A NOTE ON THE EQUATION Y = (I - T)X IN L^1

I. ASSANI

ABSTRACT. We give a characterization of L^1 coboundaries for a set of bounded operators. This set includes measure preserving transformations.

This short note is a contribution to the problem of characterizing the coboundary functions of a bounded linear operator in L^1 of a measure space (X, \mathcal{B}, μ) . As a corollary we obtain a different proof, for ϕ a measure-preserving transformation on the measure space (X, \mathcal{B}, μ) , of the equivalence of the following two statements:

(a)
$$\sup_{n} \left\| \sum_{k=0}^{n} f \circ \phi^{n} \right\|_{1}.$$

(b) There exists $g \in L^1(\mu)$ such that $g - g \circ \phi = f$

This equivalence follows from the result obtained in [LS] for contractions in L^1 , which includes the case of measure preserving transformations. Some additional information for contractions in L^1 has been obtained recently in [FLR].

Our proof also works for operators which are no longer contractions in L^1 . For instance if $Tf = f \circ \phi$ where $\sup_n \phi^{-n}(A) \leq M\mu(A)$ for all measurable sets $A \in \mathcal{B}$ (the smallest constant M satifying this inequality being strictly greater than 1) then T is not a contraction of L^1 . An example of such a linear operator can be found in [AW], the constant M is equal to 2. We have not been able to use the method in [LS] for contractions in L^1 to prove the equivalence between (a) and (b) for this example.

We would like to prove the following result.

THEOREM. Let (X, \mathcal{B}, μ) be a measure space and T a power bounded operator on $L^{1}(\mu)$ with the following property:

For all sequences of L^1 functions h_n such that $\lim_n h_n = 0$ a.e., then $\lim_n Th_n = 0$ a.e. Then the following statements are equivalent for a function $f \in L^1(\mu)$:

$$\sup_{n} \left\| \sum_{k=1}^{n} T^{k} f \right\|_{1} < \infty.$$
 (1)

There exists
$$g \in L^1$$
 such that $f = g - Tg$ (2)

© 1999 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 28D05.

Proof. The only nontrivial implication is (1) implies (2). We can observe that the condition (1) implies the convergence in L^1 norm of the averages $M_N(f) = \frac{1}{N} \sum_{n=1}^{N} T^n f$ to 0. We can extract a subsequence N_k such that $\lim_k M_{N_k}(f) = 0$ a.e. For this sequence N_k we consider the L^1 bounded sequence of functions $H_{N_k}(f) = \frac{1}{N_k} \sum_{n=1}^{N_k} \sum_{j=0}^{n-1} T^j f$. By Komlos' theorem [K], there exists a subsequence of N_k , that we denote also by N_k , and a function $H \in L^1$ such that the averages

$$\frac{1}{K}\sum_{k=1}^{K}\left(\frac{1}{N_k}\sum_{n=1}^{N_k}\sum_{j=0}^{n-1}T^jf\right)$$

converge a.e. to the function H.

The difference H - TH is equal to the pointwise limit

$$\lim_{K} \left(\frac{1}{K} \sum_{k=1}^{K} f - \frac{1}{K} \sum_{k=1}^{K} \left(\frac{1}{N_k} \sum_{n=1}^{N_k} T^n f \right) \right) = f$$

because of the assumption made on T. This finishes the proof of our theorem.

REFERENCES

- [AW] I. Assani and J. Wos, An equivalent measure for some nonsingular transformations and application, Studia Math. 97 (1990), 1–12.
- [FLR] V. Fonf, M. Lin and A. Rubinov, On the uniform ergodic theorem on Banach spaces that do not contain duals, Studia Math. 121 (1996), 67–85.
- [K] J. Komlos, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229.
- [LS] M. Lin and R. Sine, *Ergodic theory and the functional equation (I-T)x=y*, J. Operator Theory **10** (1983), 153–166.