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GAUB-MANIN CONNECTION ARISING FROM
ARRANGEMENTS OF HYPERPLANES

HERBERT KANAREK

ABSTRACT. We study local systems arising from flat line bundles over topologically trivial families U — S
of hyperplane complements in P”. Imposing some genericity condition on the monodromy, one knows that
fiberwise the cohomology of the local system is concentrated in the middle dimension and is computed by
the Aomoto complex, a subcomplex of global differential forms on a good compactification 7: X — §
with logarithmic poles along D’ = X \ U.

The families .A’ considered are obtained by fixing a configuration .4 of hyperplanes and moving one
additional hyperplane. The line bundle is the structure sheaf, endowed with the connection dre + w, for a
logarithmic relative differential form w. In this situation we construct the GauB-Manin connection V on
R"my (2% /s (log D), drej + w). We show that these sheaves are free. Using the combinatorics of A’ we
give a basis for these sheaves and an algorithm to express the connection V in this basis. The corresponding
matrix depends too much on the combinatorics of the arrangement to be given in a closed form, but we
illustrate the method with some examples.

These results can be seen as a generalization of the hypergeometric functions.

Introduction

Let {H;};es be a collection of different hyperplanes in P*, let U = P" \ |, H;
and let X be a smooth compactification of U such that the divisor D = X \ U has
normal crossings. Let w be a global holomorphic one-form on U with logarithmic
poles along the divisor D. As dw = 0, this form induces an integrable connec-
tion V = d + w on Oy. The flat sections of V define a rank 1 local system V.
Deligne proved in [D1] that if @ has no positive integers as residues the cohomol-
ogy of the local system V is given by the cohomology of the de Rham complex
induced by V. Moreover, Esnault, Schechtman and Viehweg showed in [ESV] that
if @ has no integers as residues, the cohomology of the local system is given by
the Aomoto complex which is the subcomplex of global sections of the de Rham
complex with logarithmic poles. Under the same genericity conditions, Esnault
and Viehweg proved in [EV] that the cohomology of V' is concentrated in the n-th
term.

In this article we consider a topologically trivial deformation of the arrangement
A" = UjeH; C P" and study how the cohomology of the local system varies.
We take A’ in such a way that there exists ip € I such that the hyperplane H;, is
in general position with respect to the arrangement A = Ui Hi € P". We
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742 HERBERT KANAREK

assume that .4 contains a system of coordinate hyperplanes. The deformation we
consider is given by moving the hyperplane H;, and leaving A fixed in such a way
that we do not obtain new bad crossings. Given an arrangement of hyperplanes in
PP" the discriminant Discr(.A) is defined as the locus in P"" given by the hyperplanes
H C P" for which the arrangement H U A gets new bad crossings. In fact, it is
itself an arrangement in the dual projective space. Our deformation is a family X
of arrangements over S = P" \Discr(.4). When talking about the family, we will
denote the hyperplane H;, by H; with s € S. For the fiber of our family over s € S,
we consider a local system given as before by the kernel of a differential V, with
logarithmic poles and constant residues along the arrangement H; U A such that the
residues remain constant when we move s € S. This gives us a relative connection
on our family of arrangements. We show that this relative connection can be lifted
to an absolute connection V on X. This implies the existence of the GauB-Manin
connection. This connection is defined on the GauB-Manin bundles H},z(X/S, D, V)
which are defined as the relative de Rham cohomology sheaves. This connection has
logarithmic poles along Discr(.A), and under the genericity conditions has as flat
sections the direct images of the absolute local system V = ker(V). Proposition 3.2
together with Theorem 3.3 give a generalization of the results obtained by Esnault,
Schechtman and Viehweg concerning the cohomology of the family. They imply that
the Gau3-Manin bundle is free and generated by global sections. In a standard way,
one can calculate a representation of the GauB-Manin connection. For the classical
case of hypergeometric functions on P! with poles along three different points, it is
well known, from Riemann’s integral representation formula, that one can express the
hypergeometric system of differential equations as a direct image (as a variation of
cohomology) of a rank one system; see [S, Theorem 2] and [M, Proposition, p. 373].
Hence the representation of the GauB-Manin connection induced by Theorem 3.3
gives a generalization of hypergeometric differential equations. For some cases one
can apply results from the theory of differential equations [D1, I1.5.6] to calculate the
local monodromies.

Section 1 of our article is devoted to show the existence of the Gau-Manin con-
nection.

Section 2 contains several results concerning aspects of the combinatorics for the
theory of hyperplane arrangements. We present two important results. The first is
due to Bjorner [Bj] and gives a basis for the cohomology with constant coefficients
on the complement of an arrangement. The second is a description of a basis for the
ideal of relations . for the Orlik-Solomon’s Algebra. We will need these two results
in Section 3 to obtain a representation of the Gauf3-Manin connection.

