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L2-VON NEUMANN MODULES, THEIR RELATIVE TENSOR
PRODUCTS AND THE SPATIAL DERIVATIVE

TONY FALCONE

ABSTRACT. We develop a theory of L2-von Neumann modules, which encompasses a reformulation of
Connes’ Spatial Derivative, and the Relative Tensor Product of Sauvageot. We demonstrate the naturality
of the relative tensor product construction in the category of L2-von Neumann bimodules. Finally, we give
evidence for the claim that the relative tensor product is essentially the only tensor product which should
be used when considering this tensor category.

1. Introduction

It should come as no surprise (due to their origins) that von Neumann algebras
play a role in current Conformal Field Theories. In particular, the tensor category
of bimodules over one or several von Neumann algebras is fundamental in their
exposition. Hence, it is important to understand the special nuances that arise in
considering tensor products of von Neumann algebra bimodules. In general, a purely
algebraic approach to their theory is insufficient. Sauvageot outlined a construction
for the tensor product (the Relative Tensor Product) of two bimodules which is not
canonical, but depends on the choice of a faithful, normal and semi-finite weight.
(Hereafter to be referred to as an fns weight.) Note that, in the case where the
weight is actually a vector state, this choice of weight corresponds, in Field Theory,
to fixing a so-called "vacuum vector". Some work subsequent to Sauvageot’s in this
area has at times neglected the extreme care which is required when dealing with
weights. However, it is possible to show that, given a bimodule Y) over a fixed von
Neumann algebra, if the existence, of another bimodule J having certain "universal,
tensor product-like" properties is assumed, then is (i.e., is isomorphic to, as .M-
.A/[ bimodules) the relative tensor product . (R)3 g) with respect to a trace r on .A4.
Therefore, we see that the existence of such a bimodule implies that the von Neumann
algebra must be semi-finite. Moreover, it turns out that the existence of such a J, in
which the tensor product of any two arbitrary elements is defined, forces the algebra
.A//to be atomic.

Originally, substantial inroads into the theory were made by Sauvageot. We show
herein that the relative tensor product introduced by Sauvageot is, in a sense, the only
bimodule tensor product which encompasses the intricacies present when dealing
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with infinite von Neumann algebras. Naively, one would expect the "tensor product"
of the .A-.A bimodule L2(.A/I) with itself to also be an -.Ad bimodule, possessing
the usual universal property of tensor products, viz., that any (continuous) "-
bilinear" map on the Cartesian product should induce an d-bimodule morphism on
the tensor product. If we require that an .A/f-bilinear map I include the property that
I (x, O) I (, xo), Yx .M, then we will show that the only -bimodule tensor
product which exhibits the universality described above is the relative tensor product
L2(/) (R), L2 (.Ad), where r is a trace on the atomic von Neumann algebra. (Once
again, recall that the relative tensor product is not canonical, but rather depends on
a choice of fns weight.) This result demonstrates that no such universal object can
exist when A/ is not simply of the form

Ad (Z:(),

where each ., is an arbitrary Hilbert space. Since Type II and Type III algebras can
(and often do) arise in physical theories, it is obviously important to be able to decide
whether one may assume the existence of a tensor product having the aforementioned
characteristics. If the algebra is non-atomic, then it is impossible, in general, to
define (R) r/for arbitrary , r/. This implies that any strictly algebric approach to the
theory will necessarily be incomplete. Hence, a satisfactory resolution of this issue
is needed.

Interestingly, in formulating a theory of L2-von Neumann modules, a serendipitous
by-product emerges: a clear exposition ofthe Spatial Derivative, originally introduced
by Connes [6]. Suppose we are given a fight L2-module ) over avon Neumann
algebra .A/’, and we denote by .M the von Neumann Algebra Z;()Ac), i.e., the set of
(bounded) operators on ) which commute with the fight action of.A/’. Then, given an
fns weight ap onA/" (which induces an fns weight’ on.N /m(), the commutant
of .A4 in/(.)), and a normal, semi-finite weight b on A’/, the spatial derivative ,
arises naturally in the L2-module context: it appears as the relative modular operator
A,,. Hence, the LE-von Neumann module theory incorporates the theory of the
spatial derivative.

The Hilbert spaces on which von Neumann algebras act from both the left and
fight have been referred to as "LE-von Neumann modules". What should be inferred
from this usage is that there exist other types of modules. Indeed, following the work
of Lance [3] on "Hilbert C*-modules", it is possible to define a notion of an L-von
Neumann module. is an L-von Neumann module if it is the dual of a Banach
space E., and if a von Neumann algebra .M acts on , (from either the left or the fight);
additionally, E should be equipped with an ".M-valued inner product". Proceeding
in a fashion analagous to the methods used in the L2 theory, we can characterize
L-modules as "sitting in" von Neumann algebras. Moreover, we may develop a
tensor product of these modules which respects their module structure. This leads
directly to a theory regarding the preduals, which may well be termed an L theory.
We may then proceed to a tensor product of these modules. The ultimate goal is
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tO arrive at a satisfactory LP theory, which would of course encompass all previous
results.

Additionally, it is important to note that many of the results contained herein
were presaged by Connes; what we refer to as L2-von Neumann bimodules he called
"correspondences". [2] Throughout this work we will sometimes refer to the work
of Sauvageot, but not to that of Connes. This is in no way to be interpreted as a
diminution of Connes’ contribution; it simply reflects the fact that the author was first
introduced to the subject via the work of Sauvageot, and his terminology reflects this
historical bias.

Finally, the author acknowledges a large debt of graditude to Masamichi Takesaki
ofUCLA. Most of the results contained herein were obtained in the years 1995-1996,
during graduate school. The approach to bimodules, etc., adopted in this paper was
inspired by that of Takesaki, and is encapsulated in [5]. Throughout, the influence
of his vision is indisputable; the unity of purpose that this vision offers was without
doubt one of the most important lessons that the author absorbed during his five years
as a graduate student.

2. L2-von Neumann modules

2.1. Modules over a von Neumann algebra. It is commonplace to think about
von Neumann algebras presented spatially, i.e., we consider the pair {.h4, .}. Then, )
has a natural stucture as a left A/l-module. We now want to consider a right action of
avon Neumann algebra on a Hilbert space. Hence, we are motivated to the following:

Definition 2.1.

(i) Given avon Neumann algebra A/’, the opposite von Neumann algebra .h/"
means the von Neumann algebra obtained by reversing the product in./V’, i.e.,
as a linear space equipped with *-operation we take A/" to be Af, denote by
x the element in A/" corresponding to x 6 Af, and then define the product
in A/" via

xoyo A
(yx), ’ x, y A/’. (1)

(ii) A right A/’-module is a Hilbert space on which A/" acts from the fight, i.e.,
of.A/" on Y)" equivalentlyY) equipped with a normal anti-representation, re),

a Hilbert space equipped with a normal representation of A/". To avoid un-
interesting notational complexity, we consider onlyfaithful right .N-modules
Y), in the sense that r(x) 0 for every non-zero x A/’. We denote the
right .M-module Y) by Y)Ac to emphasize that Y) is being viewed as a fight
.M-module.

(iii) For a pair A4, A/" of von Neumann algebras, an M-Af bimodule means a
Hilbert space , (often denoted MY) to emphasize its bimodule structure),
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equipped with a normal representation zr of 3/1 on . and a normal anti-
representation zr’ of A/" on . such that zr(.M) and zr’(A/’) commute. We
write

xy zr(x)zr’(y), / x E All, y A/’. (2)

The commutativity ofzr (.A/l) and zr’(A/’) is equivalent to associativity: x(y)
(x)y, x A4 and y A/’. Once again, we will consider only faithful bi-
modules.

Now, let’s fix von Neumann algebras A4 and A/’. If is an .M-A/" bimodule, then
its Banach space dual is canonically an A/’-.M bimodule by the action

Axy y*x*, x .M, y A/" (3)

where denotes the vector in correspondingto E by the pairing (r/, " (r/I ),
with r/6 and 6 . This left.A/’-module will be called the conjugate bimodule
or the bimodule dual to the original bimodule .

