) with { > 0} C and S= p. For the behavior for Cl wemay

assume A’ C, since C is also absorbing. We already know that for a.e. the
sequence {Sq()} is in Wq. Let E be the conditional expectation with respect to the
invariant a-field of , in the space L( dm). Using the identification of the limit in
the ergodic theorem, for a.e. we obtain

n n

[sk()- sktN()[q < limsup- _m[k([ N[)()]qmslinuP n
k= n

n k=l

()E(r-I [ ONlq)().

Since ap’f Ll(apdm) for f Ll(m), the bounded convergence theorem for con-
ditional expectations yields limN E(- I bNIq)() 0 a.e. By Theorem 3.2 of
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[LO], for a.e. the sequence {SN()}k>_ can be taken as b(N) in Proposition 3.2,
good for all Dunford-Schwartz operators. Since we have only countably many re-
lations, it follows from Proposition 3.2 that for a.e. , the. sequence a Sp()
satisfies the hypothesis of Proposition 3.1 for all Dunford-Schwartz operators. For
p o this is the statement of our theorem; for < p < o we now use Proposition
3.1 to conclude our theorem.

Remarks. 1. The first part of Theorem 3.6 is a generalization of Proposition 1.5.
2. Applying the theorem to rotations, we see that {Skip (’) is Hartman. When

q 1, the proof shows that for tp L l, the sequence {Sktp(")} is in W+ (all for a.e

3. The main interest in [LO] was in obtaining bounded a.e. modulating sequences.
The previous theorem suggests that positive L contractions may yield a.e. modulating
sequences for positive Lp contractions (when + ). We now study this problem.

Definition. A contraction T of Lp(ff2, .’,/z) of a a-finite measure space, <
p < o, is called positively dominated if there exists a positive contraction of Lp,
such that ITfl < T(Ifl) a.e. for every f Lp.

The proofs of the following well-known lemmas are sketched for completeness.

LEMMA 3.7. Let < p < cx with dual index q p/(p 1), and let T be a
positive contraction of Lp(l.t). lfO <_ rp Lp, then p-I Lq, and rp rp ifand
only if :* (tpp-I p-I.

Proof. The first part is easy. When p tp, use the equality in HOlder’s in-
equality in

f  bPdt.t f ..rPllpllr*(rpP-’)llq

< IIPlIpIIp- Ilq P d/z

LEMMA 3.8. Let < p < c, and let T be a positively dominated contraction

of Lp(f2, I.t). Then f2 is decomposed as f2 ff2o U f2, such that each Lp(2i) is

" and T invariant, there is 0 < Lq with * and {r > 0} f2, and
n Ofor every f Lp(O)I1= Ifl lip --->

Proof. f2 is the maximal support of -invariant functions, which by the previous
lemma is the maximal support of T*’invariant functions, f20 is the complement of
f2. The assertions are now easily checked (using the mean ergodic theorem for the
last one).
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LEMMA 3.9. Let < p < x with dual index q, and let T be a positively
dominated contraction of Lp(2, lz). If there is ap Lq with ap > 0 a.e. and
*ap ap, then the operator defined on L by ’(f) l-qT(flpq-l) can
be extended to a Dunford-Schwartz operator on LI (f2, v), where dv/dtx gtq.

Proof By Lemma 3.7, (1/tq-I) 1/fq-I ( Lp, so for f 6 L we have

Ifl--l-qlT(fq-l)l < l-q’(Iflq-l) < Ilfll.

can be extended to a contraction of L(v) since

f Iflq dlz.

THEOREM 3.10. Let < p < o with dual index q, and let a {ak} W
for some q < s < . Assume that for every Dunford-Schwartz operator T in a
probability space we have

ak f converges a.e. Vf Lp.
n k=l

(3.2)

Then (3.2) is satisfied by any positive contraction T of Lp of an atomless measure
space. Ifak > 0 Vk, then (3.2) holdsfor every positively dominated contraction T of
Lp ofan atomless measure space.

Proof Let T be a positively dominated contraction of Lp(f, lz). By Lemma 3.8,
the problem is reduced to two cases: either (i) T* has an invariant function p 6 Lq
with p > 0 a.e., or (ii) * has no invariant functions at all.

Case (i). defined in Lemma 3.9 is a Dunford-Schwartz operator in L (f2, v), with
dv/dtz 1q. For f Lp(lZ we have f Ifl-qlPq dlx f IfIP(l-q)p+q d#
f Ifl p d/z < x. Hence fl-q Lp(v), and since lpl-qTk(f) ’k(flpl-q) for
every k, application of (3.2) to yields (3.2) for T.

