REITER'S CONDITION P_{2} AND THE PLANCHEREL MEASURE FOR HYPERGROUPS

Frank Filbir and Rupert Lasser

Abstract

In this paper we study the Reiter P_{2} condition for commutative hypergroups and give necessary and sufficient conditions for $x \in \operatorname{supp} \pi$, where π is the Plancherel measure. Finally we apply general results to characterize supp π in the case of polynomial hypergroups.

1. Introduction

Let $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of polynomials on the real line satisfying a recurrence formula

$$
\begin{equation*}
x p_{n}(x)=\alpha_{n+1} p_{n+1}(x)+\beta_{n} p_{n}(x)+\alpha_{n} p_{n-1}(x) \tag{1.1}
\end{equation*}
$$

where $\alpha_{n}>0$, for $n \in \mathbb{N}, p_{0}(x)=1$ and $p_{-1}(x)=0$. By the Favard theorem there exists a probability measure π on \mathbb{R} such that the polynomials p_{n} are orthonormal with respect to π. In general it is rather difficult to derive from properties of $p_{n}(x)$ and α_{n}, β_{n} whether some real number x is contained in supp π or not. If $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ belongs to the Nevai class $\mathcal{M}(b, a)$, i.e., $\lim _{n \rightarrow \infty} \alpha_{n}=\frac{a}{2}$ and $\lim _{n \rightarrow \infty} \beta_{n}=b$, and if $a>0$ then by a theorem of Blumenthal we have supp $\pi=[b-a],[b+a] \cup S$, where S is bounded and countable with only possible accumulation points in $\{b \pm a\}$ (see [9], p. 23). If one assumes in addition that the polynomials $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ give rise to a convolution structure on $l^{1}\left(\mathbb{N}_{0}\right)$ (i.e., they induce a polynomial hypergroup structure on \mathbb{N}_{0} (see [5], [8]) and if $a=1, b=0$ one has supp $\pi=[-1,1]$ (see [14] and [8]). In the latter case Banach algebra techniques are applied, where the algebra structure is inherited from the hypergroup structure on \mathbb{N}_{0}. In [10] amenability of hypergroups is investigated (a concept of harmonic analysis). Among many other results connected with amenability it is shown that the constant character 1 is contained in the support of the Plancherel measure if, and only if the Reiter condition $\left(P_{2}\right)$ is satisfied. Translating this result to orthogonal polynomials inducing convolution structure on $l^{1}\left(\mathbb{N}_{0}\right)$ this yields a characterization of $1 \in \operatorname{supp} \pi$. The purpose of this paper is first to initiate a systematic study of a shifted Reiter condition $\left(P_{2}\right)$ on commutative hypergroups and second to apply these results to characterize supp π in the case of orthogonal polynomials that induce a hypergroup on \mathbb{N}_{0}.

[^0]
2. Preliminaries

Througout this paper, K will denote a commutative hypergroup, see [1] (same as convo in Jewett [3]). The following notations and basic results of harmonic analysis on K will be applied in the sequel. The convolution of two elements $x, y \in K$ is denoted by $\omega(x, y)$, and the involution by \tilde{x}.

Let $C_{c}(K)$ be the space of all continuous functions with compact support. Given $y \in K$ and $f \in C_{c}(K)$ the translation $L_{y} f$ of f is given by

$$
L_{y} f(x)=\omega(y, x)(f)
$$

A Haar measure on K is a regular positive Borel measure m on $K, m \neq 0$ such that $\int_{K} f(x) d m(x)=\int_{K} L_{y} f(x) d m(x)$ for all $f \in C_{c}(K)$ and $y \in K$. By the commutativity of K the existence of a Haar measure m on K is ensured. A fixed Haar measure on K is denoted throughout by m. The dual space \widehat{K} is defined by

$$
\widehat{K}=\left\{\alpha \in C^{b}(K): \alpha \neq 0, \omega(x, y)(\alpha)=\alpha(x) \alpha(y), \alpha(\tilde{x})=\overline{\alpha(x)}\right\}
$$

where $C^{b}(K)$ is the space of all bounded continuous functions on K. For $f \in$ $L^{p}(K, m)$ let $f^{*} \in L^{p}(K, m)$ be given by $f^{*}(x)=\overline{f(\tilde{x})}$. Similar as for locally compact Abelian groups one can identify \widehat{K} with the symmetric structure space $\Delta_{S}\left(L^{1}(K, m)\right.$) of the Banach* algebra $L^{1}(K, m)$; see [3] or [1]. The topology of convergence on compacta on \widehat{K} is equal to the topology $\sigma\left(L^{\infty}(K, m), L^{1}(K, m)\right)$ restricted to \widehat{K}. Equipped with this topology \widehat{K} is a locally compact space. The Fourier transform of $f \in L^{1}(K, m)$ is defined by

$$
\widehat{f}(\alpha)=\int_{K} f(x) \overline{\alpha(x)} d m(x), \quad \alpha \in \widehat{K} .
$$