Of special interest is a von Neumann algebra in standard form. Let us fix an fns
weight p on A/" (so we can and will write p 6 130(A/’)), and consider the standard
form, which we will denote by {L2 (A/’), L2 (A/’)+, J}. The right action ofA/" is given by

X Jx*J, x A/’. (4)

Thus we obtain an A/’-.N"bimodule L2 (.h/’), which will be called the standardbimodule.
Sometimes, we write * for J’, E L2(A/’). We state here the following easy but
important propostion:

PROPOSITION 2.2. Foravon Neumann algebra.A/’, the standard bimodule L2 (.]f
is self-dual under the correspondence: * ,- ’, LE(A/’).

The proof is straightforward, so will be omitted.
With 0(A/’), the left action on L2(.Af) is nothing but the semi-cyclic repre-

sentation zr on .. The fight action zr, of A/" is then given by

qt’ (X) Jx0zr(x*)J, x .A/’. (5)

Then it follows from the theory of the cocycle Radon-Nikodym derivative (see [5])
that the fight action of A/" is also given by

O(x)b Ov(xtr_i/2(b)), x n, b E D(tr_i/2). (6)

This twist on the right action suggests that we write xap /2 for r/,(x), x
viewing ap 1/2 as a vector of infinite magnitude "in" L2(.Af). Then (6) can be written
more suggestively as

(6’) xrl/2b (xapl/2b-l/2)l/2 (xtT_i/E(b)) 1/2, x n, b /)(o’i/2).
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We now introduce a new notation,

r/ (x) Jet/C, (x*), x E n, (7)

’" ’(x)which can be written as apl/2x, x E n. This new map
L2 (N’) allows us to write (5) as simply

(x) (xb) (x)b x n b .IV’.7r b rl rig, riO, (8)

We now consider a general right N’-module ). First, given a pair {)l, )2} of right
./V’-modules, we define

/(()I).N’, (2).N’) __A {t /2()1, .2)1 t(y) (t)y, y E N’}, (9)

and for Z(PjAc, PJAc), we shall write Z(.Ac). With this notation, the rightN’-module.0
becomes canonically an I(.Ac)-A/" bimodule. Also, we note that/(LE(.Af)N")
(a direct consequence ofTomita-Takesaki theory)--a fact that will be used throughout.
For the pair {Jl, .2}, we shall also consider the direct sum right .N-module )Ac
()l)Ac ()2)Ac; if we let el and e2 denote the projections of . down to )l and )2
respectively, then we have/((.l)Ac, ()2)Ac) eE/()N’)el.
Now let {/, )} be a von Neumann algebra. We want to study the relation between

a semi-finite, normal weight tp on .M and an fns weight ap’ on .M’. Set .A/" (.M’),
which allows us to view) as an .M-N"bimodule. Let ap be the weight on ./V" defined by

p(y) -- ’(y), y A/’+.

We first pair the von Neumann algebra {A4, .} with one in standard form, in the
following manner: let L2(N") @ as a fight N’-module. Then, set 7"
It is. easy to verify that/2(L2(A/’)N-, Pjac) fTge, where e and f are the projections
of ) onto L2 (A/’) and ., respectively. The semi-finite, normal weights ap on N" and

tO on Ad give rise to a semi-finite, normal weight p on 7" given by

p(x) ap(exe) + qg(fxf), x

We set

n,(.) fnoe {t 6/2(L2(jV’)N", N’)" ap(t*t) < +xz};
* for someC>0} (10)(y), p) { e." IIxll _< Cll%(x)ll, x %

Observe that each 6 (), p) gives rise to an operator, denoted L(), which
belongs to/(LE(Jf)N", )N’); it is defined by the equation

’(x) a
L,()r/ x, x E n, , 6 fl)(, (11)



412 TONY FALCONE

LEMMA 2.3.

(i)

n (g)) --/:(L2(.A/’).,v", giN’)me

and

(gJ, ) (L2(.Af)A/",
where 3, r/(n,) C L2(.hf).

(ii) The map (R) y /:(L2(A/’), g)Ac)()., n, -> tO(y) (gg, ) gives
rise to a map, denoted ,from n(g)) onto (g), ) such that

(at) al (t),

71,(ttr_i/2(b)) 71(t)b,

a E .A4, E n,());
n,(g)), b )(O’i/2). (12)

Here,/:(L2(./kf)Af, giN’)()Af taq represents the algebraic tensor product of
the (algebraic) right Af-module /:(L2(A/’), g)zf) and the (algebraic) left
A/’-module ta.

(iii) D (g), r) is dense in
(iv) The maps L" (gg, ) L,() n,(j) and 1"

O(t) (gg, ) are the inverse ofeach other.
(v)

(12’) L(o’a(b)) L()b, fD(g5, ), b

(vi) With the semi-finite, normal weight - on 7",. defined by -(x) = ap(exe)
p(exe), x +, we have taT ta, nO, (g)) 7".f, with f C NT, where
NT means the left kernel of- (i.e., {y A/’: -(y*y) 0}). Moreover, the

action of 7". on 9 is semi-cyclic relative to the semi-finite normal weight -under the identification OT((x, t, 0)) g9T - (O(x), O(t)) La(A/")
-9, x n,, n,()).

Proof.

(i) If is in ta(.)), then the absolute value Ill belongs to ta, by definition; let
us consider the polar decomposition of t, viz., ultl. Then it becomes
clear that e I:(L2(A/’), g)Ac)ta,. Conversely, if a e/:(L2(Af), )Ac)and
x e ta,, then the inequality x*a*ax < Ilall2x*x implies that ax

If e (., p), then a L,() belongs to/:(L2(Af), )), and with
the polar decomposition a u lal it is clear that lal belongs to ta,. Now we,makeuseofthefactthat, foranyx ta, y ta, we have xo’ (y) O (x)y.
(Note that this follows since r/,(x) and r/,(y) are, respectively, left and
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right bounded vectors in the left Hilbert algebra which is the completion of
r/,(n, tq n,).) Hence, for any y n,, url,(lal)y ulalo(y) ao(y)
y; hence, we may conclude uo,(lal) . Similarly, the reverse argument
shows that any element of the form tO,(x), with E(L2(A/’)Ac, )),
x n, is in fact in )(Y), p).

(ii) In order to show that the map
tO,(y) (Y), ap) factors through n, (Y)), we must show that whenever

-tixi =0, (13)

with {ti} C/(L2(.A/’)Ar, .M), {xi} C rt, we have

tirlp(xi O. (14)

To see that this is indeed so, suppose (13) held but (14) did not. Then,
* such thatthere must exist a y e n,,

(i tirl (Xi)) y O.

But

(tirl(Xi))
a contradiction. Thus, the map , from n, (Y)) (Y), ap) is well-defined.
The rest follows easily by calculation.

(iii) From (i) it follows that

[(, r)] [/(L2(.Af)A/., A/’)3,] [/(L2(.Af)A/", A/’)L2(A/’)].
Let Y). Consider o9 o9 as a functional over A/’, and let (o9) be the
representing vector in L2 (A/’)+ of o9 for the right action of A/" on L2 (A/’), i.e.,
(o9, x) ((og)x (o9)), for x A/’. Then we have a partial isometry u in
Z(L2(A/’)Ac, Ac) such that u(og) . Hence, (L2(.N’)Ac, .Ac)L2(A/’)
Y); this implies that (), p) is dense in ..

(iv) This fact actually follows quite quickly from (i) and (ii): let be an ele-
ment of n(.), and let O,(t). Once again, we take ultl its polar
decomposition. Then for any y n,, we have

L,()r/(y) O,(t)y uo(Itl)y
ultlo,(y) = tOe(y),

which says that L,(, (t)) t. Conversely, we may use the same argument
to conclude that, given any " in D(Y), ap), by defining L, (), we get
(t) .
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(v) This follows from (ii), (iv) and results from the theory of cocycle derivatives.
(See [5].)

(vi) This assertion follows from a routine calculation of the actions of on .
and )T" !-1

Now, it is a fundamental fact of Tomita-Takesaki theory that a rt N rt,
or more precisely its image r/(ct,), forms a left Hilbert algebra. Likewise, A
D(r*_i/2) D(cr/2) D(tr/2) N D(r/*/2)* is a self-adjoint subalgebra of .A/" which
multiplies ta, and n, from both sides. We then have the following tautological
statement:

LEMMA 2.4. The anti-representation r, of.4 defined by

(12") ’zr, (b)O,(t) Ov(tcr*_i/2(b)).
extends to the original right action of.A on . 6 n,()), b6t,

Proof This assertion follows directly from (6), (12) and (12’).

