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COMPRESSED POLYTOPES, INITIAL IDEALS AND
COMPLETE MULTIPARTITE GRAPHS

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

ABSTRACT. Convex polytopes arising from complete multipartite graphs and their toric ideals will be
studied. First, it is proved that such toric ideals possess squarefree quadratic initial ideals. Second, we
show that these convex polytopes are compressed and compute their f-vectors, Ehrhart polynomials and
normalized volumes explicitly. Finally, all complete multipartite graphs which yield initial ideals coming
from finite partially ordered sets will be classified.

Introduction

The second hypersimplex of order d is the convex polytope A(2, d).which is the
convex hull of the configuration 4d {ei + ej; 1 < < j < d} in ]d, where ei is the
ith unit coordinate vector of ]Rd. If G is a finite connected graph having no loop and
no multiple edge on the vertex set [d] 1, 2, d} with edge set E(G), then we
write c for the subset {ei +ej E [d; {i, j} E E(G)} of 4d. The edge polytope 79c
of G is the convex hull of4 in Rd. Let K[t, t2,..., td] denote the polynomial ring
in d variables over a field K. The affine semigroup ring K[G] which is generated
by all monomials titj with {i, j e E(G) is called the edge ring of G. When G is
the complete graph on [d], its edge polytope is the second hypersimplex of order
d and its edge ring is the second squarefree Veronese subring of K[t, t2, td].
In the present paper we are interested in edge polytopes and edge rings of complete
multipartite graphs on [d]. Here, a complete multipartite graph on [d] is a finite graph
on [d] such that, for a suitable decomposition [d] V1 t.J V2 t.J t.J Vn of [d], its
edge set consists of all {k, } with k Vi and for some j.

The present paper will be organized as follows. First, in Section 1, the notion
of the algebra of Segre-Veronese type which generalizes both Segre products and
Veronese subrings of polynomial tings will be presented. Such algebras are affine
semigroup rings which possess squarefree quadratic initial ideals; in particular, these
algebras are normal, Cohen-Macaulay and Koszul. The edge ring K[G] of a finite
connected graph G is an algebra of Segre-Veronese type if and only if G is a complete
multipartite graph. Hence, the edge ring of a complete multipartite graph possesses
a squarefree quadratic initial ideal and is normal, Cohen-Macaulay and Koszul.

Second, the purpose of Section 2 is to discuss the combinatorics on edge polytopes
of complete multipartite graphs. We show that such a polytope is compressed, i.e.,
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each ofits reverse lexicographic triangulations is unimodular. Moreover, the f-vector,
the Ehrhart polynomial together with the normalized volume of the edge polytope of
a complete multipartite graph will be computed explicitly.

It is known that if R is a homogeneous semigroup ring, then R is Koszul if and
only if its divisor poset (partially ordered set) ER is Cohen-Macaulay. Here ER is
the infinite poset consisting of all monomials belonging to R, ordered by divisibility.
In 15], it is proved that if R has an initial ideal which is the Stanley-Reisner ideal of
a finite poset, then the divisor poset E is shellable. Moreover, in [2], it is shown that
if R is extendable sequentially Koszul, then E is shellable. The second squarefree
Veronese subring Rd(2) of K[tl, t2 td] is extendable sequentially Koszul for all d >

2, while R(d2) possesses an initial ideal which is the Stanley-Reisner ideal of a finite
poset ifand only ifd 2, 3, 4. See [2] and 11]. One ofthe most distinguished classes
of homogeneous semigroup rings having initial ideals which are Stanley-Reisner
ideals of finite posets is the class of monomial ASL’s (algebras with straightening
laws). If, however, R is a monomial ASL, then the shellability of Eg follows easily
(e.g., [2, Theorem 2.2]). In addition, if R is a monomial ASL, then Eg is chain
lexicographically shellable. See [2, Theorem 2.3]. In Section 3, we will discuss the
problem which complete multipartite graph yields an edge ring having an initial ideal
which is the Stanley-Reisner ideal of a finite poset.

1. Algebra of Segre-Veronese type

The algebra of Segre-Veronese type which generalizes both Segre products and
Veronese subrings of polynomial rings will be studied. Such algebras are affine
semigroup rings which possess squarefree quadratic initial ideals; in particular, these
algebras are normal, Cohen-Macaulay and Koszul.

Let K be a field and

K ti)
<i <n; <j <q,

the polynomial ring in Ein=l qi indeterminates over K. Fix an integer N > 1 and sets
of integers {al, a2,..., an}, {bl, b2, bn} and {i)}i=l,2 n;j=l,2 qi such that

(i) 0 < bi < ai for all < < n;
(ii) ,inffi bi < N < ,inffi ai;

(iii) " c)i) > ai for all l <i < n.

We then write

(1) A(N; {ai, bi, c)i)}l<i<n;l<j<qi)
for the K-subalgebra of K[{ti)

<i<n;1 <j <q, generated by all monomials

-’I-’Iti)f’,
iffil j---1
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such that

fi(i) < C
(i) for all 1 < < n and for all 1 < j <(i) j qi’,

_< l-,_.qi f(i) < ai for all 1 < < n;(ii) bi
(iii) Ein=l Ejq.l fj(i) N.