For $f \in L^{p}(K, m), 1 \leq p \leq \infty$, one can define the translation $L_{y} f$ of f with $y \in K$ by putting

$$
L_{y} f(x)=\omega(y, x)(f)
$$

Based on that translation one defines the convolution $f * g$, where $g \in L^{1}(K, m)$ and $f \in L^{p}(K, m), 1 \leq p<\infty$ by

$$
f * g(x)=\int_{K} f(y) L_{\tilde{y}} g(x) d m(y)
$$

We have $f * g \in L^{p}(K, m)$ and due to the translation invariance of the Haar measure one has in the case of $f, g \in L^{1}(K, m)$,

$$
\int_{K} L_{x} f(y) g(y) d m(y)=\int_{K} f(y) L_{\tilde{x}} g(y) d m(y)
$$

Every $f \in L^{1}(K, m)$ defines a bounded linear operator L_{f} on the Hilbert space $L^{2}(K, m)$ by $L_{f}(h)=f * h$, where $h \in L^{2}(K, m)$. The mapping $f \rightarrow L_{f}$, $L^{1}(K, m) \rightarrow B\left(L^{2}(K, m)\right)$ is called regular representation of K. It is an injective mapping and satisfies $\left\|L_{f}\right\| \leq\|f\|_{1}, L_{f * g}=L_{f} \circ L_{g}$ and $\left(L_{f}\right)^{*}=L_{f} *$.

Now we introduce

$$
\mathcal{S}=\left\{\alpha \in \widehat{K}:|\hat{f}(\alpha)| \leq\left\|L_{f}\right\| \text { for every } f \in L^{1}(K, m)\right\}
$$

\mathcal{S} is a nonvoid closed subset of \widehat{K}, and for each $f \in L^{1}(K, m)$ one has $\left\|L_{f}\right\|=$ $\sup _{\alpha \in \mathcal{S}}|\hat{f}(\alpha)|$. To obtain this one can apply the fact that \mathcal{S} is homeomorphic to the structure space $\Delta(A)$, where A is the commutative C^{*}-algebra $A=\operatorname{cl}\left\{L_{f}: f \in\right.$ $\left.L^{1}(K, m)\right\}$, the closure taken in the Banach space $B\left(L^{2}(K, m)\right)$. One should note that \widehat{K} in general does not bear a dual hypergroup structure, which makes harmonic analysis on K more delicate. The proof of the next result can be found in [3] or [1].

THEOREM 2.1 (Plancherel-Levitan). Let K be a commutative hypergroup. Then there exists a unique regular positive Borel measure π on \widehat{K} with

$$
\int_{K}|f(x)|^{2} d m(x)=\int_{\widehat{K}}|\widehat{f}(\alpha)|^{2} d \pi(\alpha)
$$

for all $f \in L^{1}(K, m) \cap L^{2}(K, m)$. The support of π is equal to \mathcal{S}.
The set $\left\{\widehat{f}: f \in C_{c}(K)\right\}$ is dense in $L^{2}(\widehat{K}, \pi) . \pi$ is called Plancherel measure.
In the next section we will give several equivalent conditions for $\alpha \in \mathcal{S}=\operatorname{supp} \pi$.

3. Characterization of $\operatorname{supp} \pi$

We start by recalling some further notions of harmonic analysis. For $f \in L^{1}(\widehat{K}, \pi)$ define the inverse Fourier transform

$$
\check{f}(x)=\int_{\widehat{K}} f(\alpha) \alpha(x) d \pi(\alpha)
$$

for $x \in K$. A function $\varphi \in C^{b}(K)$ is called positive definite if for all choices of $n \in \mathbb{N}, c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ and $x_{1}, x_{2}, \ldots, x_{n} \in K$,

$$
\sum_{i, j=1}^{n} c_{i} \overline{c_{j}} \omega\left(x_{i}, \tilde{x}_{j}\right)(\varphi) \geq 0
$$

Important examples of positive definite functions are $\alpha \in \widehat{K}$ or $f * f^{*}$, where $f \in$ $L^{2}(K, m)$. We mention that one can prove a Bochner theorem for commutative hypergroups; see [3] or [6]. We apply the following inversion result; see [6].

Proposition 3.1. If $\varphi \in L^{1}(K, m) \cap C^{b}(K)$ is positive definite then $\widehat{\varphi} \in$ $L^{1}(\widehat{K}, \pi)$ and $(\hat{\varphi})^{\vee}=\varphi$.

We now introduce a concept very useful for investigating supp π. In the case of $\alpha=1$ it has already been studied in the context of hypergroups, see [10], and in the group case closely related to the notion of amenability.