In Section 3 we give a representation of the GauB-Manin connection. Using
Proposition 3.2 and Theorem 3.3, we show that under the genericity conditions, the
cohomology of the relative local system is given by the relative Aomoto complex,
even for the non-normal crossings case. This allows us to describe an algorithm for
the Gauf8-Manin connection. In Sections 4 and 5 we illustrate the method with some
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examples. We construct the Gau8-Manin connection for the following arrangement:

Hy H,

H, H

This example is of particular interest because its discriminant is the “Ceva” configura-
tion which has been intensively studied in [BHH] for the construction of ball quotient
surfaces. The second example illustrates the method in the case where we have a
non-normal crossings arrangement.

The appendix contains some geometric constructions and vanishing theorems
needed throughout the article.

This article is a short version of my PhD. thesis of the University of Essen which
I defended in May 1996. After finishing this article we learned that Kaneko [Kj]
independently studied the Gau3-Manin connection of arrangements of hyperplanes,
obtaining similar results for some special cases.

I'am very grateful to H. Esnault for her help and encouragement during the research
and preparation of this article. I would also like to thank E. Viehweg for his help
and useful suggestions, in particular during the preparation of Appendix I. I wish
to express my gratitude to R. Hain, S. Miiller-Stach and to V. Welker for the useful
discussions and suggestions; in particular Proposition 2.12 was obtained jointly with
V. Welker.

Moreover I want to express my gratitude to the referee for his useful suggestions
and comments.

1. Existence of the Gaufi-Manin connection

Let A be an arrangement of m = n 4+ r + 1 hyperplanes in P*. We do not assume
A to have normal crossings but that it contains a complete system of coordinate
hyperplanes. We fix once and for all an order “<” on the set of hyperplanes such that
{Hy, ..., H,}, the first n + 1 hyperplanes, are linearly independent. Let (2o, ..., Z,)
be homogeneous coordinates for P*. We choose the coordinates so that z; is a

homogeneous defining equation of H; fori =0, ..., n. We have
n

Hj:=) Az =0 G=n+1,...,m).
o

We denote by P"" the projective space dual to P". As every point p € P"
represents a hyperplane H, C P" we can now consider the locus in P"" defined as the
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set p € P" such that the configuration AU H, C P" has more non-normal crossings
than A. This set, is known as the discriminant of .A, forms a divisor in P"" and will be
denoted by Discr(.A). Even if A is a normal crossing divisor, Discr(.A) need not be.
Let {ho, ..., h,} be homogeneous coordinates of P"’ dual to (zo, .- -, 2n) and let
SV be the homogeneous coordinate ring of P* . We can identify SV with the set of
homogeneous polynomials in the &;’s. Let J € My,41.,+1(SY) be given by

(1 0)
0o ... 1
J=1fXx0 - ronl. {1
)Vr,O e )\r,n
\h cee hy, )
The discriminant of A is defined as the union of the zero set of all non-trivial
(n + 1)-minors of J that contain the row {hy, ..., h,}.

Let us consider now a family of arrangements in P* given by the projection
P x P" — P,

The fiber of = over p = (hg,..., h,) € P represents the arrangement A plus a
hyperplane H), that moves with p € P*". The extra hyperplane is defined by the
fibers of

n
*" {(ho,...hn) X @ore o zn) € P X P 2= 3 bz =0}'
i=0

The divisor D = [P x .A]U A U[Discr(A) x P"] ¢ P"" x P" does not have normal
crossings.

Let £L(Discr(.A)) be as in Definition 5 in the appendix. Let
0. § — PV

be a blow up along the elements of £(Discr(.A4)) as constructed in the appendix. Let
X = §xP"and D’ = (o xidp»)~! (D). We will denote the pullback of the projection
7 under the morphism g again by 7. Let p: X —> X be the blow up, constructed
in the appendix, along the elements of £(D") such that p* D’ has normal crossings.
We will denote p* D’ by D. We have the diagram

X
o N
X — PYxpr I pr )
J 4
s % pv.
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Let Ql}"{ /3 (log ﬁ) be the coherent sheaf of O z-modules of relative i-forms of X over

S with logarithmic poles along D.

We fix once and for all the hyperplane Hj as the hyperplane at infinity. For
1 <i < mletw; = dweix;/x;, with x; = z; /20, be the differential form holomorphic
on U = P" \ A with a logarithmic pole along H; with residue 1, and a logarithmic
pole along Hy with residue —1. Let@; = (0 om')*w;. Let W = P" xP" \ D and let
ws = dye1Xs /X5 be the differential form holomorphic on W where x; := 1+ ZL] lix;
with l; = h;/ hg, x; = z; /70 and where the differential d is the relative differential,
i.e., deil,-10, = 0. The differential form w; has then a logarithmic pole along A
with residue 1, and a logarithmic pole with residue —1 along zo = 0.

Remark 1.1. The absolute differential form w?bs = dx; /x; has also a logarithmic
pole along Ay = 0 with residue —1.