The affine semigroup ring (1) is called an algebra ofSegre-Veronese type.
For example, if n 2, N 2 and ai bi c)i) 1 for all and j, then the affine

semigroup ring (1) is the Segre product of polynomial rings K[t1), t),..., tql)] and
t2

(i) N for all/ then theK[t 2) 2), t(2)]q2 If qi 1, ai N, bi 0 and c
affine semigroup ring (1) coincides with the classical Nth Veronese subring of the
polynomial ring K[t), t2),..., tn)]. Moreover, if qi 1, ai 1, bi 0 and

(i) 1 for all then the affine semigroup ring (1) is equal to the Nth squarefreeC

Veronese sabring of the polynomial ring K[t1), t[2), t[n)].
<i) and bi 0 for all i, the affine semigroup ring (1) is anWhen qi 1, ai c

algebra of Veronese type which is discussed, for example, in [5] and 17].
Let w, w2,..., w denote the minimal system of monomial generators of the

algebra of Segre-Veronese type (1). Let K[x, x2, x] denote the polynomial
ring in 6 variables over K and :r the surjective homomorphism

r" K[x, X2, X] --> A(N; {ai, bi, )i)}l<i<n;l<j<q,)
with rr(Xk) wk for all 1 < k < 3. The kernel of r is called the toric ideal (or
defining ideal) of the algebra of Segre-Veronese type (1).

The technique appearing in the proof of [17, Theorem 14.2] which guarantees the
existence of squarefree quadratic initial ideals of algebras ofVeronese type can be ap-
plied to algebras of Segre-Veronese type in the obvious way. Hence, we immediately
obtain the following result which generalizes 17, Theorem 14.2].

THEOREM 1.1. The algebra of Segre-Veronese type (1) possesses a squarefree
quadratic initial ideal (i.e., there exists a term order < on the polynomial ring
K[xl, x2 xs] such that the initial ideal ofthe toric ideal of (1) with respect to <
is generated by squarefree quadratic monomials). Thus, in particular, the algebra of
Segre-Veronese type (1) is normal, Cohen-Macaulay and Koszul.

In the present paper, we are interested in a special kind of algebras of Segre-
Veronese type, i.e., subrings of the second squarefree Veronese subring arising from
complete multipartite graphs.

Let G be a finite connected graph on the vertex set [d] 1, 2,..., d} and assume
that G has no loop and no multiple edge. Let E(G) denote the edge set of G. If
e {i, j} is an edge of G joining [d] and j [d], then we write p(e) d for
the (0, 1)-vector ei + ej, where ei is the th unit coordinate vector of d. The edge
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polytope Po of G is the convex hull of the configuration ,40 {p(e); e E(G)}
in IRd. Let K[t] K[t, t2 td] denote the polynomial ring in d variables over
a field K. The edge ring K[G] of G is the affine semigroup ring generated by
those monomials titj with {i, j} E(G). Let K[x] K[{xi,j}li,je(o)] denote the
polynomial ring over K with each deg xi,j 1. The toric ideal lo of G is the kemel
of the surjective homomorphism zr" K[x] K[G] defined by zr(xi,j) titj for all
{i, j} E(G). We refer the reader to [12] and [14] for the detailed information about
the edge polytope and the edge ring of a finite graph.

Letq, q2, qn denote a sequence ofpositive integers withq +q2+’’ "+qn d.
Let V1, V2 V denote a partition of [d] (i.e., each 0 Vi C [d], Vi f3 Vj 0
if - j, and [d] V tA V2 U... t.J Vn) with each (V,.) qi. Here (I) is the
cardinality of Vi as a finite set. For the sake of convenience, we will assume that

Vi qj + 1, qj +2,..., qj + qi 1, qj
j=l j=l j=l j=l

for each 1 < _< n. The complete multipartite graph oftype q (q, q2, qn) is
the finite graph Gq on the vertex set [d] V1 t.J V2 t3... t.J Vn with the edge set

E(Gq)={{k,};kV/,,l_<i <j_<n}.

Note, in particular, that if {k, } E(Gq) with k < , then {k’, ’} E(Gq) for any
k’ and e’ with k’ <_ k < <_ ’. It may be assumed that q (ql, q2 qn) satisfies

1 <q <q2 <_ <qn.

When G is the complete graph on [d], i.e., n d and each qi 1, the edge
polytope is the second hypersimplex [17, p. 75] of order d and the edge ring is the
second squarefree Veronese subring of K[h, t2,..., td].

Now, which edge ring can be an algebra of Segre-Veronese type ?

PROPOSITION 1.2. The edge ring K[G] ofafinite connectedgraph G is analgebra
ofSegre-Veronese type ifand only ifG is a complete multipartite graph.

Proof. Work with the same notation as in the definition of the algebra of Segre-
Veronese type (1) and set N 2 and each c)i) 1.