Definition 3.1. Let $\alpha \in \widehat{K}$. We say that the P_{2} condition is satisfied in α if for each $\varepsilon>0$ and every compact subset $C \subset K$ there exists some $g \in C_{c}(K)$ such that $\|g\|_{2}=1$ and

$$
\left\|L_{y} g-\overline{\alpha(y)} g\right\|_{2}<\varepsilon \quad \text { for all } \quad y \in C
$$

Now we characterize those $\alpha \in \widehat{K}$ which belong to $\mathcal{S}=\operatorname{supp} \pi$. The equivalence of the conditions (i) and (ii) in the following theorem is already shown by M. Voit; see [1], Corollary 4.1.12.

THEOREM 3.1. Let $\alpha \in \widehat{K}$. Then the following conditions are equivalent:
(i) $\alpha \in \mathcal{S}=\operatorname{supp} \pi$.
(ii) There exists a net $\left(f_{i}\right)_{i \in I} \subseteq C_{c}(K),\left\|f_{i}\right\|_{2}=1$ such that $f_{i} * f_{i}^{*}$ converges to α uniformly on compact subsets of K.
(iii) The P_{2} condition is satisfied in α.

Proof. First we show that (i) implies (ii). Let $\varepsilon>0, C \subseteq K$ be compact. Choose a neighborhood $U \subseteq \widehat{K}$ of α such that $0<\pi(U)<\infty$ and

$$
U \subseteq\{\beta \in \widehat{K}:|\alpha(x)-\beta(x)|<\varepsilon / 2 \text { for all } x \in C\}
$$

Define $h=\chi_{U} / \pi(U) \in L^{1}(\widehat{K}, \pi)$. Then for all $x \in C$ we have

$$
|\check{h}(x)-\alpha(x)|=\frac{1}{\pi(U)}\left|\int_{U} \beta(x) d \pi(\beta)-\int_{U} \alpha(x) d \pi(\beta)\right|<\varepsilon / 2
$$

For $h^{1 / 2}=\chi_{U} / \pi(U)^{1 / 2}$ there exists some $f \in C_{c}(K)$ such that $\left\|\widehat{f}-h^{1 / 2}\right\|_{2}<\varepsilon / 4$; cf. Theorem 2.1. Since $\left\|h^{1 / 2}\right\|_{2}=1$ we can assume that $\|\widehat{f}\|_{2}=\|f\|_{2}=1$. Furthermore we get

$$
\left.\left.\begin{array}{l}
\|(f
\end{array}\right) f^{*}\right)^{-}-h\left\|_{1}=\right\||\widehat{f}|^{2}-h \|_{1} .
$$

Applying Proposition 3.1, for $x \in K$ we obtain

$$
\left|f * f^{*}(x)-\check{h}(x)\right|=\left|\left(\left(f * f^{*}\right)^{\wedge}\right)^{\vee}(x)-\check{h}(x)\right| \leq\left\|\left(f * f^{*}\right)^{\wedge}-h\right\|_{1}<\varepsilon / 2
$$

and hence $\left|f * f^{*}(x)-\alpha(x)\right|<\varepsilon$ for every $x \in C$.
In order to prove that (ii) implies (iii) we again consider a compact set $C \subseteq K$. Then the convolution of C with itself, $C * C:=\bigcup_{x, y \in C} \operatorname{supp} \omega(x, y)$, is also a compact subset of K; see [3] or [1]. Let $\varepsilon>0$. Then by (ii) there is a function $f \in C_{c}(K)$ with $\|f\|_{2}=1$ and

$$
\left|f * f^{*}(x)-\alpha(x)\right|<\varepsilon \quad \text { for all } x \in C * C
$$

We can assume that $e \in C$ and $C=\widetilde{C}$. Since for all $x, y \in C$,

$$
\left|L_{y}\left(f * f^{*}\right)(x)-\alpha(y) \alpha(x)\right| \leq \int_{K}\left|f * f^{*}(z)-\alpha(z)\right| d \omega(y, x)(z)<\varepsilon
$$

and $\left|f * f^{*}(x) \alpha(y)-\alpha(x) \alpha(y)\right|<\varepsilon$ we obtain

$$
\left|L_{y}\left(f * f^{*}\right)(x)-f * f^{*}(x) \alpha(y)\right|<2 \varepsilon
$$

and hence

$$
\begin{aligned}
& \left|\int_{K} \overline{L_{x} f(z)}\left[L_{y} f(z)-\alpha(y) f(z)\right] d m(z)\right| \\
& \quad=\left|\int_{K} \overline{f(z)}\left[L_{x}\left(L_{y} f\right)(z)-\alpha(y) L_{x} f(z)\right] d m(z)\right| \\
& \quad=\left|L_{y}\left(f * f^{*}\right)(x)-\alpha(y)\left(f * f^{*}\right)(x)\right|<2 \varepsilon
\end{aligned}
$$