We now continue our investigation of the action of 7"a,. on . The direct sum
decomposition, L2(A/") (3 ., yields the following matrix representation of

with

X XI2’X
\X21 X22,]

Xll ( d, Xl2 ( (J?).A/’, L2(.A/’)A/’),
X21 ( /(L2(.Af)N", A/’), X22 ( ./

for each x 6 R.
Notice that we have not yet made use ofthe semi-finite, normal weight tp 6 l(.A4);

all our considerations thus far have involved only ap 6 Zl0(A/’). We recall that the
"balanced" weight p (3 9 on 7". gives a semi-cyclic representation {Zrp, .p}
of 7Z. We wish to characterize the representation zrp in terms of ) and zqo. To

do this, we consider the weights " and on 7". given by (x) __a ap(exe) and

(x) - o(fxf), x +. We then obtain the decomposition

p=[(rlp(enpe) rlp(enpf)’],.(L2(_.cg.A/’))[r/p (enpf)]’ (15)
Ikrlp (Tripe) rio(fha f),] l (3 o ,]’

where stands for the closure in the Hilbert space of the linear span, as usual.
We have already seen that r/p(fnpe) O,(n,()) (, ). In addition, we
know fTC,.e Z;(LZ(A/’)Ac, YJN’) and eT.f /(-Ac, L2(A/’)N’). We now want
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to investigate enpf and its image under the map r/p. As we did not assume the
faithfulness of tp, we don’t have complete symmetry between tp and ap. At any rate,
we do have

enpf {s 6/2()w’, L2(jV’).,v)): go(s’s) <
{t*" 6/2(L2(J)A/-, )A/’), tp(tt*) < +cry}.

Given the decomposition described by (15), it is natural to define

.ll L2(.A/’), )12 [r/p(enpf)]

(10’)

We conclude this section with a lemma which indicates the relationship between
the weights o and p, at least on the level of their semi-cyclic representation spaces.

LEMMA 2.5.

(i) The restriction ofrp to the second column space of(15), )12 ( J22, is semi-
cyclic relative to the weight.

(ii) The Hilbert space lZ is isomorphic to s(qg).Zl (and hence - s(qg)9) as an

A/’-.Ms( bimodule under the natural map.

Proof. First consider the case when o is faithful. Then with ap np N rip,
Pip r/p(ap) is a left Hilbert algebra. Furthermore, the R-7". bimodule L2(7".) can be
naturally identified with )p. Under this identification, the components of.p defined
in (15) allow us to write

The modular conjugation J implements the desired isomorphism between 21 and
)12. This gives assertion (ii). Assertion (i) follows from the symmetry between ap
on .A/" and o on .M.

In the general case, (i.e., if o is not faithful), we consider an auxiliary semi-finite,
normal weight tp’ on A/[ with s(tp’) 1 s(o). We then define

0,) 0,)q= p=s(o s(o’

i.e., p f q. We can now form an fns weight p’ =/ p + 0’ on 7"., where 0’
is defined via tp’(x) - tp’(pxp), x +. Observe that r/p and r/p, agree on ere
and fRe and that r/p(x) r/p,(xq), x npq. Hence we get .ll eL2(R)e,
2 fL2(7C.)e, 2 eL2(R)q and )22 fL2(R)q. So, we may conclude
Jq)21 JqL2()e eL2()q )2. This completes the proof of (i). For (ii),
we have J2 P)22 L2(7"C-)q as an N’-.Mq bimodule. Therefore, the representation
{rrp, )12 .22} is precisely the semi-cyclic representation {zrg,



416 TONY FALCONE

2.2. The Spatial Derivative. Ifwe examine the details of the preceding proof, we
recognize that the conjugation operator J: L2(R) ---> L2(7".) restricts to the conjugate
linear operator S,C" Oc’ (t) f(npf3n)e > 0p (t*) Y)2, which can also be viewed
as the restriction of the map S+,,C’ for/9’ to the smaller domain qL2()e. Hence,
S,C’ can be defined directly as the closure of the operator given by c’(t) > 0p(t*)
for nc’(5)) Cl no(Sj)*, where no()) __a {s /2(g)ac, L2(./V’)N’): tp(s*s) < +oo}.
Thus we make the following definition:

Definition 2.6. The absolute value A,C’ of S,C’ is called the spatial derivative of
the semi-finite, normal weight t# on .A4 relative to the fns weight @’ on the commutant
/’, and is denoted d-r- since it is determined by p on Ad andtiC,"

Dualizing (10), we set

(10") ’(5, 0) { " IIxll 2 Co(x*x),x %, for some C >_ 0}.

To each D’(Y), p) there corresponds an operator 1L:() defined by

R()0o(x) __a x, x n,

which belongs to/(:aL2(Ad),:a Y)). As 0 is not assumed to be faithful, @ and tp
are not symmetric. In fact, we have the following:

LEMMA 2.7. The closure of ’(g), tp) is the range of the projection s(tp), i.e.,
[’(s, o)]

Proof. If D’(), o), then we have I1(1 s(tp))ll 2 Co((1 s(o))) 0.
Hence D’(Y), o) c s(tp)Y). Conversely, suppose _1. ’(Y), tp). With {co
Ad.+" co < o}, we know tp(x) sup,oa, co(x), x Ad+, and

C>O

Also every co can be written as a countable sum of coon with On D’(Y), tp), so
that s(o) sup{s(oo): r/ ’(Y), tp)}; thus we may conclude s(o) 0. [3

We now state the main result of this section. Note that the spatial derivative was
originally defined by Connes [6]; however, his approach did not use (explicitly) the
notions of yon Neumann bimodules.

THEOREM 2.8. Let {Ad, )} be a von Neumann algebra, o a semi-finite, normal
weight on ./V[ and ’ anfns weight on the commutant .M’. Then the spatial derivative
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has thefollowing properties:d’

d_ spatial derivative , is equal to s(o). Note that(i) The support s (d,) of the
here what is meant by the support of a self-adjoint operator is the projection
to the closure of its range.

(ii) On the reduced von Neumann algebra {.Ms(o), s(o)g)} and its commumnt

’s(), we have

kd’ ] x d’
(it ()-it O’

(16)

kd#’ ] Y de’ a-t (Y)’ Y s)"
(iii) g and 2 areas weights on , then

d2)
it

(dl)
it

(iv) g isfaithful, then

d 18)

(v) With (,)o and (,)o, the square root of the spatial derivative,

(d’) is essentially self-adjoint on

,(5) { (, ). ,()*
and is determined by

0 (()(0)*), , o ,(). (19)

Therefore, the spatial derivative of relative to ’ is directly computable
from and ’. (Again, see [6])

Proof. From the previous arguments involving .M, A/’, t# and @, we know that
the spatial derivative , is precisely the relative modular operator A, on the sub-
space s(tp)g), when we replace g) by s(tp)g) and assume that tp is faithful. Then the
assertions (i) through (v) are really statements about the relative modular operator;
all of these are standard results in the theory of the cocycle derivative. (For example,
see [4].)

Again, we wish to emphasize that, via (19), the spatial derivative d’ is completely
determined by the weights tp and ap’, without making use ofthe auxiliary von Neumann
algebra "R.. We will now investigate additional properties of the spatial derivative; we
begin with a lemma.
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LEMMA 2.9. The linear span
weakly dense ideal of.M; moreover, we have

Proof. It is easy to see thatL(a) aL,() for any a A4 and (), ap).
Hence ff, is an ideal of.M. The characterization of the positive cone is accomplished
by using polariztion, which is a standard technique, so we omit that portion of the
argument.

To demonstrate the a-weak density of,]’,, it is sufficient to prove that, ifan, (.)
{0}, a .A//, then a 0, since L()(., )) n()). So, suppose an()) {0}
for some a .M. This implies aL() 0 for every (), ap). Thus for every
x n, we have

(x) a(x) (a)x0 aL()
Since n is a-weakly dense in N’, we have
then gives a O.