Case (ii). We first prove (3.2) for T a positive isometry of Lp(#) (with no in-
variant functions). By Lamperti’s Theorem [La], there is a non-singular measurable
transformation 0 on (2,/z) such that

d# ]/PTf(w) f(Oo) d(ltO-’) (009) (3.3)

Lett =.s/(s- 1) (where q < s < witha 6 W),so < < p. Define
Qg(w) g(Ow)[a(ao_, (0oo)]t/p. Then Q is a positive isometry of Lp/t(#). Clearly
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f > 0 is in Lp if and only if ft E Lp/t, and then Q(f’) [Tf]’. Hence Q has
no invariant functions, and the pointwise ergodic theorem for Q [IT] (see also [Kr,
p. 186]) yields

ITfl < [Tlfl] < (Iflt) ---> 0 a.e. ’Of Lp.
n k=! n k=l n k=l

This implies (3.2), since a W., and, by Htilder’s inequality, for f Lp(lZ) we
have,

l-,
Z_.., ak T

kf < IT f x la ---> 0.
n =l n =l n

We now turn to the general case of having no invariant functions By the dilation
theorem for positive contractions of Lt, [AS], there exists a larger space Lt,(f2’,/z’),
an isometry R of Lp(lZ’), and a positive isometric embedding D of Lp(lZ) into Lp(lZ’),
such that D ERkD for every k > 0, with E a conditional expectation operator.
By what we have proved above and by case (i), we already have (3.2) for every positive

nisometry of Lt,, so we apply it to R to conclude that -g .,,= aRt’ Df converges a.e.
for every f Lt(/z). Again, let s/(s 1), so < < p, and let Q be the
isometry of Lp/t(lz’) as defined before (now for R instead of T). Since {a} Ws,

n Qk by [IT] (see [Kr, p. 186]),and IDfl Lp/t implies suPn k=l (IDflt) - Lp/t
we have

sup ak Dfn k=l

_< sup lal
n k=l

< sup [ak
n k=l

sup R’ Dfl
n k=!

sup Q(IDfl
n k=l

Lt,(Iz’).

By the dominated convergence theorem for conditional expectations, T satisfies (3.2).
Since has no invariant functions, f f for f Lt, and I,1 implies f 0
a.e. Hence all functions of Lt,(/x) are flight vectors for T. Applying our assumption
to rotations of the circle, we see that a is a Hartman sequence. Since a W with

n ,ks > 1, Theorem 4.1 of [LO] (see Theorem 1.2) shows that II-a flip 0
for every f ELt,. Hence also the a.e. convergence is to 0. This completes the proof
of (3.2) for positive contractions of Lt,.

Now assume that ak > 0 for every k. For T positively dominated, we have to
prove (3.2) only in case (ii) (i.e., T* has no invariant functions). But in that case, by
the above, we have

n

’aTf
R k=t

_< a Ifl--> 0 a.e.
R k=l
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Remarks. 1. The proof of case (ii) shows that if T* has no invariant functions,
then the limit in (3.2), and also in (3.4) below, is 0 a.e.

2. In general, the sequences produced in Theorem 3.6 are only in Wq. We do not
know if Theorem 3.10 is true if we assume only that a e Wq.

COROLLARY 3.1 1. Let < p < o with dual index q, and let a {ak Ws for
every <_ s < q (e.g., a Wq). Assume thatfor every DunfordoSchwartz operator
T in a probability space and every r > p we have

ak f converges a.e. Yf Lr.
n k=!

(3.4)

Then for every r > p, (3.4) is satisfied by any positive contraction T of Lr. If
ak > 0 Yk, then (3.4) holdsfor every positively dominated contraction T of Lr

Proof Fix r > p. Then its dual index r’ is less than q, so there is s with
r’ < s < q. We now apply the theorem, with p and q replaced by r and r’.

PROPOSITION 3.12. Let < p < x with dual index q, and let S be a positively
dominated contraction on Lq(,, m) ofa Lebesgue space. Thenfor Lq(m) there
exists a null set 2, such that for 2 the sequence a Sqb() is in Ws for
every s < q, and has the property thatfor every Dunford-Schwartz operator T on a
probability space (, IX) and every f Lr (Ix) with r > p we have a.e. convergence

n Tof z=a f

Proof. Let ,’ A’0 t-A’ be the decomposition obtained by applying Lemma 3.8
to S (interchanging p and q). Then ,/ are also Lebesgue spaces, and we can deal
separately with two cases.