Notation 1.2. Let Hy and H’ two hyperplanes in P" defined by the equations zqo
and 7’. We take Hy as the hyperplane at infinity. Let x’ = z’/zq be the affine equation
of the hyperplane induced by H' on the affine space P" \ Hy. We denote by [dx—’i']
or by [d—zz,—' — d—zf-f] the global differential form, holomorphic on W = P" \ H' U Hj,
with a logarithmic pole along H’ with residue 1 and a logarithmic pole along Hy with
residue —1. Sometimes we omit the brackets.

Letw € HY(W, Qh,/s) be given by

w =

m
a;w; + apw;

i=1

withg, €e Cforl = 1,..., m, h with w; ~and w; as before. This form induces
the differential form @ € H°(X, Q;{ ,5(10g D). This form has residue a; along the

pole H;, a; as residue along A and } ;. a; as residue along the exceptional divisor
ep =0~ Y(L)for L € L(D).

We consider the operator V = di) + @. As digg@ = 0 we have a logarithmic
de Rham complex

0— Oy <, Q}/g(log D) A Q'}'?/g(log D) — 0. 3)

ker(V: O3 — Q; /g(log D)) defines a relative local constant system Vi over
the complement of D in X relative to S.

Definition 1.3. The i-th de Rham cohomology on X relative to § with respect to

V as the sheaf of Og-modules Rin, (Q;.( / s(log b), V) where Ri 7, ;( /3 (log 5) is the

hyperderived functor of the functor R%r,. We will denote it by H iR (X/S, D, V).
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To show the existence of the GauB3-Manin connection we follow the algebraic
presentation given by Katz in [Ka, 3.0].

Procedure 1.4. Let (Q;-( /3 (log D), V) be the relative de Rham complex as above.

Step 1. We extend the differential V on the relative complex to an absolute one by
taking

dx; dx . -
Q=2aix_,~‘ +a"x_: € H%X,Q}(log D)) @
=

where x; and x; are as before and where d is the absolute differential on O 3. We define
V = d+9Q. Asd = 0 we have V> = 0. This defines the complex (25 (log D), V).
Let V =ker(V: O i — Q}( (log D)) be the absolute local system on X \ D.

Step 2. We filter the complex (2 (log D), V) by

- F*' cF C--- cF =Q}(log D)
where
F = n*Q%(log(g*Discr(,A))) A Q;.("i (log D).
Step 3. We construct a spectral sequence abutting R*x, (Q‘)-((log D)). The E‘l"b
terms are equal to Qg (log o*(Discr(.A))) ®0; Rbr, (Q;.( /3 (log 5)) and the differential
dy: E¢? —s E§TLP )

has bidegree (1, 0).
Step 4. From the filtration in Step 2 we have

F! FO F°
This is just the exact sequence of complexes
0 — 7*Ql(logo*(Discr(A4)) ® Q}&lg(log D)
Q3,(log D)
w*Q% (log @*Discr(A)) A Q% *(log D)

— Q}/g(log D) — 0. (6)

The differential (5), for the case a = 0, is the connecting morphism for the long
exact sequence of cohomology obtained from (6). Using the projection formula, with
local calculation one can show that it satisfies the Leibniz property. This connection
is called the GauB-Manin connection; see [Ka,4.6]. We still denote it by V.
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Step 5. To show the integrability of the Gau-Manin connection we have the
following diagram:

0 0 0
0 0 0
0 — FYFP — F/F? — F/F! — 0
0 0 I
0 — FYFF — F/FP — F/F — 0 )
0 0
FZ/F3 = F2/F3
0 0
0 0

The curvature is then given by the map
V% Rbm, (F°/F!) —s RY*27, (F2/F°).

For an element a € R?, (F°/F), the connecting morphism of the middle horizontal
exact sequence in (7) gives us an element in R®*!7, (F1/F3). From the left vertical
exact sequence in (7) one has the integrability of the Gau3-Manin connection.

This proves the following key proposition.

PROPQSI’HON. L.5. For m and w as above, the form 2 defines an integrable con-
nection V on Hpp(X /S, D, V) which is called the Gauf-Manin connection.

Remark 1.6. As we will see in Section 3 the condition that none of the residues
of w is an integer will imply that Réx, V is zero, for i # n and is equal to the local
system of flat sections of V on R"7,(Q e %/5 (log D). Moreover the latter sheaf will
turn out to be free. To this aim, and to give an explicit representation of the connection
we use some combinatorics to obtain a basis of the Gau3-Manin bundle.