If bi 2 for some 1 < < n, then the algebra (1) is the second squarefree, (i) (i)] If bi bj 1 for some j, then theVeronese subdng of K[t’)
2 .q,

algebra (1) is the Segre product of K[ti), t(2i), (i)] and K[tj) t(:zj) tj].(J)
Let us assume that bi 1 for some and by 0 for any j i. If ai 1, then the

algebra (1) is the edge ring of a complete bipartite graph. If ai >_ 2, then the algebra
(1) is the edge ring of the complete multipartite graph on the vertex set

---1
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Suppose that each bi 0. Let I be the set of all with ai >_ 2 and J the set of
all k with ak 1. Then, the algebra (1) is the edge ring of the complete multipartite
graph on the vertex set

qk

j=l \k$J

E]

COROLLARY 1.3. The edge ring of a complete multipartite graph is normal,
Cohen-Macaulay and Koszul.

In general, the term order < of Theorem 1.1 can be chosen to be neither lexico-
graphic nor reverse lexicographic. We can show, however, that the toric ideal of a
complete multipartite graph possesses not only a lexicographic quadratic initial ideal
but also a reverse lexicographic quadratic initial ideal.

THEOREM 1.4. Let G be a complete multipartite graph with edge set E(G) and
I its toric ideal. Define the ordering < ofthe indeterminates xi,j with {i, j} E(G)
by setting xi,j < Xk,e, where < j and k < , if and only if either (i) < k or (ii)

k and j > . Let <lex denote the lexicographic term order on K[{xi,j }{i,jIE(G)]
induced by < and <rev the reverse lexicographic term order on K[{Xi,j}{i,j}E(G)]
induced by <. Let in<o,, (I) denote the initial ideal of I with respect to <lex and
in<, (I) the initial ideal ofl with respect to <rev. Then, both initial ideals in<t (I)
and in<,o,, (I) are generated by squarefree quadratic monomials.

Proof First, by virtue of 17, Remark9.2], the lexicographic initial ideal in<ox (I)
is generated by those squarefree quadratic monomials xi,jXk,e such that either <
j <k<eori <k<e<j, where {i, j}, {k, e} E(G).

Second, to see why the reverse lexicographic initial ideal in<, (I) is generated
by squarefree quadratic monomials, we will show that the set of quadratic binomials
belonging to I is a Grtibner basis of I with respect to <rev. Let denote the set of
all quadratic binomials xi,jXk,e Xi,eXj,k such that (i, j, k, ) is a cycle of G of length
4. It follows from 14, Theorem 1.2] that is a system of generators of I. Hence,
the Buchberger criterion can be applied in order to prove that is a Gr/Sbner basis
of I with respect to <rev. If f and g are binomials belonging to and if the initial
monomials of f and g are not relatively prime, then the S-polynomial of f and g is
a cubic binomial. Thus, what we must prove is that, for any cubic binomial

F Xa,bXi,jXk,e. Xb,iXj,kXe.,a,

where (a, b, i, j, k, ) is a cycle of G of length 6, and for any cubic binomial

F Xa,bXc,aXi,j Xb,cXa,iXj,a,
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where (a, b, c) and (a, i, j) are triangles of G having exactly one common vertex,
there exist binomials f, f2 and {il, jl}, {i2, j2}, E(G) with

F flxil,jl "JI- f2xi2,j2 1-""

such that, with respect to <rev, each of the initial monomials of fxi,j, f2xi2,j
is less than or equal to the initial monomial of F. The proof will be complete if we
proceed case by case. See [13]. For example, if F x1,2x1,3x4,5 -x2,3xl,ax1,5, where
(1, 2, 3) and (1, 4, 5) are triangles of G, then {2, 4} E(G) since {2, 3} E(G);
hence F fxl,3 -f- gxl,5 with f xl,2x4,5 -x,sx2,4 and g x1,3x2,4- Xl,aX2,3.

2. Triangulations, f-vectors and Ehrhart polynomials

In general, let 79 C d be an integral convex polytope, i.e., a convex polytope
any of whose vertices belongs to Zd. An integral polytope is called compressed if
each of its reverse lexicographic triangulations is unimodular. For example, see [16].
Moreover, an integral polytope is called unimodular if any of its triangulations is
unimodular. It then follows that an integral polytope is unimodular if and only if each
of its lexicographic triangulations is unimodular.

As before, let G be a finite connected graph on the vertex set [d] having no loop
and no multiple edge, and with edge set E(G). Let T’ c ]Rd be the edge polytope
of G. Note that the vertex set of T’ is equal to .A {p(e); e E(G)} and that
T’ t3 Zd coincides with 4. By [17, Lemma 9.5], the edge polytope T’o of G is
unimodular if and only if any two odd cycles of G have a common vertex. Thus, in
particular, the edge polytope T’ of a complete multipartite graph G is unimodular if
and only if the type of G is one of the following:

(i) (p,q) with 1 < p < q;
(ii) (1, p, q) with 1 < p < q;
(iii) (1, 1, 1, p) with < p;
(iv) (1, 1, 1, 1, 1).

However, it is not quite clear which edge polytopes are compressed. Our first result
of this section guarantees that the edge polytope of a complete multipartite graph is
compressed.

THEOREM 2.1. The edgepolytope ofa complete multipartite graph is compressed.