(i) 2’ A’l. Let * Lp with > 0 a.e. For 6 Lq, we have

f Iqb-PlqPdm f [lqtl-P)q+Pdm f [lqdm < cx. By Lemma 3.9, is
a Dunford-Schwartz operator in L l(Pdm), and our result follows from applying
Theorem 3.6 to , since p l-eSk (p) k(p l-p) for every k.

(ii) A’ ,’0. Let p Lq Since has no invariant functions, Akcoglu’s theorem
nyields ’= 14’1() ---> 0a.e. Applying Lemma 2.9 of [BO] to , for any rational

[kl,l()]’ < oa.e. We let 2 be the null set wheres [0, q)we obtain SUPn -any of the above relations fails. For fixed e 2, leta skp(). Clearly {ak} e W,
for every < s < q.
Now let T be a Dunford-Schwartz Operator in L| (IX) of a probability space. For

f Lo(IX) we have

ny alTkf(co)
n k=l

< f o- lal ---> 0.
n k=l



MODULATED ,ERGODIC THEOREMS 561

Fix r > p, and let f Lr(lZ). Take rational, p < < r. Then s t/(t 1) is
also rational, and s < q. Applying Lemma 2.9 of [BO] to T and using the choice of

Z, from H61der’s inequality we obtain

sup ak f() _< sup [akl sup ITf(o) < oo a.e..
n n k=l n k=l n k=l

n TkThe Banach principle yields the a.e. convergence of -k=l ak f for every f 6

Lr(#).

THEOREM 3.13. Let < p < o with dual index q, and let S be a positively
dominated contraction on Lq(X, m) ofa Lebesgue space. Thenfor cb Lq(m) there
exists a null set Z, such that for q Z the sequence ak Sktb( is in WI, and
has the property thatfor every positively dominated contraction T ofLr(2, lz) with

nr > p and every f Lr(t.t) we have a.e. convergence of-ff -= ak T f.

Proof. For S positive, the theorem follows by combining Proposition 3.12 with
Corollary 3.11.
We now look at the general case, with S dominated by the positive contraction in

Lq(r, m). Fix Lq(,, m), and let Z be the null set obtained for , such that for
n bk TkZl, the sequence bk 14()1 yields the a.e. convergence of )-k= f

for every positively dominated contraction T of Lr (l.t), r > p. Let 22 be the null set
obtained for S by Proposition 3.12, such that for Z2, the sequence ak Sk()
satisfies the hypothesis of Corollary 3.11. By the domination, ISkl _< kll a.e. for
every k, and let Z0 be the null set where for some k the inequality does not hold.
Define the null set Z Zo U 2: t_J z2. For Z we let bk kltp(’)l and
a S().
Now fix T positively dominated in Lr(lZ), with r > p. The proof of case (i) in

n T ,,Theorem 3.10 yields the a.e. convergence of -.= ak f when has an invariant
function which is > 0 a.e. By Lemma 3.8, it remains to prove the desired convergence
only when * has no invariant functions. But in that case we have

a f < la fl <
n k=l n k=l

lakl*lfl < b, Ifl 0 a.e.
n k=l n k=l

since the limit in case (ii) of Theorem 3.10 (applied to {b }) is 0 a.e.

Remarks. 1. In fact, by [BO, Lemma 2.9], the sequence {a} defined in the
theorem is in Ws for every < s < q. We do not know if it is in Wq.

2. For {a} defined as in the theorem, with S positive, Assani [As-I proved the
n Tconvergence of ; -k=l a, f only for T induced by a measure preserving transfor-

mation and f bounded. His proof is different.
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Problem. Is Theorem 3.13 true also for r p?

COROLLARY 3.14. Let (X, m) be a Lebesgue space, and let S be a Dunford-
Schwartz operatoron Ll (m). Let < p < o withdual indexq. Thenfor E Lq(m)
there exists a null set Xo, such thatfor Xo the sequence ak S ( is in Wq,
and has the property thatfor every positively dominated contraction T of Lr(f2,

nwith r > p and every f Lr(#) we have a.e. convergence of "k=l akT f

Proof. Let {bN} be as in the proof of Theorem 3.6, and b(N) {SkN()}k>l
We saw in Theorem 3.6 that a {ak} is in Wq, and that libtN) allw - 0. The
convergence statement follows from Theorem 3.13.