PROPOSITION 2.10.
erties:

The spatial derivative , has thefollowing additionalprop-

(i)
d91 d92

1 _<92 <
dap’- d’

(ii) If9 and 92 are both finite, then

d(9 + 92) d91 d92
dap’ dap’ dr"

where the above sum should be interpreted as aform sum.
(iii) Ifa J is invertible, then

d(a9a*) (d_s,) a
,

dap’
a

(iv) The support of 7,, s(,), is equal to the support, s(9), of9.

(20)

(21)

Proof.

(i) Suppose 9 < 92. Then we have

(dgl 1/2 2

\-S] 9(L,()L,()*) < 9z(Lxv()L,()*) d92 1/2 2
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for every (Y), ). Hence d’ < d"
Conversely, suppose < ,. This means that we must have o, (a) <

992(a) for eve a M+ ofthefoa iL(i)L (i)*. Our assertion
then follows from Lemma 2.9.

(ii) Suppose that 1, 2 M, and set + 2. The boundedness of
and 2 of course imply that is bounded; we also have seen that the

square roots of all the spatial derivatives , and are essentially self-
a andH Thenwehavea H2=adjoint on (, ). Let H d" ’ d"

IInll2 IInll2 + IInll2, (, ). Hence our asseaion follows.

(iii) Again, take H . It follows that aHa* is a positive, self-adjoint operator
with domain (a*)-l(H), and that for each (, ),

IIna*ll2 (L(a*)L(a*)*) (a*L()L()*a)
(aa*)(L()L()*).

(Note that IIHa*ll 2 can be + if is not finite. In fact, IIHa*ll2 <

+ a* (Hk).)
Since a is inveible, ((aHa*)) (Ha*) and the absolute value of

H k a* is precisely (aHa*). Hence we may conclude (21).
(iv) Let p be the suppo of H and q s(). Then p is characterized by

the fact that I p is the projection of onto the null space of H, i.e., onto
the subspace R { 6 " H 0}. Let (p,)0 be the maximal Tomita
algebra associated with the left Hilbe algebra p, O;,(n;, n,). (Recall
that we defined p’ in the proof of Lemma 2.5 by adding an auxilia weight
to our original weight p in order to make p’ faithful.) Because f 6 , with

f’= JfJ we have f’(p,)o J(,)0 C (p,)0. If 6 R, then there exists
a sequence {n C (, ) such that n and Hn O, as (, ) is
a core for H. For each O f’(p’)O, we have Wr(O)n r(O) and

[[Hr(O)l[z lim I[Hr(O)n[[2 lim [[Hke(,)O[[2

lim (e(nO)e(nO)*)
n

5 IIe(O)]l lim(e(,)e(n)*) O,
n

which gives Zrr(r/) . Since {Tt’r(rl)e: r/ C f’(P.lp,)0} is a-weakly dense in
.A/’, the projection p belongs to A/[ - .A/" (in 7).

Now, if (1-q))(Y), ap),then99(L,()L,()*) 99(qLc,()L,()*q)
tp(Lc,(q)Lc,(q)*) 0, so H1/2 0. If (1 q)., then we choose

a sequence n (Y), P)with n ---> . It follows that (1- q) , and
since H (1 q)n 0 Yn, we see that (H1/2), and H 0. Thus
1 q < 1 p, i.e., p < q. On the other hand, tp is a faithful weight on .Mq. It
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is then easy to check that we can view the weight @’ as one on .Ms() without

changing H other than to change the underlying Hilbert space from. to s(o).. By Theorem 2.8, a, is non-singular on s(o), which means
p--s(tp). E!

We continue our investigation of the properties of the spatial derivative. In par-
ticular, we are interested in answering this question: Given a positive, self-adjoint
operator H in ), and an fns weight ’ on Ad’ (or equivalently an fns weight on
A/’), when is there a weight tp )(A4) such that , H?

THEOREM 2.11. Let {A//, P)} and A/" (.A4’) be as before, andfix anfns weight
on A/’. For a positive self-adjoint operator H in $9, thefollowing three conditions

are equivalent:

(i) There exists a semi-finite, normal weight tp on A4 with H.

(ii) For every y A/’, Hitcr (y) yHit, (7. , where Hit is considered only
on the closure of the range of H. (Note that we are not assuming that H is
non-singular.)

(iii) )(), ap) tq D(H1/2) is a corefor H1/2, and the scalar 5".in= IIH1/2ill 2 depends
only on the operator _,in__ L,(i)L,(i)* for {,..., n} C D(), ) tq

(n1/2).

Proof. (i) :== (ii). Let p be the support of H. Each of conditions (i) and
(ii) implies p A//. Hence we may and do assume the non-singularity of H. (We
need only consider the reduced algebra A4p.) The implication (i) = (ii) follows
from Theorem 2.8. Conversely, assume (ii); take any faithful weight tp’ on A//. Put

K de and define ut HitK-it, IR. It then follows that ut is a at -cocycle
in A//. Again, the result of Connes-Masuda [7] guarantees the existence of a faithful
weight o on A//with (Dtp: Dtp’)t ut, JR, and hence H ,.

(i) = (iii). By construction, we have

lln1/2ill2-’(Lu(i)L’(i)*)’i=i=

so that the assertion follows.
(iii) =) (i). We need only construct a semi-finite normal weight tp on A4 such that

IIH1/2II 2 tp(Lxu()L)()*), e (), @) tq (H1/2).

Any weight with this property is automatically semi-finite because(H )N)(), @)
is dense in 5, which means that {L()L,()*" (H1/2) tq D(g), @)} is non-
degenerate. The rest of the proof then follows from the next lemma. D
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LEMMA 2.12.

(i) Let H be as in Theorem 2.11 (iii). Then there exists a preweight tpl on ,.7 such
that

tpl(Zq()Zq,()* --IIn1/2ll 2, :9(), p), (22)

where IIH1/2II 2 -t-oo if (H 1/2 ). The preweight tpl has the property that
for any net {xa} C A4 converging strongly to 1,

liinfo (xyx*) >_ o (y), y fl’. (23)

Here, when we say that tpl is a preweight on fl’, we mean that it is an
extended real valued map on ff, satisfying the usual requirements ofpositive
homogeneity and (finite) additivity. In this case, however, the domain is not the
positive cone ofa von Neumann algebra (recall that fl’ is merely a a-weakly
dense ideal in .M), and so we refrainfrom calling q)l a weight. However we
do have thefollowing.

(ii) Any preweight tp on ff, with the property given by (23) extends to a normal
weight q) on .M.

Proof.

(i) By assumption, tpl defined by (19) on L,()Lq,()* extends to a preweight
on ff- by Theorem 2.9, which we will continue to denote by tp. Suppose
y =L,(k)L(k)* ff. We then have

xayx L(xak)L,(Xak)*,
k=l

so that

tp(xayx*a) H x,k 2.
k=l

Hence inequality (23) follows from the lower semi-continuity of the positive
quadratic form associated with H.

(ii) Since ff is a tr-weakly dense ideal of 3d, every element of 3//+ can be
approximated by ff from below. So we put

tp(x) sup{tpl(y)" y ff’, y _< x}, x .A/l+.

It follows that tp agrees with tp on ff+. Since x / x and ya / y =
(x +y,)/ (x + y), the additivity of0 follows from that of tpl. We need only
check the normality of tp. Suppose that xa/ x in 3,t+. Then xl/2 aax/2
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for a unique a, .A/l, with Sr(aa) < s(x). Put ba au + (1 s(x)). Then
x bxb* and {b} converges strongly to 1. For any y ff with y < x
we must show that sup 9(xu) > 91 (Y). But by (23), we have,

ol(y) < liminfo (buyb*a) < liminfg(buxb*),

and we have seen buxb* xa.

We conclude this section with a corollary which will relate convergence in (A),
convergence (in the strongly resolvent sense) amongst positive, self-adjoint and non-
singular operators in , and convergence in Aut(M).

COROLLARY 2.13. Let.All, .A/" and9 be as before, andfix 7z’ anfns weight on .All’.
If {On} is an increasing sequence offns weights .A4 and ifo SUPn Pn is semi-finite,
then {n, is increasing, and converges to in the strongly resolvent sense; hence,

{cr" converges to cr in Aut(.A/[) uniformly on anyfinite interval (of]R).