Proof. Let G be a complete multipartite graph with edge set E(G) and K[x]
K[{xi,j }{i,j}E(G)] the polynomial ring over K. Fix an arbitrary reverse lexicographic
term order < on K[x] and let in<(l) denote the initial ideal of the toric ideal

I C K[x] with respect to <. If the triangulation arising from the Stanley-Reisner
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ideal /in<(I) is not unimodular, then it follows from 17, Lemma 9.5] that we can
find two odd cycles C and C2 of G having no common vertex such that the monomial

(2) H xi,j
{i,j}E(C)UE(C2)

does not belong to /in< (I). Let i, i2 i2s- be the vertices of the cycle C with
{ik, ik+} E(G) for all 1 < k < 2s- 1 with i2s i, andlet jl, j2 j2t-1 bethe
vertices of the cycle C2 with {je, je+} E(G) for all < < 2t with j2t jl.

SSuppose that xi2 i3 is the weakest variable among all xi,j with {i, j} E(C)UE(C2).
Since G is a complete multipartite graph, either {i, j} or {i, j2} is an edge of G.
Say {il, j} E(G). Then, the binomial

g Xi2k-l,i2 Xi2e-i,i2e Xil,jl l Xi2l, i2k+l Xi2e, i2e+
k=l =1 k=l

belongs to I and its initial monomial is

in< (g) xi2k-l,i2 Xi2e-l,i2e"
k=l

Now, since in<(g) divides the monomial (2), the monomial (2) must belong to
in< (I). This contradiction shows that the triangulation arising from /in< (I) is
unimodular, as desired. E!

A regular unimodular triangulation of the edge polytope of a complete multipartite
graph arising from the lexicographic initial ideal of Theorem 1.2 can be constructed
by imitating the technique appearing in 17, pp. 77-79].
We may call a homogeneous semigroup ring compressed if each of the reverse

lexicographic initial ideals of its toric ideal is squarefree. It follows from Theorem 2.1
together with Proposition 1.2 that all algebras of Segre-Veronese type generated by
squarefree quadratic monomials are compressed. There is a noncompressed algebra
of Segre-Veronese type generated by squarefree cubic monomials. In fact:

Example 2.2. The affine semigroup ring R C K[t, t2,..., t6] which is gener-
ated by all squarefree cubic monomials titjtk with 1 _< < j < k _< 6 and (i, j, k) :
(4, 5, 6) is an algebra of Segre-Veronese type with n 4, (q, q2, q3, q4)
(1, 1, 1, 3), (al, a2, a3, a4) (1, 1, 1, 2), (bl, bE, b3, b4) (0, 0, 0, 0) and each
c)i) 1. The initial ideal of its todc ideal with respect to the reverse lexicographic
term order induced by the ordering tt2t3 < tlt2t4 < tlt2t5 < tlt2t6 < tltat4 < <
t3t4t5 < t3t4t6 < t3t5t6 is not squarefree. Hence, the affine semigroup ring R is
noncompressed.

It seems to be a reasonable research project to find a criterion for an algebra of
Segre-Veronese type generated by squarefree monomials to be compressed.
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In principle, it is possible to find all facets ofthe edge polytope ofa finite connected
graph. For example, see 12, Theorem 1.7]. Here, we compute the f-vector of 79
in terms of the type of G.

Let Gq be the complete multipartite graph of type q (ql, q2 qn) on the
vertex set [d] V1 U V2 U... U Vn with each (V/) qi and E(Gq) the edge set
of Gq. We know (e.g., see [12, Proposition 1.3]) that dim 79q d 1 if n > 3,
and dim 79q d 2 if n 2. Recall that/9 (e) d is the (0, 1)-vector ei + ej if
e {i, j} E(Gq), where ei is the ith unit coordinate vector of]d. If H (-7/: Gq) is
a subgraph of Gq with the edge set E(H), then we write .T’H for the convex hull of
{p(e); e e E(H)} in ]d. Then the next result follows from [12, Theorem 1.7].

LEMMA 2.3. (a) Ifn > 3, then the subpolytopeH ofPq is afacet ofPq ifand
only ifeither H is nonbipartite and is the induced subgraph ofGq on [d]\{i}for some
6 [d], or H is the complete bipartite graph on Vk U ([d]\ Vk), where 1 < k < n.
(b) Ifn 2, then the subpolytope .T’H of79q is afacet of79q ifand only ifn is

the induced subgraph ofGq on [d]\{i}, where Vk with qk > 1.

COROLLARY 2.4. The subpolytope ’n of’Paq is aface ofTaq ifand only ifone
ofthefollowing holds:

(i) H is the complete multipartite graphon V(UVU. .UV, where each V C Vk
and where V # 0for at least three k’S,

(ii) H is the complete bipartite graph on V U V’, where 0 # V C Vk and
0 # V’ C [d]\Vkfor some 1 < k < n.

Proof. Each facet of Pq is again the edge polytope of a complete multipartite
graph. In general, every face of a convex polytope 79 is a face of a facet of 79. Hence,
repeated applications of Lemma 2.3 enable us to obtain the desired result.