Alternative Proof (without using Proposition 3.12). Fix r > p, and let T be a posi-
tively dominated contraction of Lr(, ). For f Lr (/z), it follows from Lemma 2.9

n T ipof [BO] (with the roles of p and r interchanged) that Mr(to) := sup k=l f
is finite a.e. By H61der’s inequality,

n

(ale bIv)) Tkf(w)n k=l

< lak- ITf(w)lp

n

n bs) T f(to) converges a.e. HenceBy [LO, Theorems 2.4 and 3.2],

n m

n k=l m k=l

< (a )Tkf(w)
n k=l

+ f(w)
n k=l m k=l

m

bv)+ (ak T f(w)m k=l

< la, M.f(to) "I- la bN)lq Mf(to)
n

m m

n k--I m k=l

n Tkso { =1 a f(w)} is a Cauchy sequence, and hence converges, for a.e.w.

Remark. For T Dunford-Schwartz, the convergence follows immediately from
Theorem 3.6, since Lr C Lp for r > p. We do not know if in general the result is
valid also for r p.
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In order to use the results of the previous section for the identification of the
limit in Theorem 3.6, we have to find the Fourier function of the sequences
constructed there. This is done by using the extension of the Wiener-Wintner Theo-
rem to Dunford-Schwartz operators (which follows from Theorem 3.2 of [LO], or
from Theorem 3.6). The passage from point transformations to Dunford-Schwartz
operators in [tLO] not only shows that these sequences are Hartman but allows a
computation of their Fourier function. We will carry out the details only for S an
ergodic positive Dunford-Schwartz operator with S 1. Since we assume that
(A’, rn) is a Lebesgue space, we may remove a null set and obtain that S is induced
by a transition probability P, for which m is invariant. Thus, we deal with the case
where S() f (o)P(, do) for every bounded measurable function , and the
same formula defines S for every positive m-integrable function @, with finite values
a.e. by the P-invariance of rn. Since the identification of the limit can be obtained
also from the norm convergence, we use the following general result.

THEOREM 3.15. Let S be a positive Dunford-Schwartz operator on L of a
Lebesgue space (,,m), with Sl I. For E LE(m) let tr+ := {k: I.1
l, E(,X., S) 0}. Then there exists a null set Z such that for Z, the se-
quence a() St@() is a Hartman sequence in WE, its spectrum is tr (a(/))
c(., a()) [E(., S)’]() for 2. cry), andfor every weakly almost periodic oper-
ator T on a Banach space X we have

L(a(), T)x E(X, S)@()E(, T)x 2 E(X, S)@()E(, T)x
I;q=l .r+

(3.5)

with the series unconditionally convergent in X.

Proof It follows from Theorem 3.6 that for a.e. , the sequence a() is a Hartman
sequence in W2. It follows from the above mentioned Wiener-Wintner Theorem for
Dunford-Schwartz operators that for a.e. , the Fourier function ofa() St () is
c(., a()) [E(Z, S)]() for , e try, and c(., a()) 0 for the other unimodular. (only 4) ( L is needed). Hence tr(a()) or+. Since @ e L2, the orthogonality
in L2 of the functions {E(., S)b} yields ’x,(a())Ic(, a())l2 < x) (see the proof
of Theorem 2.5). Now we can apply Theorem 2.4 to obtain the identification of the
limit (3.5), with unconditional strong convergence of the series.

4. Modulated ergodic theorems for mean ergodlc contractions

In this section we obtain necessary and sufficient conditions on a sequence a {at
for (1. I) to hold for every power-bounded mean ergodic operator T, and identify the
limit.
We shall use the following general weighted ergodic theorem for mean ergodic

npower-bounded operators. As before, let E(I, T)x limn t--I Ttx"
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THEOREM 4.1. Let (Oln,k)n>O,k>_O be a matrix such that for every n the series

--0 ICn,k converges. For T power-bounded in a Banach space X define An(T)x
-=O an,kTkX. Then An(T)x ---> E(I, T)x for every power-bounded mean ergodic
operator T ifand only if (cn,k)n>0, k>_0 satisfies thefollowing three conditions:

sup I.kl K < o.
n k=0

(4.1)

lim cn,k 1.
k=0

(4.2)

lim I.ol -t- IOtn,k+l Otn,k O.
n---o

k=0

(4.3)

Proof. The sufficiency of (4.1)-(4.3) is well known (e.g., [Kr, p.251]). (4.2)
ensures that An(T)y y for any fixed point y. (4.3) (which is equivalent to the pair
of conditions (W2)+(W3) in [Kr]) yields An (T)(I T)II 0, and (4.1) shows that
supn An (T)II < o, yielding the convergence on all of the space.

