CORRIGENDUM TO MY PAPER "THE RANKIN-SELBERG METHOD ON CONGRUENCE SUBGROUPS"

SHAMITA DUTTA GUPTA

The proof of the theorem in [1] uses the assertion that $\mathcal{D}_{\Gamma} = \bigcup \alpha_i \mathcal{D}, \alpha_i \in SL(2, \mathbb{Q})$. This assertion is incorrect. The correct assertion should be that $\mathcal{D}_{\Gamma} = K \bigcup \alpha_i \mathcal{D}, \alpha_i \in GL(2, \mathbb{Q}), K$ a compact set. The proof should be adjusted as follows.

Let

$$\tilde{\mathcal{D}} = \Gamma_{\infty} \setminus \mathcal{H} - \mathcal{D} = \left(\bigcup_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \gamma K\right) \bigcup \left(\bigcup_{i=1}^{h} \bigcup_{\substack{\gamma \in \Gamma_{\infty} \setminus \Gamma \\ \gamma \neq I \text{ or } \alpha_i \neq 1}} \gamma(\alpha_i \mathcal{D})\right)$$

Equation (6) of [1] should be replaced by

$$(1) R_{\infty}(F,s) = \int_{0}^{\infty} \int_{0}^{1} [F(z) - \psi_{\infty}(y)] y^{s} \frac{dx \, dy}{y^{2}}$$

$$= \int_{\prod_{\nabla \in \Gamma_{\infty} \setminus \Gamma}} \int_{\Gamma(z) - \psi_{\infty}(y)} [y^{s} \frac{dx \, dy}{y^{2}}$$

$$= \int_{\bigcup_{\gamma \in \Gamma_{\infty} \setminus \Gamma}} \int_{\Gamma(z) - \psi_{\infty}(y)} [F(z) - \psi_{\infty}(y)] y^{s} \frac{dx \, dy}{y^{2}}$$

$$= \int_{\bigcup_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \gamma(K \cup \bigcup_{i=1}^{h} \alpha_{i} \mathcal{D})} F(z) - \psi_{\infty}(y)] y^{s} \frac{dx \, dy}{y^{2}}$$

$$= \int_{(\bigcup_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \gamma K) \cup \left(\bigcup_{i=1}^{h} \bigcup_{\substack{\gamma \in \Gamma_{\infty} \setminus \Gamma - \gamma (\alpha_{i} \mathcal{D})}} F(z) y^{s} \frac{dx \, dy}{y^{2}}$$

$$- \int_{\tilde{\mathcal{D}}} \int_{\Psi_{\infty}(y) y^{s}} \frac{dx \, dy}{y^{2}} + \int_{\mathcal{D}} [F(z) - \psi_{\infty}(y)] y^{s} \frac{dx \, dy}{y^{2}}$$

$$= \int_{\bigcup_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \gamma K} F(z) y^{s} \frac{dx \, dy}{y^{2}} + \int_{\bigcup_{i=1}^{h} \bigcup_{\substack{\gamma \in \Gamma_{\infty} \setminus \Gamma - \gamma (\alpha_{i} \mathcal{D})}} F(z) y^{s} \frac{dx \, dy}{y^{2}}$$

Received April 6, 2000.

© 2000 by the Board of Trustees of the University of Illinois Manufactured in the United States of America CORRIGENDUM TO MY PAPER

$$-\int_{\tilde{\mathcal{D}}} \int_{\tilde{\mathcal{D}}} \psi_{\infty}(y) y^{s} \frac{dx \, dy}{y^{2}} + \int_{\tilde{\mathcal{D}}} \int_{\mathcal{D}} \left[F(z) - \psi_{\infty}(y)\right] y^{s} \frac{dx \, dy}{y^{2}}$$
$$= I_{\infty,K} + I,$$

where

$$I_{\infty,K}(s) = \int \int_{\bigcup_{y \in \Gamma_{\infty} \setminus \Gamma^{\gamma} K}} F(z) y^{s} \frac{dx \, dy}{y^{2}}$$
$$= \int \int_{K} F(z) E_{\infty}(z, s) \frac{dx \, dy}{y^{2}},$$

and

$$I = \int \int_{\substack{\bigcup_{\substack{y \in \Gamma_{\infty} \setminus \Gamma \\ y \neq 1 \text{ or } \alpha_i \neq 1}}} \int F(z) y^s \frac{dx \, dy}{y^2} - \int \int \int_{\tilde{\mathcal{D}}} \psi_{\infty}(y) y^s \frac{dx \, dy}{y^2} + \int \int \int_{\mathcal{D}} [F(z) - \psi_{\infty}(y)] y^s \frac{dx \, dy}{y^2}.$$

Now $I = I_{\infty,F}(s) + I_{\infty,F,\psi}(s) + I_{\infty,\psi}(s)$, following the same argument as in [1]. We have

(2)
$$R_{\infty}(F,s) = I_{\infty,K}(s) + I_{\infty,F}(s) + I_{\infty,F,\psi}(s) + I_{\infty,\psi}(s).$$

To consider $I_{\infty,K} = \int \int_{K} F(z) E_{\infty}(z, s) \frac{dx dy}{y^2}$ at the general cusp κ , similar to the calculations in equation (13) of [1], we have

(3)
$$I_{\kappa,K} = \int \int_{\alpha^{-1}K} f(z) E_{\kappa}(\alpha z, s) \frac{dx \, dy}{y^2}$$
$$= \int \int_{\alpha^{-1}K} F(\alpha z) E_{\kappa}(\alpha z, s) \frac{dx \, dy}{y^2}$$
$$= \int \int_{K} F(z) E_{\kappa}(z, s) \frac{dx \, dy}{y^2}$$

Thus, for any cusp κ , we have

(4)
$$R_{\kappa}(F,s) = I_{\kappa,K}(s) + I_{\kappa,F}(s) + I_{\kappa,F,\psi(s)} + I_{\kappa,\psi}(s),$$

and

(5)
$$\vec{R}_{\kappa}(F,s) = \vec{I}_{\kappa,\kappa}(s) + \vec{I}_{\kappa,F}(s) + \vec{I}_{\kappa,F,\psi(s)} + \vec{I}_{\kappa,\psi}(s),$$

Each term in $\vec{R}_{\kappa}(F, s)$ has functional equation and analytic continuation.

925

SHAMITA DUTTA GUPTA

The author would like to thank Dr. Stefan Kühnlein, for pointing out the error and for subsequent discussions.

REFERENCES

1. S. Dutta Gupta, *The Rankin-Selberg method on congruence subgroups.*, Illinois J. Math. 44 (2000), 95-103.

Department of Mathematics, Florida International University, Miami, FL 33199 duttagus@fiu.edu

926