THEOREM 2.5. The number ofi-faces (i-dimensionalfaces) ofthe edge polytope
79q ofthe complete multipartite graph Gq oftype q (ql, q2 qn) on the vertex
set [d] with n > 2 is Ol + [i, where

Oli (k) (qk+l + qk+2 + +
k=l j=l --J + 1 l<k<e<n J +

/i i+l___(qjk)(i_j+2d_qk)
k=l j=l

i+l(qjk)( qe )’ i--j +2l<k<e<n j=l

Proof. The number of subgraphs H of the form of Corollary 2.4 with + 1
vertices is t2 and the number of subgraphs H of the form ii of Corollary 2.4 with

+ 2 vertices is i. I’]
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We now turn to the problem of computing the Ehrhart polynomial of the edge
polytope of a complete multipartite graph. If 79 C lld is an integral convex polytope,
then we write i(79, m) for the number of rational points (, 2 d) 79 N Qd
with (ml, m2 md) Zd for each m 1, 2,...; in other words,

i(79, m) (m79 f zd).

It is known that (79, m) is a polynomial in m of degree dim 79. We call (79, m) the
Ehrhartpolynomial of 79. If vol (79) is the normalized volume of 79, then the leading
coefficient of i(79, m) is vol (79)/(dim 79)!. We refer the reader to [10], for instance,
for the detailed information about Ehrhart polynomials of convex polytopes.

THEOREM 2.6. The Ehrhart polynomial i(796q, m) of the edge polytope 79q of
the complete multipartite graph Gq oftype q (ql, q2 qn) on the vertex set [d]
with n > 2 is

(3) (d +d2m_ )
n

k=l l<i<j<q
(j-ij_i-t-m-1)(d-Jd_j+m-1).

Proof. It follows from 12], for example, that the Ehrhart polynomial (79q, m)
coincides with the Hilbert function ofthe normalization ofthe edge ring K[Gq] of Ga.
Since K[G] is normal, (79q, m) is equal to the Hilbert function dimr,(K[G])m of

(m=o(g[Gq])mthe homogeneous K-algebra K[Gq] oo

The lexicographic quadratic initial ideal of Theorem 1.4 guarantees that the set of
monomials Xi,,jlXi2,j2"’’Xi,n,j,n with each {it, jr} E(G) such that

(4) <il <i2 <... <im <_jl <j2 <’’" <jm <d

is a K-basis of (K[Gq])m. How many sequences (4) with {is, js ’ E(Gq) for some
1 < s < m do we have? If we fix 1 < k < n, then the number of sequences (4)
with {is, is} ’ E(Gq), {is-l, js-} E(Gq) and with is Vk, js Vk for some
<s <mis

<_i <_j <--qk
(j-ij_i-t-m-1)(d-Jd_j+m-1).

Since the number of sequences (4) is the binomial coefficient (d+d2_m 1), the required
formula follows immediately.

More generally, it is possible to write down the Hilbert function of the algebra of
Segre-Veronese type (1). We, however, omit the result due to the lack of usefulness.



400 HIDEFUMI OHSUGI AND TAKAYUKI HIBI

COROLLARY 2.7. (a) The normalized volume of the edge polytope 79q of the
complete multipartite graph Gq of type q (ql, q2,..., qn) on the vertex set [d]
with n > 3 is

2d-1
k=l j=l

(b) The normalized volume ofthe edge polytope ofthe complete bipartite graph of
type (p, q) is

p + q 2).p-1

Proof. (a) Since n > 3, the finite graph Gq is nonbipartite. Hence, the edge
polytope 79 is ofdimension d- 1 and the Ehrhart polynomial (79oq, m) is ofdegree

m)s 2 Ek=l Ej=I (j-l)"d-1. By (3) the leading coefficient of (d 1)!i(79q d-1 n q d-1

(b) If G is the complete bipartite graph of type (p, q), then the polynomial (3)
turns out to be [p+m-l’[q+m-1), which is a polynomial in m of degree p + q 2. Thek p-1 1, q-1

leading coefficient of (p + q 2)l[P+m-l](q+m-1) is [p+q-2X
" p-1 1, q-I , p-1 ]" ["]

Remark 2.8. In [5] the Gorenstein algebra of Veronese type is completely clas-
sified. It seems difficult to find all Gorenstein algebras of Segre-Veronese type.
However, based on the technique developed in [5] together with Lemma 2.3, we can
prove that the edge ring K[G] of a complete multipartite graph G is Gorenstein if
and only if the type of G is (1, p) with p > 1, or (p, p) with p > 2, or (p, q, r) with
<p<q<r<2, or(1,1,1,1).

3. Semigroup rings coming from posets

Let K[x, X2 XS] be the polynomial ring in 8 variables over a field K with each
deg xi 1. Let _< be a partial order on [8] 1, 2, 8 and P ([8], <) the finite
poset (partially ordered set) on [8] with the partial order <. The Stanley-Reisner ideal
of P is the ideal of K[Xl, x2 x which is generated by all squarefree quadratic
monomials xixj such that and j are incomparable in P.