2. Some combinatorics
Let A be an arrangement of m = n + r hyperplanes in the affine space C".
Definition 2.1. Let L = L(.A) be the semi-lattice of all non-empty intersections

Nies Hj # @ of elements of A. We assume C" € L(A) as the intersection over the
empty set, i.e., J = .
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One has a partial order “<” on the elements of L given by reverse inclusion: for
X,Y € Lwesaythat X < Y ifandonlyif Y € X. Let X,Y € L be such that
X <Y. Achainfrom XtoY isaset{Zy,...,Z,} C Lsuchthat X = Zy < Z; <
-+» < Z, =Y. We then say that this chain has length n. A chain is maximal if for
everyi € {0,...,n — 1} there does not exist W € L suchthat Z; < W < Z;;.

Definition 2.2. For X € L we define rank(X) as the codimension of X C C".
LetL,., = L" ={Z € L | rank(Z) = r}. We have L® = C", L,_; = L! is the set
of hyperplanes of our arrangement and Ly is a set of points in C".

LEMMA 2.3. Maximal elements of L(A) have the same rank.
Proof. See [OT, Lemma2.4]. 0O
Definition 2.4. Wedefine rank of L = L(.A) as the rank of any maximal element.

Given a subset § C L! of points in a semi-lattice we have rank(NyesH) < |S].

Definition 2.5 [OT, Definition 3.2]. For § C L! we say that S is independent
if NyesH is non-empty and if rank(NyesH) = |S|; otherwise we say that S is
dependent.

Definition 2.6. Maximal independent subsets will be called bases and the mini-
mal dependent sets will be called circuits and will be denoted by C(A).

Remark 2.7. In our case, one can easily see that, for £ as in Definition A.1, we
have ! € L if and only if the set {H; | i € I;} contains a circuit.

Recall that we fixed a linear order for the elements of A.

Definition 2.8. Let C C L! be a circuit and p € L! the least element of C.
Then we say that C — {p} is a broken circuit. The family of sets which do not
contain a broken circuit will be called non broken circuits and will be denoted as
nbc-elements. Maximal nbc-elements will be called nbc-bases.

Definition 2.9. For a broken circuit C C L' let princ(C) € L' be such that
C U {princ(C)} is a circuit and is the smallest element with this property. In a similar
way, for B C L! independent but not nbc we define princ(B) € L! as the least
element of L! with the property that there exists a broken circuit C C B such that
princ(B) U C is a circuit.
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Let £ be the complex vector space freely generated by elements {ey: H € A}
and let £ be its exterior algebra. For § C .4 we denote the element Aycsey by es
respecting the order chosen. A subset S C A is said to be dependent if there exists
H' € Asuch that Nges\(ayH = NpesH. We have the morphism

:E—E @®

givenby dew,,...0,) = Lio (—1'er A--- A& A+ Nepforew,,..n,) € E, Where
as usual ~means that this element does not appear. It is a morphism of algebras
and it is easy to see that 3> = 0. Let J be the graded ideal of £ generated by des
with § C A dependent. The quotient £/.7 is a graded algebra known as the Orlik-
Solomon algebra and appeared for the first time in [OS]; see [OT] also. From [OS,
Theorem 5.2] we have the isomorphism

€/J — H*(U,C) ®

with U = C"\ A
We have the following theorem due to A. Bjorner; see [Bj, Theorem 4.2] and [SV].

THEOREM 2.10 (Bjorner). The set of r-nbc-elements forms a basis for A”.

Remark 2.11. This last theorem together with formula (9) is a generalization of
Brieskorn’s theorem [B, Lemma 5].

Let 7, = J N &, where &, denotes the degree r subgroup of the graded algebra
€ and let J be as before. We would like to give a basis for the ideal of relations
J in the Orlik-Solomon algebra. Actually in Section 3 we will need a basis for
ker(¢: A" — H(U, C")).

Consider themap ¢’: £, —> A’ induced in the natural way by the map £, —> A!
where ¢’(ey) = dlog(H) for H € A. The map ¢": £, —> H'"(U, C) factors
through A" as ¢” = ¢ o ¢'.

We have the following proposition obtained jointly with V. Welker.

PROPOSITION 2.12. Let A = U3 H; C C" be an arrangement and £ the
Orlik-Solomon algebra. Then a basis for J, is given by elements of €, of the following

Sform:

(i) ep for B C Adependent and |B| =r;
(ii) dep for B independent of rank r but not an r-nbc.

Proof. We have

|E-| = |r-nbc| + {|r — circuits| + |r — broken circuits|}.
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One can see that the sets (i) and (ii) are disjoint and that (i) generates ker ¢’. As the
number of elements in (i) together with (ii) equals |€,| — |r-nbc|, to show that they
form a basis we only have to show that they generate ker(¢). We will prove this by
induction by showing that, with the help of the elements in (i) and (ii), one can write
any element of A" as a linear combination of non broken circuits. The induction
will be taken on the lexicographic order on the elements of A” induced by the order
chosen for the set of hyperplanes.