Assume now that An(T)x ---> E(I, T)x for every power-bounded mean ergodic
operator T. (4.2) follows by taking T the identity. To prove (4.1), define T on co by
T({xk}) {Xk+l}, and X(n’j) (signcn,0, signct,, signcn,j, o, o ). Then
the first coordinate of -=0 an,k Tkx"’j) is =0 I,1. Since IIx".j> _< 1, and by
the assumption, sup, IIAn(T)II K < oc), (4.1) follows from

J

k=0

Tkx(n’j) < KOln,k
k=0

For (4.3), define S on el by S(x, x2, x3 (0, x, x2 ), put X (I S)el,
and T Six. Then T is mean ergodic with E (1, T) 0. Denote the unit vectors of
1 by {ej }, and let x (I S)ei el e2. Since Sej ej+, we have

IIA(T)xll 0.
k=0 k=0

Remarks. 1. If in (4.2) the value of the limit is c, not necessarily 1, the theorem
holds with An(T) dE(l, T).

2. The necessity of (4.1)-(4.3) seems to have been unnoticed.

PROPOSITION4.2. Let (an,)n>0, k>_0 be a matrix as above, and assume
lim,ootn, 0 for every k. If An(T)x converges for every T mean ergodic,
then (4.1) and (4.3) hold, ot lim, -=0 a,k exists, andfor every T mean ergodic
limn An(T)x cE(I, T)x.
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Proof. (4.1) follows from the previous proof, c is obtained bytaking T to be the
identity. Let S on and T on X (I S)el be defined as before. By the assumption
that limn cn,k 0 for every k, the coordinates of An(T)(el e2) converge to 0. Since
An(T)(e e2) converges in norm, the limit is 0, so (4.3) holds.

THEOREM 4.3. A sequence a {ak} satisfies (1.1)for every mean ergodic oper-
nator T in a Banach space X ifand only ifa is in W, ct limn -ff -= a exists, and

{a/} satisfies

lim -l [a+ ak[ 0. (4.4)
n---oo n k=l

If the conditions hold, then L(a, T)x E (1, T)x for every mean ergodic T.

Proof. Define Oln,k a-+n"’-LI for n > 0 and 0 < k < n, and ctn,k 0 for k > n. We
can now apply the previous proposition.

Remark. The conditions on a in the previous theorem are very strong. A sequence
ak p(0k) with 0 a probability preserving ergodic transformation typically does
not satisfy (4.4), as the limit is f I o 0 1, which is positive for non-constant q.

The convergence statement (1.1) in Theorem 2.1 can be similarly obtained from
the following more general result, which is also proved by using the dilation theorem
and the spectral theorem.

THEOREM 4.4. Let (Ctn,k)n>0, k>_0 be a matrix as in Theorem 4.1, which satisfies
(4.1). Then An (T)x converges stronglyfor every contraction T in a Hilbert space H
and every x E H ifand only if (Oln,k)n>O,k>O satisfies

c()) := lim tn,JL exists Vl;l 1.
k=0

(4.5)

When (4.5) is satisfied, lim An(T)x E(I, T)x for every T ifand only if c(l)
and c(;L) Ofor every other I;1 1.

Ifc(;L) O onlyforcountably many ;L, then limn An T)x -lX:lXl=lc(,)E(., T)x,
with countably many non-zero terms, and strong convergence ofthe series.

Remarks. 1. Most of Theorem 4.4, for unitary operators and for Cn, > 0 with- ctn,k for every n, is proved in [Ro]. The identification of the limit, when c(Z)
is zero except for a countable number of points, is given there only in a restricted
particular case. The special case ofconvergence to E (1, T), under the assumptions of
[Ro], was proved in [BIE] (in the context of unitary representations of LCA groups).

2. Proposition 33 of [Ro] shows that (for two-sided infinite row matrices), (4.5)
may be satisfied with {.: I1 and c(.) : 0} uncountable.

3. An example in [BIE] shows that (4.1), and (4.5) with c(.) 0 for . - 1, do
not imply the convergence of An(T)x for every mean ergodic contraction.
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