Let K[tl, t2 td] be the polynomial ring in d variables over K and R a homoge-
neous semigroup ring with the minimal system of monomial generators Wl, w2,...,

w with each wi K[h, t2, td]. The divisor poser of R is the infinite poset I3R
consisting of all monomials belonging to R, ordered by divisibility. It is known that R
is Koszul if and only if I3R is Cohen-Macaulay. For example, see 15, Corollary 2.2].
Let I denote the toric ideal of R, i.e., I is the kernel of the surjective homomorphism
rr" K[Xl, x2 x] -- R defined by r(xi) wi for all 1 < < 8. If R is KoszUl,
then I is generated by quadratic binomials. Moreover, if I possesses an initial ideal
generated by quadratic monomials, then R is Koszul; e.g., see [4]. We say that R
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comesfrom a poset if its toric ideal I possesses an initial ideal which is the Stanley-
Reisner ideal of a finite poset. In 15] it is proved that if R comes from a poset, then
ER is shellable. Moreover, in [2] it is proved that if R is extendable sequentially
Koszul, then R is shellable. For example, the squarefree second Veronese subring

Rd2) of K[t, t2,..., td] is extendable sequentially Koszul for all d > 2, while Rd2)
comes from a poset if and only ifd 2, 3, 4. See [2] and 11]. One of the most famil-
iar examples of homogeneous semigroup rings coming from posets is the monomial
ASL (algebra with straightening laws). See [3], [6] and [10] for detailed information
about ASL’s.

As before, let R C K[tl, t2, td] be a homogeneous semigroup ring with the
minimal system of monomial generators Wl, w2, ws. Then, we say that R is a
monomial ASL if there exists a partial order < on {w, w2 ws} satisfying the
following conditions:

(ASL-1) The set of all monomials wil wi.., of R with wi < wi < (such a
monomial is called standard with respect to the partial order <) is a K-basis of R;

(ASL-2) If wi and wj are incomparable in the partial order < and if Wkwe, where
Wk < we, is a unique standard monomial (whose existence and uniqueness follow
from (ASL-1)) with wi wj WkWe, then we have wk < wi and Wk <
The toric ideal of a monomial ASL possesses a reverse lexicographic initial ideal
which is the Stanley-Reisner ideal of a finite poset. It is known that the divisor poset
of a monomial ASL is chain lexicographically shellable. Moreover, in general, a
homogeneous semigroup ring whose divisor poset is chain lexicographically shellable
is extendable sequentially Koszul. We refer the reader to [1] and [2] for further
information about monomial ASL’s and extendable sequentially Koszul semigroup
rings.

Before stating the main result ofthe present section, we will discuss some examples
of monomial ASL’s.

Example 3.1. (a) A homogeneous semigroup ring R is called trivial (cf. [8])
if, starting with polynomial rings, R is obtained by repeated applications of Segre
products and tensor products. Every trivial semigroup ring is a monomial ASL. (In
fact, every trivial semigroup ring belongs to the class ofmonomial ASL’s arising from
finite posets discussed below.)

(b) Let P ([d], <t,) be an arbitrary poset on the finite set [d] 1, 2,..., d}
and K[s, tl, t2 td] the polynomial ring in d + 1 variables over a field K. Recall
that a poset ideal of P is a subset I of [d] such that I and j [d] with j <t,
implies j I. The empty subset can be a poset ideal of P. Let J(P) denote the set of
all poset ideals of P. For each I a. J(P), we set u/= s I’Iit ti - K[s, t, t2, ta].
In [9], it is proved that the homogeneous semigroup ring K[{ut}/j,] is a monomial
ASL with respect to the partial order < on {ut}tje defined by ut < ut, if and only
if I C I’. The relation required in (ASL-2) is of the form UlUl, Ulnt, Utul,. The
finite poset ({ut}ld(t,), <) is a distributive lattice and uteri, is the meet of ut and ut,;

utUl, is the join of u and ut,. See and [8] for related topics.



402 HIDEFUMI OHSUGI AND TAKAYUKI HIBI

Let K[tl, t2 td] denote the polynomial ring in d variables over a field K with
each deg ti 1. Let Adq) denote the qth Veronese subring of K[tl, t2,..., td] and
let Rdq) denote the qth squarefree Veronese subring of K[tl, t2,..., td]. Thus, Adq)
is generated by the (dq]-l) monomials of degree q of K[tl, t2 td] and R(dq) is

generated by the (qd) squarefree monomials ofdegree q ofK Its, t,..., ta]. It is known

[15, Theorem 4.2] that Adq) comes from a poset for any d and any q. However, it is

proved in 11, Theorem 2.3] that Rdq) with 2 < q < d comes from a poset if and only
if either q 2 and d 3, 4, or q > 3 and d q + 1. We recall from the proof of
[15, Theorem 4.2] the poset from which Adq) comes.

Let f2aq) denote the set of all sequences (i, i2 iq) . %q with < il <

i2 < < iq < d. We introduce the partial order (dq) on 2dq) by setting
(il, i2 iq) <dq) (jl, j2 jq) if i2k-1 < j2k- and j2k < i2k for all k. We then

identify each sequence (i, i2 iq) 2dq) with the monomial titi tiq Adq).
Now, the proof of [15, Theorem 4.2] guarantees that Adq) comes from the poset fldq);
in other words, the set of standard monomials with respect to fldq) is a K-basis of Adq).
However, the poset fldq) possesses at least two minimal elements if d > 2 and q > 3.
In fact, if d > 2 and if q > 3 is odd, then both (1, 1, 1) and (1, 2, 2, 2) are
minimal elements of and ifd > 2 and ifq > 3 is even, then both (1, 1, 1, d)
and (1, 2, 2 2, d) are minimal elements of f2dq). Hence, the axiom (ASL-2) fails

to hold for Adq) and dq) if d > 2 and q > 3.