As the first element of A" is already a non broken circuit, the statement is true for
the base of induction. Let C = (Hj, ..., H,) be independent but not nbc. By the
induction hypothesis we can assume that the statement is true for any base B < C.
LetC =CU princ(C) as in Definition 2.8; then

princ(C) r
dee= ) eqymt D eevm (10)
i=1 i=princ(C)

Every summand in the first sum in (10) contains a circuit so they all are elements of
(i). For the second sum, the first element is C and the rest contain princ(C) so they
have lexicographic order smaller than C. Applying our induction hypothesis we can
write C as linear combination of circuits, which vanish under ¢, and r-nbc. 0O

Remark 2.13. A basis for ker(¢: A® — H"(U, C)) is given by the image of
the elmements in (ii) under ¢'.

Example 2.14. Let A = U;_ H; be an arrangement in P? given by

Ho:=Zo=0
H :=21=0
H2:=Zl=0
11
Hy:=z3:=20—21=0 an
Hy:=24:=20—2,=0
Hs:=z5:=21— 2, =0.
N
~
Hy
mo | H (12)
H;
N\ H Y

Figure 1
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Take Hy to be the hyperplane at infinity. On the affine complement of Hy we have
the following arrangement:

L] Z=X1=0
Ly:=x,=0
L3 =X3 :=x1—1=0 (13)

Ly:=x4:=x—-1=0
Ls:=x5:=x1—x=0.

Ly

L, Ls L;

L,

Figure 2
The set of circuits is
C(A) = ((Ly, L3), (L2, La), (L, Lo, Ls), (L3, Ls, Ls)}.
These are the only dependent subsets of .A. The nbc’s are
nbc(A) = {(L1, L2), (L1, L4), (L1, Ls), (L2, L3), (L3, Ls), (L3, Ls)}.

Clearly the only broken circuits are {(Lj, Ls), (L4, Ls)} for which (L;) = princ(L,,
L5) and (L3) = princ(L4, L5).

Let £, be freely generated by {e; | L; € A} and let £ be its exterior algebra. Let
J be the ideal of £ generated by des for S C A dependent. By Proposition 2.12,
JIn = J NE, is generated by

Tn = {€13; es; 0e125; desas) = (e13; €245 €12 — €15 + e25; e3a — €35 + e4s).

Under the natural identification of £; with HO(U, Q!,, where U = P?\ A4, given by
e > ‘%‘L, these relations lead to the following relations of 2-forms:

dxldx3 =0
X1 X3
dX2dJC4 =0
X2 X4
dxldX2 dxldxs + dxde5 =0
X1X2 X1X5 X2X5 B
dX3dX4 _ dx3dx5 + dx4dx5 = 0. (14)

X3X4 X3Xs5 X4X5
By Proposition 2.12 these relations are linearly independent.
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3. The GauBi-Manin matrix

Let A be an arrangement of m = n + r + 1 hyperplanes in P” as in Section 1.
Contrary to Section 1 we don’t compactify the space of parameters. We have a family
of arrangements in P” given by the projection

w: SxP"— S

where S = P"" \ Discr(A). Let D, W = § x P"\ D and w € H*(W, Q},) be as in
Section 1 but restricted to S x P". Hence D = S x A+ A N[S x P"] where A is
the constant arrangement and A the additional hyperplane.

Let p: X —> S x P" be the blow up along £(D), as in (2). As our space of
parameters is taken as the non compactified space, we have L(D) = L(S x A).

Remark 3.1. Under the assumptions made above, E(p) =85 x L(A) C D,ie.,
the bad loci have at most codimension n. Letting 7’: ¥ —> P”" be the standard
resolution along elements of L(A) as described in (32) in the appendix, one has
X=8xY.

We denote p*(D) by D. Let Q’X /s (log D) be the coherent sheaf of O -modules

of relative i-forms of X relative to S with logarithmic poles along D. Let &@ =

p*we H 0(X, Q}{ /s (log D)). Then & is the differential form with residues a;, along

Y ohizi = 0, a; along H; with ag = Y i-, —a; — a, and such that for every L €
L(A) the form & has residue ), 1, @ along the exceptional divisore; = p~'(S x L).
We consider the operator V = die| + @. As dig = 0, it gives a logarithmic

de Rham complex (Q}( /s (log D), V).

Let A? C m, Q4,5 be generated over Og by

) A Iije{l,...,m}

-1
P dx;j . 4 dx,'j dre1 X5
j=1 His

j=1 j=1 %ij Xs

We have the subcomplex A* C 7, QY /s given by
0— 05— Al 5 ... Loan 0. (15)

PROPOSITION 3.2.  Let D be the family of arrangements on w: S x P" — S
considered above. Let p: X —> S X P" be the standard resolution along the
elements of L(D) such that the divisor D = p*(D) has normal crossings. We have

AP = (7 0 p)Q2 ((log(D)).