In a similar way for $y \in C$ and each $x \in K$ we get

$$
\begin{aligned}
& \left|\int_{K} \overline{\alpha(\tilde{x}) f(z)}\left[L_{y} f(z)-\alpha(y) f(z)\right] d m(z)\right| \\
& \quad=|\alpha(x)| \cdot\left|f * f^{*}(y)-\alpha(y)\right|<\varepsilon
\end{aligned}
$$

For $y=\tilde{x} \in C$ we therefore have

$$
\begin{aligned}
\left\|L_{y} f-\alpha(y) f\right\|_{2}^{2} & =\int_{K} \overline{\left[L_{y} f(z)-\alpha(y) f(z)\right]}\left[L_{y} f(z)-\alpha(y) f(z)\right] d m(z) \\
& \leq 3 \varepsilon
\end{aligned}
$$

thus the implication is shown.
It remains to show that (iii) implies (i). Assume that the P_{2} condition is satisfied in α. We will prove that
$|\widehat{f}(\alpha)| \leq \sup \left\{\|f * g\|_{2}: g \in L^{2}(K, m),\|g\|_{2}=1\right\}$ for every $f \in C_{c}(K), f \neq 0$.
Since $C_{c}(K)$ is dense in $L^{1}(K, m)$, this condition implies that $\alpha \in \mathcal{S}$.

Let $f \in C_{c}(K), f \neq 0$. By the P_{2} condition there exists a function $g \in L^{2}(K, m)$, $\|g\|_{2}=1$ such that

$$
\left\|L_{\tilde{y}} g-\overline{\alpha(y)} g\right\|_{2}<\varepsilon /\|f\|_{1}
$$

for all $y \in \operatorname{supp} f$. Since

$$
f * g(x)-\widehat{f}(\alpha) g(x)=\int_{K} f(y)\left(L_{y} g(x)-\overline{\alpha(y) g(x)}\right) d m(y)
$$

it follows that

$$
\|f * g-\widehat{f}(\alpha) g\|_{2} \leq \int_{K}|f(y)| \cdot\left\|L_{\tilde{y}} g-\bar{\alpha}(y) g\right\|_{2} d m(y)<\varepsilon
$$

Thus we have the estimate

$$
|\widehat{f}(\alpha)|=|\widehat{f}(\alpha)| \cdot\|g\|_{2} \leq \varepsilon+\|f * g\|_{2}
$$

which obviously implies

$$
|\widehat{f}(\alpha)| \leq \sup \left\{\|f * g\|_{2}: g \in L^{2}(K, m),\|g\|_{2}=1\right\}
$$

Remark. In the case of $\alpha=1 \in \widehat{K}$ we can assume that the functions $g \in C_{c}(K)$ in Definition 3.1 are nonnegative. In fact one can proceed as in the proof of Lemma 4.4 of [10] to construct nonnegative $f_{i}, i \in I$, in condition (ii) of our Theorem 3.1, which also yields nonnegative functions for the P_{2} condition in $\alpha=1$.

4. Application to orthogonal polynomials

Now we apply the general result of Section 3 to polynomial hypergroups. In order to do this it seems to be useful to recall some basic facts about polynomial hypergroups.

Consider a polynomial sequence $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ defined by a recurrence relation of the form

$$
\begin{equation*}
P_{1}(x) P_{n}(x)=a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x) \tag{4.1}
\end{equation*}
$$

for $n \in \mathbb{N}$ and starting with

$$
\begin{equation*}
P_{0}(x)=1, \quad P_{1}(x)=\frac{1}{a_{0}}\left(x-b_{0}\right) \tag{4.2}
\end{equation*}
$$

with $a_{n} \in \mathbb{R} \backslash\{0\}$ for all $n \in \mathbb{N}_{0}, c_{n} \in \mathbb{R} \backslash\{0\}$ for all $n \in \mathbb{N}$ and $b_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}_{0}$. A well-known result, usually referred to as Favard's theorem, states that $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ is
an orthogonal polynomial sequence with respect to a certain probability measure π on the real line; see [2].

We impose two assumptions on $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$. A minor one is

$$
\begin{equation*}
P_{n}(1)=1 \quad \text { for all } n \in \mathbb{N}_{0} \tag{4.3}
\end{equation*}
$$

and a more restrictive one is

$$
\begin{equation*}
g(m, n ; k) \geq 0 \tag{4.4}
\end{equation*}
$$

where $g(m, n ; k)$ are the linearization coefficients of the products

$$
\begin{equation*}
P_{m}(x) P_{n}(x)=\sum_{k=|n-m|}^{n+m} g(m, n ; k) P_{k}(x) . \tag{4.5}
\end{equation*}
$$

Note that $P_{n}(1)=1$ implies $a_{0}+b_{0}=1$ and $\sum_{k=|n-m|}^{n+m} g(m, n ; k)=1$. Furthermore we have

$$
\int_{\mathbb{R}} P_{n}^{2}(x) d \pi(x)=g(n, n ; 0)
$$

We write $h_{n}=g(n, n ; 0)^{-1}$. Hence $p_{n}(x)=\sqrt{h(n)} P_{n}(x)$ is the orthonormal version of $P_{n}(x)$. There is an abundance of orthogonal polynomial sequences $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ satisfying (4.3) and the crucial nonnegativity condition (4.4); see [5], [6] and [8].