PROPOSITION 3.2. (a) The Veronese subring Adq) with d >_ 2 and q >_ 2 is a
monomial ASL ifand only ifq 2.

(b) The divisor poset of the Veronese subring Adq is locally semimodularfor any
d >_ 2 and any q >_2.

Proof. (a) First, we show that if d > 2 and q 2, then Ad2) is a monomial

ASL on f2d2). In fact, if (i, j) and (k, ) are incomparable in fld2), then (i, j)(k, )
(i’, j’)(k’, ’), where i’ < k’ < ’ < j’ with {i, j, k, } {i’, j’, k’, ’}, which is the
required relation in (ASL-2).

Second, to see why Adq) with d > 2 cannot be a monomial ASL if q > 3, it is

enough to prove that the initial ideal of the toric ideal of Adq) with respect to any
reverse lexicographic term order cannot be squarefree if d > 2 and q > 3. Since

q-3t3 A(dq)the monomials t, t-t2, *’q-2’22 and ,1 ’2 belong to if d >_ 2 and q _> 3, the

binomials x xx3 and x x2x4 belong to the toric ideal of Adq. Hence, either x22
or x must belong to the minimal system of monomial generators of the initial ideal

of the toric ideal of Adq with respect to any reverse lexicographic term order.

(b) It is known [8, Proposition 2.3 (a)] that Adq is strongly Koszul for any d > 2
and any q > 2. Hence, its divisor poset is locally semimodular [8, Proposition 1.4].
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We are now in the position to discuss the problem which edge rings of complete
multipartite graphs come from posets.

THEOREM 3.3. The edge ring K[G] of a complete multipartite graph G comes

from a poset ifand only if the type ofG is one ofthefollowing:

(i) (p,q) with < p < q;
(ii) (1, p,q) with < p < q;
(iii) (1, 1, p, q) with < p < q.

Moreover, ifthe type ofG is one ofthe above, then K[G] is a monomial ASL.

Proof. First of all, it is known [11, Proposition 2.2] that if G is a finite graph
such that the edge ring K[G] comes from a poset, then the edge ring K[G’] of any
induced subgraph G’ of G also comes from a poset. Moreover, if G is the complete
graph on the vertex set [d], then its edge ring comes from a poset if and only if
d 2, 3, 4. See 11, Theorem 2.3]. Thus, if G is a complete multipartite graph of
type (q, q2,..., qn) and if its edge ring K[G] comes from a poset, then n < 4.

Let G denote the complete multipartite graph oftype (2, 2, 2). The explicit compu-
tation of all regular triangulations ofthe edge polytope 79 with the computer program
PUNTOS by De Loera guarantees that the toric ideal I possesses 24 quadratic initial
ideals (up to symmetry). Each of them is squarefree. However, none of them sat-
isfies the well-known combinatorial condition, (e.g., [7]) for a squarefree quadratic
monomial ideal to be the Stanley-Reisner ideal of a finite poset. Hence, the edge ring
K[G] does not come from a poset.

It follows that if the edge ring K[G] of a complete multipartite graph G of type
(ql, q2 qn) comes from a poset, then n < 4 and at most two ofqi’s can be qi >_ 2.
Hence, if the edge ring K[G] of a complete multipartite graph G comes from a poset,
then the type of G is (p, q), or (1, p, q), or (1, 1, p, q).
We now prove that the edge ring of the complete multipartite graph of type

(1, 1, p, q) is a monomial ASL. The case of the complete multipartite graph of type
(p, q) or (1, p, q) can be done similarly. Let G be the complete multipartite graph
on the vertex set [p + q] with the partition [p + q] V U V2 1,3 V3 I,.J V4, where

V {1}, V2 {2, 3,..., p- 1}, V3 {p}, V4 {p+ 1, p+2 p+q}.

Let2 denote the set ofvariables xi,j with < j and {i, j E(G). Let 112 denote the
infinite planar distributive lattice consisting of all pairs (i, j) of nonnegative integers
with the partial order defined by (i, j) < (i’, j’) if and only if < i’ and j < j’. We
then regard f2 as a subposet of N2 via the injective map 09: f 112 defined as
follows: If xi,j with (i, j) 9’ {(1, 2), (1, 3) (1, p 1)}, then og(xi,j)
(i, j); if xi,j f2 with and 2 < j < p 1, then to(xi,j) (j, p + q + 1).
For example, if p 5 and q 4, then flo is the poset with the Hasse diagram of
Figure 1.
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Figure 1. Hasse diagram of f2 with p 5 and q 4.