Proof. For Q‘}’? s (log D) we define the function #” on S as

h? (s, Qs (log D)) = dim H? (X|;, Q% ;(log D)1
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where Qg’? / s(log D)Is is just the restriction to the fiber 77!(s) = s x P". By the

lemma in [ESV, Section 2] (see Lemma A.4 in the appendix), for p > 0 this function
is constant zero. Applying base change [Ha, III, 12.11] implies the result. O

Let V be the kernel of the absolute connection V = d +  considered in (4).

THEOREM 3.3. Under the hypothesis of Proposition 3.2, assuming further that
a; ¢ Zfori €{0,...,m, hYwithag = — Y i ai—a andy ., ai & LforeveryL €
L, it follows that R? (w op)*Q} /s (log D) =0 for p # nandR"V isthe kernel of the
Gauf3-Manin connection R"(m o p)*Q}( /s (log D) — R*(mo p)*Q}( /s (log D)® Q_‘g
constructed in Section 1. Moreover, for s € S, the fibre R"m, V| is the n-th
cohomology of the restriction of Vi to the fibre Us of m: W — S over s.

Proof. From Proposition 1.5 the sheaf of Og-modules R” (7 o p)*Q;-( /s (log D)
carries an integrable connection. As is well known this implies that this bundle is
lqcally free. As the sheaf Q’X y S(log D) is locally free it is flat over S. Applying [Ka,
Theorem 8.0] we have base change. For s € §,

R?(7 0 p),Q% 5(log D) ® k(s) = H”(X;, Q ((log D) I;) (16)

where k(s) is the residue field over s € S. Applying [EV1, Corollary 1.5] (see The-
orem A.6 in the appendix), completes the proof for p # n.

Since w: W — § is topologically trivial, R"7,.V|; = H"(Us, Viells). By the
construction of the sequence (6) one has a natural map

R'n,V — KerR" (7 o p)*Q}(/S(log D) — R'(r o p)*Q}(/s(log D)® Qé

By (16) this map is an isomorphism on all fibers, hence it is an isomorphism. O

Under the hypothesis of Theorem 3.3 the GauB3-Manin connection is given as

V: R*(7 0 p)«Q%, (log D) — QL @ R"(7 0 0).2

%/s %/s(og D). 17

Definition 3.4. Let AZ C AP be the subalgebra generated by
" dxij . ip s
/\x_ lijef{l,...,m}and x;; <x; if j <kp.
j=1 i

As we will see in the next lemma, A is the Aomoto complex for the constant part
of part for the family of arrangements.
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LEMMA 3.5. The complex A? is obtained as the tensor product with Og of the
Aomoto complex of the constant arrangement A on P". One has the decomposition

AP =AP® — 4%, A APTL (18)

.\‘
Proof. We have the exact sequence

0 — Rm.(X, Q% (logy (P (S x A)) —> R'm (X, Q% (log(p}(D))))
—> ROm.(A, Q%' (log(p! (A)[a)) —> 0 (19)

where p and p, are the standard resolution of S x P” along D and S x A respectively
and where y is as in Lemma A.3. This sequence gives an injection of the Aomoto
complex on A into A®. Since the generators are the right ones, one obtains the first
part of the lemma.

For the second half, one can see that on the fiber overs € S wehave the arrangement
AU H,, where H is defined by x, := 1+ Y ¢, lix; =0withs = (1,1;,...,1,) €
S C P"". Foreveryl € L(AU H;) we havel ¢ H; which from Remark A.9 implies
that

dxg -1
Ay = Al e —= A A7, (20)

By Brieskorn’s Lemma, Af generates H? (Xls, Q‘j-{ /S(log D)|;); see Lemma A.7.

There exists a non empty Zariski open set U C S where the kernel of the natural
morphism
APead AAPTE 5 AP @1

S
is locally free. As a consequence we can extend the decomposition (20) to global
sections as

A”—A”ead A APL (22)

S

O

THEOREM 3.6. Let nbc(.A) be an nbc-basis for the arrangement A. Then R" (7 o
PS5 y s(log D) is a free O module, generated by nbc(A).

Proof. From the exact sequence

0—> A° 25 A1 25 8 an 2 R (r 6 ), 8, (log D) —> 0

X/s
where as always, @ = p*w with w = Y_;" | a;w; + apw, and a, # 0, calculating
the homology one has a telescoping series which together with the exactness of the
complex one can write any element of R" (7 0 p), Q2% %/s (log D) in terms of the nbc(A)

which implies the result. O
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In [FT] the authors show that the set of S-nbc’s form a basis for the local system;
see [Z, Section 1]. In our case we prefer to use Theorem 3.6. Actually, when taking
an order for the set of hyperplanes such that the moving hyperplane is the first one,
this basis is composed of B-nbc’s.

Remark 3.7. If the arrangement .4 has normal crossings, the sheaf of Og-modules
R'7, Q% pn s (log D) is free of rank (™) over O with basis

Jj=1 Xij

A dxij . . . .
/\ : |ije{l,...,n+r} and i; <iy when j<k¢.