By means of coefficients $g(m, n ; k)$ (that are in one-to-one correspondence to $\left.\left(P_{n}\right)_{n \in \mathbb{N}_{0}}\right)$ we define a convolution ω_{P} on \mathbb{N}_{0} :

$$
\omega_{P}(m, n)=\sum_{k=|n-m|}^{n+m} g(m, n ; k) \varepsilon_{k}
$$

where ε_{k} is the point measure of $k \in \mathbb{N}_{0}$. With the identity mapping as involution, i.e., $\tilde{n}=n$, and the discrete topology the natural numbers \mathbb{N}_{0} are a commutative hypergroup, called polynomial hypergroup; see [5].

The translation now reads as follows:

$$
L_{n} \beta(m)=\sum_{k=|n-m|}^{n+m} g(m, n ; k) \beta(k)
$$

The dual space $\widehat{\mathbb{N}_{0}}$ can be identified with

$$
\begin{equation*}
D_{s}=\left\{x \in \mathbb{R}:\left(P_{n}(x)\right)_{n \in \mathbb{N}_{0}} \text { is a bounded sequence }\right\} \tag{4.6}
\end{equation*}
$$

by the mapping $x \rightarrow \alpha_{x}, D_{s} \rightarrow \widehat{\mathbb{N}_{0}}$, where $\alpha_{x}(n)=P_{n}(x)$. Direct consequences (see [5]) are:
(i) $D_{s}=\left\{x \in \mathbb{R}:\left|P_{n}(x)\right| \leq 1\right.$ for all $\left.n \in \mathbb{N}_{0}\right\}$.
(ii) D_{s} is compact.
(iii) $D_{s} \subseteq\left[1-2 a_{0}, 1\right]$.

A Haar measure m on \mathbb{N}_{0} is the counting measure on \mathbb{N}_{0} with weights $h(n)$ on the points $n \in \mathbb{N}_{0}$. The theorem of Plancherel-Levitan has in that case the form:

THEOREM 4.1. There exists an unique probability measure π on D_{s} such that

$$
\sum_{n \in \mathbb{N}_{0}}|d(n)|^{2} h(n)=\int_{D_{s}}|\hat{d}(x)|^{2} d \pi(x)
$$

for every $d=(d(n))_{n \in \mathbb{N}_{0}} \in l^{1}\left(\mathbb{N}_{0}, m\right)$, where $\hat{d}(x)=\sum_{n \in \mathbb{N}_{0}} P_{n}(x) d(n) h(n)$.
Applying the polarization identity it is easy to see that π is in fact the orthogonalization measure for $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$, guaranteed by Favard's theorem. In particular, see [5], as a first result we have:

PROPOSITION 4.1. Let $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ be an orthogonal polynomial sequence satisfying (4.3) and (4.4). Then

$$
\begin{aligned}
\operatorname{supp} \pi=\mathcal{S} \subseteq D_{s} & =\left\{x \in \mathbb{R}:\left|P_{n}(x)\right| \leq 1 \text { for all } n \in \mathbb{N}_{0}\right\} \\
& \subseteq\left[1-2 a_{0}, 1\right]
\end{aligned}
$$

We will now derive some sufficient conditions for $x \in \operatorname{supp} \pi$. For this the next result plays a fundamental role throughout the remainder of this section.

Proposition 4.2. Let $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ define a polynomial hypergroup on \mathbb{N}_{0} and $x \in$ D_{s}. If for every $\varepsilon>0$ there exists some $\beta=(\beta(n))_{n \in \mathbb{N}_{0}} \in C_{c}\left(\mathbb{N}_{0}\right)$ with $\|\beta\|_{2}=1$ such that

$$
\begin{equation*}
\left\|L_{1} \beta-P_{1}(x) \beta\right\|_{2}<\varepsilon \tag{4.7}
\end{equation*}
$$

then the P_{2} condition is satisfied in $x \in D_{s}$. (The $\|.\|_{2}-$ norm is in $\left.l^{2}\left(\mathbb{N}_{0}, m\right).\right)$
Proof. We show that (4.7) implies the following property: Given $\varepsilon>0, n \in \mathbb{N}$ there exists $\beta \in C_{c}\left(\mathbb{N}_{0}\right)$ with $\|\beta\|_{2}=1$ such that

$$
\begin{equation*}
\left\|L_{k} \beta-P_{k}(x) \beta\right\|_{2}<\varepsilon \quad \text { for each } k=0,1, \ldots, n \tag{4.8}
\end{equation*}
$$