If (i, j) ’ {(1, 2), (1, 3) (1, p 1)} and if 2 < j’ < p 1, then xi,j <_ Xl,j,
in 9 if and only if 1 < < j’ < j since j’ < p and j > p. If neither (i, j)
nor (i’, j’) belongs to {(1, 2), (1, 3) (1, p 1)}, then xi,j < xi,,j, in g2 if and
only if < i’ < j < j’ since i,i’ < p and j, j’ > p. Thus, xi,j and xi,,j, with
< i’ are comparable in f2 if and only if < i’ < j < j’. In other words, xi,j and

xi,,j, with < i’ are incomparable in if and only if either < j < i’ < j’ or
< i’ < j’ < j. Now, the first paragraph of the proof of Theorem 1.4 guarantees

that there exists a term order on the polynomial ring K[{xi,j]li,j]eF.(G)] such that
the initial ideal of I is generated by those squarefree quadratic monomials xi,jXk,e,
where {i, j}, {k, } 6 E(G), such that either < j < k < or < k < < j. This
initial ideal coincides with the Stanley-Reisner ideal of the finite poset

It remains to show that the edge ring K[G] is a monomial ASL on . Since the
set of standard monomials with respect to the above initial ideal is equal to the set
of standard monomials with respect to the partial order on f2, the axiom (ASL-1) is
satisfied. In order to prove the axiom (ASL-2), suppose that xi,j and xi,,j, with < i’
are incomparable in f2. Ifi < j < i’ < j’, then/ and 2 < j < p- 1 and
Xi,jXi’,j’ Xi,i’Xj,j’ with xj,j, < xi,j and xj,j, < xi,,j,. If < i’ < j’ < j, then neither
(i, j) nor (i’, j’) belongs to {(1, 2), (1, 3), (1, p 1)} and xi,jxi,,j, xi,j,xi,,j
with xi,j, < xi,j and xi,j, < xi,,j,. Hence, the axiom (ASL-2) is satisfied.

Remark 3.4. If a homogeneous semigroup ring R is generated by squarefree
monomials and if its toric ideal I possesses a quadratic initial ideal in<(l), then
in<(/) must be generated by squarefree monomials. This obvious fact is, however,
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essential in 14] for the construction of a Koszul semigroup ring having no quadratic
Gr6bner basis. Hence, a homogeneous semigroup ring R generated by squarefree
monomials is quasi-poset 15, p. 384] if and only if R comes from a poset.

Conjecture 3.5. (a) The edge ring of a complete multipartite graph is extendable
sequentially Koszul.

(b) (follows from (a)) The divisor poset of the edge ring of a complete multipartite
graph is shellable.

We conclude the present paper with a discussion of edge rings of complete multi-
partite graphs which are strongly Koszul.

Let R be a homogeneous semigroup ring with the minimal system of monomial
generators w, w2,..., w. Then, R is called strongly Koszul if the ideals (wi) tq (wj)
are generated in degree 2 for all - j. Every strongly Koszul semigroup ring is
extendable sequentially Koszul. It is known [8, Proposition 1.4] that the divisor poset
ofa homogeneous semigroup ring R is locally semimodular ifand only if R is strongly
Koszul. The edge ring K[G] of a connected bipartite graph G is strongly Koszul if
and only if G is a complete bipartite graph [8, Theorem 4.5].

PROPOSITION 3.6. The edge ring K[G] of a complete multipartite graph G is
strongly Koszul ifand only if the type ofG is (p, q) or (1, 1, p) or (1, 1, 1, 1).

Proof. If G is either a complete bipartite graph or the complete graph with 4
vertices, then the edge ring K[G] is strongly Koszul. See [8, Example 1.6]. If
G’ is the complete multipartite graph of type (1, 1, p), then the edge ring K[G’] is
isomorphic to the polynomial ring in one variable over the edge ring of the complete
bipartite graph of type (2, p). Hence, K[G’] is strongly Koszul. This proves the "if"
part of the proposition.

It follows from 11, Corollary 1.6] that if G is a finite graph such that the edge
ring K[G] is strongly Koszul and if G’ is any induced subgraph of G, then K[G’] is
again strongly Koszul. Thus, in order to prove the "only if" part of the proposition,
it is enough to show that if the type of a complete multipartite graph G is (1, 2, 2)
or (1, 1, 1, 2) or (1, 1, 1, 1, 1), then K[G] is not strongly Koszul. Suppose that the
type of a complete multipartite graph G is (1, 2, 2) or (1, 1, 1, 2) or (1, 1, 1, 1, 1).
Then, the finite graph in Fig. 2 is a subgraph of G. Hence, it may be assumed that
the monomials

u tt2, u’ t2t3, v tit3, v’ tit4, w t4ts, w’ tit5

belong to K[G]. Note that uvw u’v’w’ t2t2t3t4t5. If the ideal (w) tq (u’) is
generated in degree 2, then (w) tq (u’) must be generated by wu’ (= t2t3tat5). Now,
the monomial t2t2t3t4t5 is contained in (w) tq (u’). However, in K[G], t2tat4t5 cannot
divide h2t2t3tats. Hence, (w) fq (u’) cannot be generated in degree 2. Thus, K[G] is
not strongly Koszul.
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Figure 2
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