Proof. Let Hn = ,. By Proposition 2.10, {Hn) is increasing and bounded

byH do
a-fir from above. Hence {Hn} converges to a positive self-adjoint operator

K in the strongly resolvent sense. Since it n-it PH, y r_ (y) for every y A/’,
KityKit Por_ (y), y 6 A/’. By Theorem 2.11, there exists a unique weight/z on A’[

with K The inequalities

Hn<K<H

show that Pn </z < qg. Hence/z o and K H. The rest follows from general
facts about monotone convergence.

3. The relative tensor product

3.1. Definition of the relative tensor product. We now proceed to define the
relative tensorproduct ofa fightmodule and a leftmodule over the same von Neumann
algebra N’. Unlike the ordinary (i.e., spatial) tensor product, the construction of the
relative tensor product depends on the choice of an fns weight on N’--hence, the
use of the adjective relative. Furthermore, given a fight N-module . and a left .M-
module J, the tensor product of an arbitrary pair of vectors from and J cannot, in
general, be defined. (In fact, as we shall see in the next Section, the existence of the
tensor product for all possible pairs of vectors severely limits the possible type of the
von Neumann algebra A/’.) The formation of the relative tensor product is restricted
to a subset of vectors from and J which depends on the choice of weight. It is
interesting to note that the tensor product actually behaves like the product of closed,
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unbounded operators. We shall begin our discussion by introducing some notation
and terminology to be used throughout the chapter.

As in the case of fight modules, for two left A/’-modules AcR and AcR2 we consider
(.Jl ,dV" J2) {t /(.1, .J2): tao ato, r/ Jl, a .A/’}. For ;(J,A: J)
we write ;(A:J). Throughout the remainder of this chapter, Y) will denote a right
A-module, R a left A/’-module. Observe that a fight A-module ) is also canonically
an ;(Y)A:)-A/" bimodule, while a left .M-module J can always be considered an A/’-
(A:.) bimodule in a canonical way. We are now going to construct the relative
tensor product Y)(R), q of a right A-module 3 and a left .Af-module R, which will
depend on the choice of a fns weight on .N’.

So, we fi a von Neumann algebra .Af, a fight ./V-module Y) and a left ./V’-module
q. We also fix a faithful, normal and semi-finite weight on .N’. We have seen
(Lemma 2.3) that the fight module Y) can be recovered from (), ), and that the
left module J is also recoverable from ’(R, p). (Observe that in this case, the roles
of and o are symmetric, as they are both faithful). We state here a few facts
about (3, ) (resp., ’(.t, )) and L, (resp., Re,) which have been implicit in our
previous results.

(1 12) P(L(’E)*L(’)), 1, 2 ( )(,.q),

(r/1 r/2) (JeR(r/1)*Rv(r/2)J), r/l, 02 ( )t(.,
r/e(L,(2)*L,()) L,(:2)*l, 1, :2 )(), );

r/(J/RLo(r/)*R(r/2)J) RLo(r/2)*r/, 01, 02 E t(.j, lt). (24)

It is also easy to see that if we consider 3 L2 (N’, ), with the standard right
action of A/" (resp., J L2 (A/’, L/t), with the usual left action of A/’), as a fight (resp.,
left) module, then

D(), ) r/(n,) 3Lu, L() zr(), E 3#,
resp., ’(J, p) 3#, R(r/) rr(r/), r/ ),

where 3: (resp., 3) means the algebra of all left (resp., right) bounded vectors in

L(, ).

PROPOSITION 3.1.

(i) The sesquilinearform B: (), ) O .R --> C determined by

B(I (R) r/l, 2 )r/Z) A__ (7r.tt(L(2)*L(l))r/1 r/z) (25)

is positive semi-definite, and so defines an inner product on (SS, ap 63 J,
which, in many cases, is degenerate.

(ii) Ifl, 2 ($5, ap) and r/l, r/2 ( t(j, ), then

(Tr.(L(2)*Lq/(l))r/1 r/2)= (Tr(Je/Re/(r/1)*Re/(r/2)Je:)ll 2). (26)
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(i’) Dual to (i), the sesquilinearform B’ defined on ) ’(J, ap) and determined
by

(25 ’) B’(I (R) r/l, 2 (R) r/2) __a ((JR(Tl)*Rv(rl2)J)l 2),

is also positive semi-definite, and agrees with B on (, ap) (R) ’(J, ap)

Proof

A
(i) Suppose that {1 n} C (j, ap). Letakj L,(k)*L,(j), with j,k

1 n}; then a (akj) is an n x n matdx over A/’. If {x, x} C ,4,
where, as before, .A 7)(tr/2) 71 D(cr*_i/2), then, by (6’), we have

Because .A is a-weakly dense in A/’, the matrix a is positive in Mn (A/’)
A:(R) M,(C); hence there exists ab (bek) . Mn(A/’) such thata b’b, i.e.,

n
akj --e=l b’kbej, j,k . {1, ...,n}. We then have, for any {Ol r/,} C

B j rlj, k Ok (akjTj Ok) bkjOjll 2 > O.
j=l k=l j,k=l k=l j=l

Hence the sesquilinear form B is positive.
(ii) Supposel, ’2 6 D(., p) andr/l, r/2 6 D’(J, ap). Then, asbothL,(2)*L,(l)

and JT,R,(r/1)*RT, (O2)J, are elements of rrt, C rt 71 rt,
(a’a(L,/,(2)*L,(l))r/l r/2) (R,(r/1)r/(L,(’2)*L(l)) r/2)

(Lq/(2)*l IRq/(r/1 r/2) (L(2)*1 r/q/(Jq/Rq/(r/2)*Rq/(r/1)J))
(’1 L(2)r/(JR(r/2)*R (r/1)J))
(’l rr(Jq,R,(r/2)*R,(r/1)J,)2)
(zr(JR(r/1)*R, (r/2)J,)l 2).

(i’) The positive semi-definiteness follows from (i) by symmetry. The second
assertion follows from (ii).
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Definition 3.2. Let fit be the subspace of t0(, ap) (R) J comprising those vectors
( with B((, () 0. The Hilbert space obtained as the completion of the quotient
space (’ ap) (R) J/92 relative to the inner product induced by the positive-definite
sequilinear form B will be called the relative tensorproduct of the fight A/’-module $
and the left A/’-module J with respect to the fns weight and will be written (R), .
The image of (R) r/will similarly be denoted (R), r/for f13(., ), r/ ..
By Proposition 3.1, the relative tensor product (R), J can also be obtained as the
completion of the quotient space of the algebraic tensor product (9 D’(J, ) by the
subspace fit’, where fit’ consists of null vectors with respect to the positive-definite
sequilinear form B’. In this way, we can consider the tensor product (R), r/for a pair, ’(J, 7).

THEOREM 3.3. Let .N" be a von Neumann algebra equipped with an fns weight
ap, a right A/’-module and a left A/’-module. Set 79 L(Ac) and Q = (A/’J).
We construct the direct sum 9 a_ L2 (A/’, p) as a right A/’-module and then

consider 7". = .(c), together with the "balanced" fns weight p = ap o v,
where o is a faithful, normal and semi-finite weight on 79 and v is anfns weight on
Q. Let e, f and g be, respectively, the projections of onto L2(A/", ap), . and-,
which, we note, belong to T. Represent the standard Hilbert space 9o as the space
of3 x 3 matrices:

(15’)

Then there exists a natural isomorphism between (R) Y and 23.

Proof Let 9d (= 9.1o) be the left Hilbert algebra associated with p, 3 (= 3o) the
algebra of left bounded elements in L2(TZ, p) and, as usual, no {x 7".: p(x*x) <
+cx}. Since e, f and g are all in 7"., 93 and can each be decomposed into the matrix
direct sum relative to (15’), i.e.,

It follows from Lemma 2.3 that 21 (), lit) and 31 )(J, t). Also, we
note that L,() zre()I, D(), @) 32, and L,(’) zre()le)n, "D(., @) Bal, where zre means the left multiplication representation of on
g)o. At this point, one can see (through symmetry) that the fight Hilbert alge-
bra 92’, and the algebra B’ of right bounded vectors, admit similar matrix decom-
positions; we can use these to obtain 31 D’(g), ), B ’(J, @) and

R,(r/) rr(r/)1.,,, r/6 ff)’(, ).
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We claim that (R), r/, with (., @) and r/ 6 J, can be naturally identified
with e()0 6 23. Let Uo be the map from (, @) into deteined by

u0( e()O for (, ), 0 6 . Since 6 21 and 0 6 3,
e()0 belongs to 23. Now, for , 2 6 (, ) and 0, 02 6 , we have

(Uo(
(a(L(2)*L())O 0z) ( O 12.2).