We use induction and assume that (4.8) holds for some $n \in \mathbb{N}$. Then

$$
\begin{aligned}
\left\|L_{1}\left(L_{n} \beta\right)-P_{1}(x) P_{n}(x) \beta\right\|_{2} \leq & \left\|L_{1}\left(L_{n} \beta\right)-P_{n}(x) L_{1} \beta\right\|_{2} \\
& +\left|P_{n}(x)\right|\left\|L_{1} \beta-P_{1}(x) \beta\right\|_{2} \\
\leq & 2 \varepsilon .
\end{aligned}
$$

Now we apply the recurrence relation

$$
P_{1}(x) P_{n}(x)=a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x)
$$

and obtain the estimate

$$
\begin{aligned}
\left\|L_{n+1} \beta-P_{n+1}(x) \beta\right\|_{2}= & \| \frac{1}{a_{n}} L_{1}\left(L_{n} \beta\right)-\frac{b_{n}}{a_{n}} L_{n} \beta-\frac{c_{n}}{a_{n}} L_{n-1} \beta \\
& -\left[\frac{1}{a_{n}} P_{1}(x) P_{n}(x) \beta-\frac{b_{n}}{a_{n}} P_{n}(x) \beta-\frac{c_{n}}{a_{n}} P_{n-1}(x) \beta\right] \|_{2} \\
\leq & \frac{1}{a_{n}}\left(2 \varepsilon+b_{n} \varepsilon+c_{n} \varepsilon\right)=\frac{2+b_{n}+c_{n}}{a_{n}} \varepsilon
\end{aligned}
$$

After an appropriate modification of the ε 's it is obvious that (4.8) is valid for $n+1$.

In view of our general result we get for polynomial hypergroups the following theorem.

THEOREM 4.2. Let $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ define a polynomial hypergroup on \mathbb{N}_{0}, and let $x \in$ D_{s}. Then $x \in \operatorname{supp} \pi$, if and only if for every $\varepsilon>0$ there exists $\beta \in C_{c}\left(\mathbb{N}_{0}\right)$ with $\left\|\beta_{2}\right\|=1$ and

$$
\left\|L_{1} \beta-P_{1}(x) \beta\right\|_{2}<\varepsilon
$$

Next we give a sufficient condition for $x \in \operatorname{supp} \pi$. Let $\beta_{n} \in l^{2}\left(\mathbb{N}_{0}, h\right)$ be given by

$$
\begin{equation*}
\beta_{n}(k)=\frac{P_{k}(x) \chi_{\{0, \ldots, n\}}(k)}{\left(\sum_{j=0}^{n} P_{j}^{2}(x) h(j)\right)^{1 / 2}} \tag{4.9}
\end{equation*}
$$

It is straightforward to see that $\left\|\beta_{n}\right\|_{2}=1$ and

$$
\begin{aligned}
& L_{1} \beta_{n}(k)-P_{1}(x) \beta_{n}(k) \\
& =\underbrace{g(1, k, k+1)}_{a_{k}} \beta_{n}(k+1)+\underbrace{g(1, k, k)}_{b_{k}} \beta_{n}(k) \\
& \quad+\underbrace{g(1, k, k-1)}_{c_{k}} \beta_{n}(k-1)-P_{1}(x) \beta_{n}(k) \\
& =0
\end{aligned}
$$

for all $k=0,1, \ldots, n-1$.

For the sake of brevity let $\lambda_{n}(x)=\left(\sum_{k=0}^{n} P_{k}^{2}(x) h(k)\right)^{-1}$. Then we have

$$
\begin{aligned}
& \left\|L_{1} \beta_{n}-P_{1}(x) \beta_{n}\right\|_{2}^{2} \\
& = \\
& \quad=\lambda_{n}(x)\left(\left|b_{n} P_{n}(x)+c_{n} P_{n-1}(x)-P_{1}(x) P_{n}(x)\right|^{2} h(n)\right. \\
& \left.\quad \quad \quad+\left|c_{n+1} P_{n}(x)\right|^{2} h(n+1)\right) \\
& \\
& = \\
& =\lambda_{n}(x)\left(\left|a_{n} P_{n+1}(x)\right|^{2} h(n)+\left|c_{n+1} P_{n}(x)\right|^{2} h(n+1)\right) \\
& =
\end{aligned} \lambda_{n}(x) a_{n} c_{n+1}\left(P_{n+1}^{2}(x) h(n+1)+P_{n}^{2}(x) h(n)\right) .
$$

For the latter equality we used the fact that $c_{n+1} h(n+1)=a_{n} h(n)$. Therefore from Theorem 4.2 we obtain:

Proposition 4.3. Let $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ define a polynomial hypergroup on \mathbb{N}_{0}, and let $x \in D_{s}$. If

$$
\liminf _{n \rightarrow \infty} \frac{P_{n}^{2}(x) h(n)+P_{n+1}^{2}(x) h(n+1)}{\sum_{k=0}^{n} P_{k}^{2}(x) h(k)}=0
$$

then $x \in \operatorname{supp} \pi$.
To give an example where this criterion works, consider orthogonal polynomials which are defined by the following reccurrence coefficients in (4.1) and (4.2):

$$
a_{0}=1, \quad b_{0}=0
$$

and

$$
a_{n}= \begin{cases}\frac{\alpha-1}{\alpha} & \text { for } n \text { odd } \\ \frac{\beta-1}{\beta} & \text { for } n \text { even. }\end{cases}
$$

We call the corresponding orthogonal polynomials Karlin-McGregor polynomials, since they were first considered in [4]. Applying the recursion formula of [5] one can determine the linearization coefficients $g(n, m ; k)$ explicitly. Here we only state that the nonnegativity of all $g(n, m ; k)$ is fulfilled if $\alpha \geq 2$ and $\beta \geq 2$. The weights $h(n)$ are $h(0)=1$ and for $n \geq 1$,

$$
h(n)= \begin{cases}\alpha(\alpha-1)^{(n-1) / 2}(\beta-1)^{(n-1) / 2} & \text { for } n \text { odd } \\ \beta(\alpha-1)^{n / 2}(\beta-1)^{n / 2-1} & \text { for } n \text { even }\end{cases}
$$

Furthermore applying methods of [8] (in particular property (T)) one can easily deduce that $D_{s}=[-1,1]$. Now we consider some points $x \in[-1,1]$ for which Proposition 4.3 works. Let $x=0$. It is easily seen that $P_{n}(0)=\left(\frac{-1}{\alpha-1}\right)^{n / 2}$ for n even and obviously $P_{n}(0)=0$ for n odd. Hence

$$
\sum_{n=0}^{\infty} P_{n}^{2}(0) h(n)=1+\frac{\beta}{\beta-1} \sum_{k=1}^{\infty}\left(\frac{\beta-1}{\alpha-1}\right)^{k}
$$

For $\alpha>\beta \geq 2$ we have

$$
\sum_{n=0}^{\infty} P_{n}^{2}(0) h(n)=\frac{\alpha}{\alpha-\beta}
$$

and hence $0 \in \operatorname{supp} \pi$. Moreover, by Theorem 4.1 we get $\pi(\{0\})=\frac{\alpha-\beta}{\alpha}$ provided $\alpha>\beta$. In order to determine $P_{n}(x)$ in general we observe that

$$
x^{2} P_{2 n}(x)=r P_{2 n+2}(x)+s P_{2 n}(x)+t P_{2 n-2}(x)
$$

and $P_{0}(x)=1, P_{2}(x)=\frac{\alpha}{\alpha-\beta} x^{2}-\frac{1}{\alpha-1}$, where $r=\frac{(\alpha-1)(\beta-1)}{\alpha \beta}, s=\frac{(\alpha-1)+(\beta-1)}{\alpha \beta}$, $t=\frac{1}{\alpha \beta}$.
Now we can apply the method of difference equations with constant coefficients to first calculate $P_{2 n}(x)$ and then $P_{2 n+1}(x)$ for fixed $\left.x \in\right]-1,1[$. It is well known that

$$
P_{2 n}(x)=c \lambda_{1}^{n}+d \lambda_{2}^{n}, \quad \text { where } \lambda_{1,2}=\frac{\left(x^{2}-s\right) \pm \sqrt{\left(x^{2}-s\right)^{2}-4 r t}}{2 r}
$$

provided $\left(x^{2}-s\right)^{2} \neq 4 r t$. If $\left(x^{2}-s\right)^{2}=4 r t$ we have

$$
P_{2 n}(x)=\lambda^{n}(1+n d), \quad \text { where } \lambda=\frac{x^{2}-s}{2 r}
$$

To be brief we only discuss the case where $x^{2}=s \pm 2 \sqrt{r t}=\frac{1}{\alpha \beta}(\sqrt{\alpha-1} \pm \sqrt{\beta-1})^{2}$. In that case we get $\lambda=\frac{1}{\sqrt{(\alpha-1)(\beta-1)}}$. Without calculating the constant d explicitly we see that $P_{2 n}^{2}(x) h(2 n) \sim n^{2}$. Inserting $P_{2 n}(x)$ into the recurrence system we also obtain $P_{2 n+1}^{2}(x) h(2 n+1) \sim n^{2}$. Therefore Proposition 4.3 implies that $\pm \frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}+\sqrt{\beta-1})$ and $\pm \frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}-\sqrt{\beta-1})$ are elements of supp π. As already sketched above we have $x \in \operatorname{supp} \pi$ for those x such that $\left(x^{2}-s\right)^{2}<4 r t$. Hence we see that $\left[-\frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}+\sqrt{\beta-1}),-\left|\frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}-\sqrt{\beta-1})\right|\right]$ and $\left[\frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}-\sqrt{\beta-1}), \frac{1}{\sqrt{\alpha \beta}}(\sqrt{\alpha-1}+\sqrt{\beta-1})\right]$ are subsets of supp π. If, in addition, $\alpha>\beta$ then $0 \in \operatorname{supp} \pi$.