Remark 3.8. The order on the set of hyperplanes induces an order on the basis of

Theorem 3.6 for R* (7 0 0), Q23 (log Dy, where we say that A"_, 2 5 < Nie ‘i::
when there exists k € {1, ..., n} such that %k o dx’ —h and =L d"‘ = ";Z for 1 <k,

Procedure 3.9. 'The procedure to write the matrix of the Gau3-Manin connection
with respect to the basis given in Corollary 3.6 is as follows: As before, we take
affine coordinates for the complement of zo = 0 in P” as x; = z;/z0. We do the
same for the complement of 7y = O in P by taking I; = h;/ho. We extend the
relative differential form w to a global form €2, as in Section 1. In affine coordinates
Q=Yi_,a d;"-‘ +ap ;—L where x; = 1 +1I1x; + - - - + I, x, and where the differential
is the absolute one. The procedure is the standard one. We take an element of the
basis given in Theorem 3.6, apply to it the connection and write its image again in
terms of this basis. To do this, in the non-normal crossing case, we need to apply the
basis of relations given in Proposition 2.12. These relations allow one to write the
image under the connection of an element of the basis canonically, in terms of the
former basis. In the source of the computation, we have basically two cases. The
first is when we apply the connection to the first element of the basis in Corollary 3.6.
The hyperplanes involved with this element are given by the set of affine coordinates
chosen. We use the standard procedure, applying the connection and writing the
image in terms of the basis. In the second case, we apply the connection to any other
elements of the basis. We then reduce the problem to the first case by making a
change of the affine coordinates.

As the basis for the GauB3-Manin bundle given in Theorem 3.6 depends on the
combinatorics of our arrangement, we cannot give an explicit form for the matrix.
Nevertheless, the basis nbc(.A) and the basis of relations in Proposition 2.12 are given
in such a precise way that, for any explicit example, we are able to compute the matrix
of the GauB-Manin connection. Moreover for the normal crossings case there is an
explicit form of the Gau3-Manin matrix; see [K, section 4].
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Hy H,

H, Hj
Figure 3

4. Example I

In this section we give an example for the method given in the previous section.
We take an arrangement of six lines in P? in general position. The discriminant in this
case is Ceva’s arrangement, (see [BHH] for an intensive study of this configuration).

Let A = U2_, H; be the arrangement in P? given by

Ho = Zo=0
H] =21 =0
Hy:=2,=0 23

Hy:=z3:=20+21+2,=0

where we can take zq, z1, 22 as a local frame for P2. In this case, the discriminant is
given as DiSCI'(.A) = {ho = 0, h1 = 0, hz = 0, h() - h1 = 0, ho - h2 = 0, h2 - h]
= 0}.

N

Hyp
Hy H5 (24)
H;

N\ H Y

Figure 4

Let X = 8 x P2\ {A := hozo + h121 + hazo =0} U{S x A}andr: X — §
be a family of arrangements parameterized by S = p2Y \ Discr(.A). We denote the
divisor S x AU{A NS x P?} by D.

We fix Hj as the hyperplane at infinity of the arrangement (23). Let

w € HO(S x P2, QL p.(log D))
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be given as
3
_ Z relxt drelxl
i=1 X1
where x; = z;/20, li = h;/ho and x; = l1x; + lox2 + 1, where i"’i is taken as in

Remark 1.2 and where the differential is taken as the relative differential along S. We
assume thata; ¢ Z fori € {0, ..., 3, h}, and that Z;—o a;+ay, =0.
The operator V = d,) + @ deﬁnes the complex
0— Oy ———> Q!

(log D) N Q2 (log D) — 0.

S x P2/ S x P2/

Let V be the relative local system defined as the sheaf of flat sections of V. Theo-
rem 3.3 implies that fori =0, 1,

R‘n*sz's « p2/s1og D) =0. (25)
For i = 2 we have
d d dxy nd dx; nd
R27m,Q o, (log D) = OgZH 292 0 0 CH NN oy EX2NEX )
S x P?/S X1X2 X1X3 X2X3
We can now extend w to
3 .
Q= aiiz't' + ahdﬁ
i=0 % Zh

where the differential is no longer the relative differential but the absolute one over
S. The operator V = d + 2 which, when using affine coordinates in particular on
the complement of zp = 0 and k¢ = 0, takes the form

3
— dx; d
V=d+ E a,-—f'-—i—ahﬂ.

i=1 Xi Xl

With respect to the basis (26) the Gau-Manin connection
V: H*(X/S,V) — H*(X/S,V)® Q. s(log(Discr(A))).

is represented by the matrix

dhy _ dh
—a[FL — 2]

—a 42 _ dg=h) dhy _ d(hg—h))
—a, [@z T"Q] arl h2 ho—h2 ] al hy ho—h) ]

al[d(hl—hz) d(hg—hz)

dhy _ dh T—h d(h—hy) _ dihg—hy)
—as[ T2 - 2] '[ i (hg—hm] —a[F5E - To°_—,,]"] . 27
ho—hy
_ rd(hy=hy) _ dihg—hy)
dhy _ dhgy dihy—=hy) _ d(hg=hy) al55 ho—h
@l — %] LT~ T | —ay[dh _ 4oy
1 0—h1
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We would now like to calculate the monodromy of the Gauf3-Manin connection
along different elements of the fundamental group of S.
For H; € Discr(.A) we have the residue map along H;,

Resy, (V): HX(X/S,V) — H*(X/S, V) ® Qi(log Discr(A))
— H*(X/S,V)® O,

defined in the usual way; see [D1, 11.3.7].