Therefore, the map Uo gives rise to an isomet U of . into 23. Let
U(.) [e(2)]. First, we obsee that 23 fL2(, )g, f and
Q g. Hence (P) (Q). We know that is invant under the right
action of Q. Thus, the projection ff of23 onto belongs to3(P), i.e., ff can be
identified with left multiplication by a projection in P, which we shall call p. This
implies that
and 6 (, ) 2, 3 is invant under left multiplication by elements of
P, which in turn implies the invafiance of under the left action of P. We may
therefore conclude that the projection p belongs to the center (P) of P, which is
of the fo Z(P) ()f. So p may be viewed as a projection in (). When
we view p as an element in Proj(()), we see that we may write (f p) {0},
so that 0 (f P)e()O e((f P))O for eve 2 and 0 . Thus,
a(e((f P))*e((f P))) 0. Because is a faithful left -module, we
musthavee((f-p)) 0, 6 (, ), which means that f-p 0. Therefore,
we see that f p, i.e., as an element of Proj(), p 1, which in turn implies

23
Thus, via the isomet U, we may conclude that , h can be identified

with 23.

Using the preceding theorem, it is not difficult to arrive at the following corollary,
which is presented without proof.

COROLLARY 3.4.

(i) If and J are, respectively, right and left .A/’-modules, with ./q" a von Neu-
mann algebra equipped with afns weight ap, then the relative tensorproduct

(R) J is naturally an E(N’)-E(N’J) bimodule, whose bimodule structure
is given by

a( (R) rl)b (a) (R) (rib),
a /2(.), b (N’J), (., ap), . (27)

(ii) In terms ofoperators actingfrom the left (as usual), ifx () and y
), then there exists a unique operator x y ( ) defined by

(x , y)( , ) (x), (yo), 6 (, ), . (28)
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The map (x, y) e E(Ar) x E(ArYO x (R) y e E( (R), .t) extends canon-
ically to an injective *-homomorphism from the algebraic tensor product,
E(Ar) E) E(YO, into( (R) ).

(iii) Although iV" does not act on the relative tensorproduct Y) (R) .R, we have

(b) (R) (R) (a_i/2(b)o), b :D(o’_i/2), e D(2), ), r/e .R. (29)

In order to summarize the preceding arguments, we restate the matrix decom-
position of , in the following form, making explicit use of our results up to this
point:

L2(7",, p) L2(’, 99) (R),
-(R)- L(,

PROPOSITION 3.5.

(30)

(i) Viewing L2(.A/", ) as a right W’-module, the map

V" r/ (y) (R), r/ L2 (.//’, ar) (R), J yr/ J, y

gives rise to an isomorphism of LE(./k/", ) (R) J onto as .IV’-(AcJ) bimod-
ules.

(ii) Similarly, ifwe regard LE(.A/", ) as a left ./V’-module, then the map

L2U’(R),O(y)$’9(R), (.Af,r)-y$), ., yn
extends to an isomorphism of (R) L2 (.Af, ) onto as E(Ac)-.IV" bimodules.

The proofofthe preceding proposition is entirely routine, and is omitted. Note that
in light of this propositon, it is reasonable to refer to L2 (A/’, ) as a sort of "identity"
(both fight and left) amongst .Af modules, relative to the weight

It is also easy to verify, using our previous technique, viz., the 3 x 3 matrix
decompostion, that after making the necessary (implicit) identifications, we have the
following identities:

()1 ) 2) (R) J ()1 (R), J) ) ()2 (R) J), /(R), (.R R2) ((R), R) (’3 (R), J2),
(31)

where, 1 and 32 are all fight A/’-modules, while .R, .t1 and J2 are left A/’-modules.
Given the distributivity evidenced above, it is natural to inquire about the associa-

tivity of the relative tensor product. This issue is dealt with in the next Theorem.

THEOREM 3.6. Let .M and A/" be two von Neumann algebras equipped with fns
weights 99 and ap, respectively. IfY3 is a right .M-module, Y an M-A/" bimodule and
92t a right A/’-module, then after natural identifications we have

(3 (R) J)(R), ffJt 3 (R) (.R (R) 970, (32)

as E(3A4)-E(Ac92t) bimodules.
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Proof For each E (), tp), r/E J and ( 6 ’(gX, ap), set

u(( , r) (R), ) ,, (, (R),

Let i, r/i and (i, 1, 2, denote elements in (., 9), R and ’(gX, ap). We want
to show

(U((I (R), r/l) (R)o (1) U((2 (R), 72) (R)0 (2)) ((1 (R), 1) @ (1 (2 @, 2) @ (2),

as is will demonsate that U is well-defined and a unit. We compute

(U((I @ 01)@,1) U((2@02)@2)) (1@, (01@, 1) 2 @ (02 @, 2))

(a@, (L(2)*L(I))(01 @, (1) 02., (2)
((a(L(2)*L(l))01)** 1 02., (2)

((JR()*R((2)J)a(L(2)*L())01 102) (by (26))

(a(L(2)*L())(JCR()*R(2)J)0 02)
( * ((JR((1)*R((2)J)0 2 * 02)

(a(JCa(l)*a((2)J)( ) 2 2)
(( * 0) ** ( (2 ,, 02) ** (2).

Now, for each a () and b )o, we also have

U(a(( o) , )b) U(((a) O) ** (b))

a(U(( O) , ))b.

Hence, we see that U is indeed an isomohism of( ), onto . (**)
as ()_)o bimodules.

It is natural at this point to ask what happens to the relative tensor product . (R)o J
when we change the fns reference weight p. In order to investigate this issue, let
us first recall some notation: t(.A/’) is the set of semi-finite, normal weights on the
von Neumann algebra A/’, while 10(A/’) represents the set of all faithful such. Once
again, we fix .A/’, the fight .N’-module ., and the left.N’-module J.

THEOREM 3.7. Let A/" be avon Neumann algebra, and let 9 and J be, respec-
tively, right and left .N’-modules. To each pair (l, r2) lo(.A/’) x 0(.N’), there
corresponds a unique/()Ac)-/(A/’J) bimodule isomorphism, U2’’, from 9 (R)0| J
onto 9 (R)02 J, which makes thefollowing diagram commute:

Ia’ (R)01 b; Ia2 (R)02 b
L2(jV’, 011 (R)0, L2(.A,f, 11 L2(.N", 21 (R)02 L2("N’, 02/

L2(,A/’,Ol)
02

L2(.Af, 01) U02’0----’)’! L2(.Af, 02)

(33)



L2-VON NEUMANN BIMODULES 429

Here, we take the pair (ai, bi) E.(Y), L2(.Af, i)N’) /(,.ML2(Jf, i),N" J), for
1, 2, such that a2 U,,al, b2 blU2,,, with U, representing the

canonical unitary which implements the equivalence ofthe standardforms, i.e.,

U$2,$1" {’]" L2(.], rl), $1, J$l} ’--> {’], L2(A/’, aP2), g,2,
Moreover, the correspondence

(, 2) o(N’) x o(N’) n,a

satisfies the chain rule, viz.,

U1//’3,Ilt2 Vllt2,1ltl V3’1,h ,a ,h @1, @2, @3 0()" (34)