Choosing $\beta_{n}(k)$ once more as in (4.9) we can derive a further result.
Proposition 4.4. Let $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ define a polynomial hypergroup on \mathbb{N}_{0} and let $x \in D_{s}$. Assume that $\liminf _{n \rightarrow \infty} a_{n}=0$ or $\liminf _{n \rightarrow \infty} c_{n}=0$. If

$$
\left\{\frac{P_{n+1}^{2}(x) h(n+1)}{\sum_{k=0}^{n} P_{k}^{2}(x) h(k)}: n \in \mathbb{N}_{0}\right\}
$$

is bounded, then $x \in \operatorname{supp} \pi$.

We close this paper with an example which shows that the condition

$$
\lim _{n \rightarrow \infty} \frac{P_{n}^{2}(x) h(n)}{\sum_{k=0}^{n} P_{k}^{2}(x) h(k)}=0
$$

is not necessary for having $x \in \operatorname{supp} \pi$. For that we consider the little q-Legendre polynomials $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$; see [1], p. 187. To have $P_{n}(1)=1$ we have to make a slight modification by putting $1-x$ for x. For fixed $q \in] 0,1[$ the little q-Legendre polynomial $P_{n}(x)=P_{n}(q ; x)$ are given by

$$
\begin{aligned}
& P_{1}(x) P_{n}(x)=a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x), n \geq 2 \\
& P_{0}(x)=1, \quad P_{1}(x)=(q+1) x-q
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{n}=q^{n} \frac{(1+q)\left(1-q^{n+1}\right)}{\left(1-q^{2 n+1}\right)\left(1+q^{n+1}\right)} \\
& b_{n}=\frac{\left(1-q^{n}\right)\left(1-q^{n+1}\right)}{\left(1+q^{n}\right)\left(1+q^{n+1}\right)} \\
& c_{n}=q^{n} \frac{(1+q)\left(1-q^{n}\right)}{\left(1-q^{2 n+1}\right)\left(1+q^{n}\right)}
\end{aligned}
$$

It is known (see [1]) that the $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$ define a polynomial hypergroup on \mathbb{N}_{0} and $\operatorname{supp} \pi=\{1\} \cup\left\{1-q^{2 k}: k \in \mathbb{N}_{0}\right\}$. Furthermore $\frac{h(n)}{h(n-1)} \rightarrow \frac{1}{q}$. Hence we see that

$$
\frac{h(n)}{\sum_{k=0}^{n} h(k)} \longrightarrow 1-q
$$

but $1 \in \operatorname{supp} \pi$.
The contributions of Section 4 are strongly connected with results of R. Szwarc; cf. [11], [12], [13].

References

[1] W. R. Bloom and H Heyer, Harmonic analysis of probability measures on hypergroups, deGruyter, Berlin, 1995.
[2] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[3] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18 (1975), 1-101.
[4] S. Karlin and J. McGregor, Random walks, Illinois J. Math. 3 (1959) 66-81.
[5] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983),185-209.
[6] , Bochner theorems for hypergroups and their application to orthogonal polynomial expansions, J. Approx. Theory 37 (1983), 311-325.
[7] R. Lasser and J. Obermaier, "On Fejér means with respect to orthogonal polynomials: A hypergroup theoretic approach" in Progress in Approximation Theory, Academic Press, Boston, 1991, pp. 551565.
[8] R. Lasser, Orthogonal polynomials and hypergroups II - the symmetric case, Trans. Amer. Math. Soc. 341 (1994), 749-770.
[9] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. vol. 213, 1979.
[10] M. Skantharajah, Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46.
[11] R. Szwarc, A lower bound for orthogonal polynomials with an application to polynomials hypergroups, J. Approx. Theory 81 (1995), 145-150.
[12] $\xrightarrow[296]{ }$,Uniform subexponential growth of orthogonal polynomials, J. Approx. Theory 81 (1995), 296-302.
[13] A counterexample to subexponential growth of orthogonal polynomials, Constr. Approx. 11 (1995), 381-389.
[14] M. Voit, Factorization of probability measures on symmetric hypergroups, J. Austral. Math. Soc. Ser. A 50 (1991), 417-467.

Frank Filbir, Institute for Biomathematics and Biometry, GSF - National Research Center for Environment and Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
filbir@gsf.de
Rupert Lasser, Institute for Biomathematics and Biometry, GSF - National Research Center, for Environment and Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
lasser@gsf.de

[^0]: Received December 11, 1997; received in final form May 7, 1999.
 1991 Mathematics Subject Classification. Primary 43A62, 42C05, 43A07.

