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A NOTE ON THE EQUATION Y = (! T)X IN L

I. ASSANI

ABSTRACT. We give a characterization of L coboundaries for a set of bounded operators. This set
includes measure preserving transformations.

This short note is a contribution to the problem of characterizing the coboundary
functions of a bounded linear operator in L of a measure space (X, B,/z). As a
corollary we obtain a different proof, for 4, a measure-preserving transformation on
the measure space (X,/3,/x), of the equivalence of the following two statements:

(a)

(b) There exists g L I(#) such that g g o q f
This equivalence follows from the result obtained in [LS] for contractions in L , which
includes the case ofmeasure preserving transformations.Some additional information
for contractions in L has been obtained recently in [FLR].

Our proof also works for operators which are no longer contractions in L For
instance if Tf f o where supn q-n (A) < M#(A) for all measurable sets A B
(the smallest constant M satifying this inequality being strictly greater than 1) then
T is not a contraction of L An example of such a linear operator can be found in
[AW], the constant M is equal to 2. We have not been able to use the method in [LS]
for contractions in L to prove the equivalence between (a) and (b) for this example.
We would like to prove the following result.

THEOREM. Let (X, B,/z) be a measure space and T a power bounded operator
on L t(Iz) with thefollowing property:

For all sequences ofL functions hn such that limn hn 0 a.e., then limn Thn
0 a.e. Then thefollowing statements are equivalentfor afunction f L (lz):

sup
k=l

()

There exists g L such that f g Tg (2)
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Proof. The only nontrivial implication is (1) implies (2). We can observe that
the condition (l) implies the convergence in L norm of the averages MN(f)

N Tn)"-n= f to 0. We can extract a subsequence Nk such that limk’Mm (f) 0 a.e.N
For this sequence Nk we consider the L bounded sequence of functions HN (f)

N n-I--n=t )-j=0 TJ f. By Komlos’ theorem [K], there exists a subsequence of Nk,
that we denote also by Nk, and a function H L such that the averages

1(1 -- )TJfK = kknfly=O
converge a.e. to the function H.

The difference H TH is equal to the pointwise limit

(_.. -( Tn ))lim f- - f f
K

k=l k=l n=l

because of the assumption made on T. This finishes the proof of our theorem.
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