Proof. We start with existence: we will use the notation established in Theo-
rem 3.3. Choose fns weights o o(P) and v Zlo(Q) and set Pi aPi 9 (9 v,
for 1, 2. We observe thate construction ofR does not depend on the choice of
the ’s: ere is a canonical isomet Um, from L2(R, p) onto L2(, P2). More-
over, this isomet implements an R-R bimodule isomohism. As the projections
e, f and g commute with the fns weights p and p2 (by their definitions), it is easy
to check at Um,p preserves the matrix decompositions in of L2(R, Pi), 1, 2,
which were given by (15’). With J the conjugation operator 6 h 6 , set

b JbJ (, L2(, i)), 1, 2. We then have

i 0 i 0 , 1, 2.
0 0

Hence, we see that the restriction of the operators p(i)(bi)* to the (2,3)-
(a b), with ’ the semi-cycliccomponent of L2(, Pi) is equal to Ut2<.,) p,

anti-representation of R defined by ’ (x) Jp, (x)*J, x R. Since Up2,,t is an
pi

R-R bimodule isomohism of L2(, Pl) onto L2(, P2), and ces the matrix
decomposition (15’) of L2(, Pl) onto that of L2(, P2), by restricting to the (1,1)-
component, we obtain U,2,; similly, by considering the resection of Up2,pt to the

(2,3)-component, we get U*2’*t,
Now, let us turn to unicity. Let i (= ,), for 1, 2, be the left Hilbe

algebras associated with {, @i }, and (i)0 be the coespondingTomita algebras. Set
ai i * e(i), and (a/)o e((i)o), 1, 2. For each G (, ),

’(,) and y, y2 G (al)O, if we take a L, ()* and b R, (), then
by (33) we obtain

U.2’*’ Ue2’’ R, ()0, (Y2)),a (Yl ,, Y20) ,a (L, ()0, (Y) ,,
U2’1 R())( (Yl) OCt (Y2))

,a ,))* (a-i/2(Y)O, (Y2))

* U2 *U2, (a-i/2(Yl)O (Y2)).(a2 ,2 bE)(L(W.2),
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This means that U’2’’ is uniquely determined on the vectors of the form

{(yl) (R), (yz0): e (j, l), r/e )’(.R, ), y, y:z e (a)0},

which is dense in ) (R) J. Hence, Uv’’ is uniquely determined by the commutative
diagram of (33).

The chain rule (34) follows from the uniqueness of U2’’ U]

At this point it is necessary to make the following remark: The bimodule isomor-
phism U does not send (R) into (R) for g9 and 1 .R. One must
always be careful not to make this mistake when performing calculations involving
the relative tensor product.

Before concluding this section, we wish to address (briefly) the following: is it
possible to construct the "tensor product" g) (R) J directly from the right A/’-module
g) and the left A/’-module .R, i.e., without recourse to a reference weight? It is, in
fact, possible to do so if one abandons the notion of the tensor product (R)g r/of
the vectors themselves. To see this, suppose we are given a von Neumann algebra
A/’, a fight A/’-module ., and a left .A/’-module .R. We define - L2 (.A/’) g) ,
recogn_izing that L2(A/") has meaning independent of any choice of fns weight on A/’.
Then g) is a fight A/’-module in the obvious way, and we may view L2(A/’), and
as closed subspaces, with e, f and g the proje.ctions down to these; note once again
that e, f and g are all projections in E()). Then we have seen that we have

fL2()e and gL2()e, which implies that J eL2 (7".)g. We may then
define the "relative tensor product of 5) and .R over A/"’, ) (R)Ac J, to be fL2()g.
It is clear that, when defined in such a way, . (R) J has a natural E(gg)-E(J)
bimodule structure. In fact, it is a straightforward exercise to show that there exists a
bimodule isomorphism (R) J g) (R) J for any 10(A/’).

3.2. An example and a unicity theorem. In order to make the ideas presented
in the previous section more concrete, we begin this section with an example of the
relative tensor product. While this example will deal exclusively with matrix algebras
(and hence the spaces in question will be finite dimensional), all the essential notions
regarding the relative tensor product will be evident. In particular, it is not the finite
dimensionality which distinguishes this example; we will have more to say about this
later.

Example. Let .Ad be Mn (C), g) {Mn(C), (. .)},andap Tr(H.), H
non-sinugular. As any (faithful) positive linear functional on is of this form,
this, in fact, is the general case. We take 5 to be the Hilbert space which arises,
using , via the GNS construction. In order to differentiate between elements of
.A// and those in , we will denote the latter using the usual r/(.) notation, e.g.,

(r/c,(X) r/,(Y)) Tr(HY*X).



L2-VON NEUMANN BIMODULES 431. has an .AA-Ad bimodule structure, in which the left and right actions of A//on
53 are given by

AO(X)
/

O(AX), (X)B
/

r/, (XH 1/2 B H-1/2 ), (35)

where A, B .Ad. It is important to realize that, while the left action of A//on
3 coincides with the usual matrix multiplication, the right action is "twisted" via
conjugation by H 1/2. This defintion of the fight action is necessary in order to have
(Ov/(X)B o,(Y)) (o(X) rlc,(Y)B*)s.
We also note the following:

it (X) rlct(HitXH-it)Jg, r/c(X) rIg,(H1/2X*H-1/2), Av/rl,

= crt (A) nitan-it. (36)

Now, define p by p Tr(K.), where K too is a positive, non-singular element
of j/f. How can we give a realization of j (R) ? More precisely, by combining the
results of Theorem 3.7 with Proposition 3.5, we see that (R) 5). (Note that 3 is
really just L2 (Ad, ).) What we would like to do is to exhibit this AA-JI bimodule
isomorphism explicitly.
We know that

(rlg,(X1) (R), r/c,(Y1) //(X2) (R), lrlt(Y2))(R),.
(rlg,(X1)Jg,Rg,(Y)*R(Y2)J, rhu(X2))e)

from (26). Using (36), we can compute J.cRc(Y)*R(Y2)J; we obtain

J,Rc,(Y)*R(Y2)J, K-YHYK-. (37)

Now, using (35), we know how K 1/2 Y1HY2 K- .Ad acts (from the right) on 53.
Hence, we can calculate

Sowe see that the.A//-A//bimodule isomorphism is implementedby the map g) (R) g) --->
given by

r/c, (X) (R) 0, (Y) > 0, (XH K-1/2 Y).
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Let’s examine our example further. Suppose we were interested in formulating a
theory of "bimodule tensor products", and proceeded naively: then we would expect
the elements of .M to merely "move through" the (R),, i.e., we anticipate

rlc,(X)A (R), rlc,(Y) rl(X) (R), Ar]c,(Y). (38)

Using calculations found in the example, we have

o(X)A (R), o(Y) o(XH1/2AH-1/2) (R), O,(Y)
+- o(XH1/2 AH-1/2 H1/2 K-1/2 Y) O,(XH1/2 AK-1/2 Y),

while

Ov(X) (R) Ao(Y) o rl,(XH1/2 K-1/2 AY).

So, if we want (38), we must have XH 1/2 AK-1/2 Y XH 1/2 K-1/2 AY, or equivalently
AK-1/2 K-1/2 A. This in turn yields K AK-1/2 A, A .M, which says that

cr_i/2(A) A. Hence we see that the modular automorphism group comprises only
the identity automorphism, which says 99 Tr, so K I, the identity matrix in

Mn (C).
Ofcourse, we could have obtained the above directly from (29), which told us what

happens to elements when they move through (R). However, it was our intention to
illustrate the theory derived in the previous section directly.

The example presented above is not entirely unmotivated. We now present a
theorem which demonstrates that the relative tensor product is really the most natural
product construction possible in the category of von Neumann bimodules. As the
theorem will show, attempts to formulate a theory motivated solely by algebraic
construction can succeed only under restrictive circumstances.

THEOREM 3.8. Let .M be a a-finite von Neumann algebra. Take afaithful state
on .M, and let 55 denote, as usual, L2(.M, @). Suppose there exists a C-linear map
I: g) x g)xv -- J, where J (like gg is afaithful .M..A4 bimodule. We also assume
I is continuous in each variable separately, and satisfies thefollowing conditions:

(i)

a I(’, r/) I(a, r/),
I(b, r/) I(, br/),
I(’, Oc) I(’, O)c,

where a, b and c are in .M,
(ii) Spanc{I(, 0): , r/ ),} is dense in J.
(iii) I is non-degenerate, i.e., for any 0 gg,, there exists 0 g2v such that

I(, r/) :# O.
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Then is an atomic von Neumann algebra (hence semi-finite), and J
_

Yg, (R),,
where r is a faithful, normal and semi-finite trace on ./l. (Note that r may be a
tracial weight; .All may possess no tracial state.)

Proof. We will prove the above assertion in stages. Webegin with an observation,
viz., that the usual appeal to Uniform Boundedness allows us to conclude that 0 <
C < +cx such that

IlI(, 0)lla < CIIIIII011 , 0 e ; (39)

hence, I is actually jointly continuous.

Now, define
,x
0(1); en we ow that is bo cyclic d sepating

for so, {x" x } and {y: y }e both dense in . Now, we have

R [{I(, )" $, e +}] [{I(+x, y$+)" x, y e }]
[{I(f+, xyf+)" x, y e M}] [{I(f+, af+): a e M}]
{I(, )b: b e }.

If we define 0o e as o I($, $), en the preceding calculation shows at o
is sepating for in (since it is cyclic for ()). A simil gument shows
that {aOo: a e } ; hence o is both cyclic and sepating for in .

Ceaainly, we lose noing if we assume at II0olla 1. Then, by inoducing

(" Oo Oo)a, we see that e ,(), and . (Here, ,() represents
e set of nodal states of.) Now, we can compute

(x*x) (x*xooloo)a Ilxooll 2

IIx I(, $)11 I(x$, $,)11
6 C211x,ll, C2(x*x). Vx e . (40)

Note that we have used (39). Hence, we see that 5 C2. From the theo ofe
cocycle derivative (see [4]), this allows us to infer e following:

(i) The map (Do: Dap)t ut extends to a map (z uz) e A(DI/2).
(ii) o(x*x) ap(u*__i/2x*xu_i/2), Y x .M.

Here,

where

f: Dl/2 -+ .h//" f is analytic on the interior of IDl/2,
and continuous and bounded on all 11/2 },

]ir
A I {Z ( C: --r < (Z) < 0},
/{zeC: 0<(z) <-r},

ifr >0
otherwise.
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We now note that tp _< C2 tells us that .A4a C .A/[, i.e., the a-weakly dense *-
subalgebra of -analytic elements of 34 is actually contained in the set of o-analytic
elements. We can therefore compute as follows" a .A/la, we have

a cr/z(a),
while

However,

at/0 r/or/2(a).

ao0 a I(, ,) I(a,) I(cr/z(a), q,)
1(, r2(a)) 1(, cr/ (a)) I(, )cr(a) r/oct/ (a).

Hence we are forced to conclude

or/ (a) or/% (a), V a .A/la (41)

Now, it is a fundamental property of the cocycle derivative (Dtp: D@)t Ut that

* Vx A//tTt
tp (X) UtO’t (X)Ut

or, equivalently,

u,,r 
Therefore, a Ada, we obtain

(42)

o’[i/2 (a)u-i/2 u-i/zr C_i /z (a),

since the product of the analytic maps is again analytic, and these agree on all of IR,
by virtue of (42). This gives us

cr2(a* *u _i 2 u _i/2criC//2 (a* * ==# u*i/2cr/2 (a* criC//2 a* u *_.i,2

Now, using (41), we obtain

u._i/2criC (a,) xo .tri/z(a )U*-i/2;

setting b cr//2 (a*), we then have

u_i/2o’i/2(b) bu*_i/2 V b .A/la (43)

Furthermore, we see from (43) that

u-i/2b* criO/2(b)*u-i/2 :=# u-i/zb* crC_i/z(b*lu-i/2;
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hence we also obtain

(43’) cr_i/2(b)u-i/2 u-i/2b, b e .Ma
By combining (43) and (43’), we observe

u_i/2u*__i/2b u_i/2cr_i/2 (b)u*_.i/:z cr_i (b)u_i/2u*__i/2

So, we define h
,x

U_i/2U*_i/2, and rewrite the above:

hb tr_i (b)h, V b e A/ta. (44)

Now, we make use of a result from [8], which states that any positive, non-singular h
which satisfies (44) on the set ofanalytic elements for the one parameter automorphism
group tr must in fact be an analytic generator for trY’, i.e., we must have

crt (x) hitxh-it, Yx e .All. (45)

In particular, this means that crt is inner, and hence 34 is semi-finite.

Thus, we are lead to define r h-, where

lrh-! (X) lim (h-1 (1 + eh)x), x

note that this makes sense, since, once again, h e .44 ,. Then, this gives (Dr: D)t
h-it, and trt id; so r is a trace on .AA. (However, notice that r may be a tracial
weight.) Now, let k be such that (Dtp: Dr)t kit; we remark that, due to the fact
that tp is a state, k is a non-singular, positive element in .M. From the chain rule for
cocycle derivatives,

(Dip: Dr)t (Do: D)t (D: Dr)t,

we may conclude that kit ut hit. Using (41), and the fact that h .M C a, we
have

tr/ (h) tr/2(h) k-1/2 hk1/2,
or

k1/2h=hk1/2 ==kh=hk, (46)

i.e., h and k commute.
So, we may write ut kith-it (kh-1)it, which yields u-i/2 (kh-1) 1/2, i.e.,

u-i is a positive element in .A4. (Strictly speaking, u-i (kh-1) is valid only
on hJ, the range of h; however, this set is dense in J, and since we already know
that u-i is a bounded operator, its positivity follows by continuity.) But recall that,
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by definition, h1/2 [u*i/2[; this means that we must have h1/2 u’i2 U-i and,
from the above calculations we may conclude

k h2. (47)

We will now demonsrate that J is actually isomorphic, as an .M-Ad bimodule, to
5), (R), .,. We define the map V via

V" I(x, y,) -> x, (R), y,, x, y 3//,

noting that, given

Ilxy,ll, (y*x*xy) "t(hy*x*xy)
r(xyhy*x*) < Ilyhy*ll ",:(xx*)= Ilyhy*ll r(x*x),

we have r/, (nO,) C D’(Y),, r). (In fact, such a fact characterizes r as a trace.) This
makes V well-defined.

This map is an isometry: first, we compute

I(x,, Y)II I(xt:r-i/2(Y), )11 Ilxo’_i/2(y)rloll2a
Ilxh1/2yh-1/2rloll2a tp(h-1/2y*h1/2x*xh1/2yh-1/2)
r(kh-1/2y*h1/2x*xh1/2yh-1/2) r(h2h-1/2y*h1/2x*xh1/2yh-1/2)
r(hy*hx*xh1/2y)
ap((xh1/2y)*xh1/2y), x . A4, y a.. D(cr_i/2).

Now, we calculate

(xxuyhy* x),
(xh1/2yhy*h-1/2 x), @(x*xh1/2yhy*h-1/2)
r(hx*xh1/2yhy*h-1/2) r(hy*h1/2x*xh1/2y)
((xh1/2y)*xh1/2y), x .A4, y . 79’(.’)0, r).

Hence, V is an isometry, and can be extended to a map from J onto Y), (R), .,.
It is also immediate that J and Y), (R)3 . have the same A4-Ad bimodule sturcture.
Thus, V is the desired At-At bimodule isomorphism.

Finally, we wish to demonstrate that .M must be an atomic von Neumann algebra.
To see this, we simply note that the map x,1, Or(xh 1/2) implements the standard
isometry between ) and )r L2(./, -r). Because of the preceding argument, we
may view I as a map from g)r x .r --+ g) (R)3 .r, via

I: (r/r(xh1/2), r/r(yh1/2)) r/r(xh1/2)(R), r/r(yh1/2).
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However, .r (R), )r is isometrically isomorphic to J’)r as an .M-.M bimodule under
the map

Or (xh (R), Or (yh - Or (xh yh ). (48)

If we restrict ourselves to Or (n* N nr), i.e., the left Hilbert algebra 91r, then (48) is just
telling us that the usual multiplication operation "lifts" to the relative tensor product
r (R), J’Jr. However, when we combine this with our previous results regarding the
map I, specifically (39), we must conclude that (left or fight) multiplication by any
element of.)r acts as a bounded operator on -)r. This can only be the case when .M
is atomic. El

We now see that the example with which we began this section is actually quite
general: we have discovered that if we wish to define a "naive" tensor product of
L2-von Neumann modules we may do so only under very restrictive conditions, viz.,
when the von Neumann algebra is essentially a "matrix algebra".
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