Fix a base point p € S and let y; € 7 (S, p) be aloop around H; € Discr(.A) with
base point p.

Let

T; = exp(—2mi - Resy, (V). (28)
If we suppose that the difference of pairs of different eigenvalues of Resy, (V) are not
in Z \ {0} then by [D1, I1.5.6] the local monodromy around H; is given by T;. The
global monodromy is then given as a conjugacy class of T;.

In our case, from the residue matrices along the hyperplanes of the discriminant
one can see that almost all the eigenvalues are zero. Assume that a; +a; ¢ Z \ {0}
for1 <i < j < 3. By [Dl, 11.5.6], the local monodromy is given by 7;. The image
of y; € m(S, p) under the global monodromy is conjugate to 7;.

To illustrate we compute the local monodromy around H;: h; = 0 which is given
as follows.

Let Ay, be the residue matrix of the connection along H;. From (27) we have

. —a) 0 a
AHI = RCSHl (V) = 0 0 0 .

as 0 —as
Forn > 1, we have

W = (—a1 —a3)" ' Ap,.
One can see that (—a; — a3) is the trace of the matrix Ay, which is an eigenvalue. We

have A} = (tr(Ap, ))"~1 Ay, where tr is the trace of the matrix. If a; + a3 ¢ Z \ {0}
then, from (28), the monodromy transform is given by a conjugacy class of

4. 0 —4a

(—aj—a3) (-ai—a3)
Ty =1+ (exp(—27i - (—a; —a3)) — 1) - 0 0 0
as 0 —a3
(—ai—a3) (—aj—a3)
For any other hyperplane H € .A the residue matrix Ay has the same property,
namely
Ay =a"'Ay
where « is the trace of the residue matrix which at the same time is an eigenvalue of
Apg. This implies that if « € Z \ {0}, the local monodromy is given as

Ty = I + (exp(=2mi - tr(Ag,)) — Dtr(Ag,) ™! - aAga™.
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5. Ceva’s configuration

Let A = U}_, H; be Ceva’s arrangement in P? given by

Hy:=2=0
Hy:=2=0
H2:=Zl=0

Hy:=z3:=20—21=0 29)

Hy:=241=20—22=0
Hs:=275:=21—2,=0;

see (12).
The discriminant is

Discr(A) = {hg =0,h; =0,hy =0,hg+h; =0,h; +hy =0,hg + hy =0,
ho + hy + hy = 0}.

Let X = 8 x P2\ {A 1= hozo + h121 + hazo = 0} U{S x A}andm: X — S
be a family of arrangements parameterized by § = P2" \ Discr(4). We denote the
divisor (S x A) U{A N (S x P?)} by D

Let p: X —> S x P? be the blow up along the elements of £(D) as in (2); see
Remark 3.1. Let D = p*(D).

Let Hy be the hyperplane at infinity of the projective arrangement (29). Let
W = X\ D. Let w € H'(W, Q1) be given by

5
dreiX; dre1x;
w = E a; + ap
. X

i=1 4

where x; = z;/20,l; = hi/ho, x; = l1x1 +1px,+ 1 and ‘-11;"3‘1 is taken as in Remark 1.2
with the relative differential along S. We assume that Z 0@ +ap=0,a g’ Z for

ief0,...,5, h} and ), a ¢ Zfor L € L(A). Letd € HO(X, QL ;(log D)) be
given as @ = p*w.

As in Section 4, the operator V = d,o + @ defines the complex

0 — 03 - Q4 (log D) > SZX/S(log D) — 0.

From Theorem 3.3 and [D1, I1.6], the cohomology of the local system V obtained as
the flat sections of V is

H'(X/S,V) = R'mQ} ((og D) = (30)

fori =0,1.
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For i = 2, from Theorem 3.6 we have

H*(X/S,V) = RPm,Q, Q5 (log D)
d d d dxy Ad
=Osdx1/\ x2®0s X1 A x4®os X1 Xs
X1X2 X1X4 X1X5
dxy ANdx dx; Adx dx; Adx
®Os—2"8 0= g 0208 (3
X2X3 X3X4 X3Xs
We lift o to Q € HO(W, Q1) given by
5
dx; d
Q= ai—x' + ah"ﬂ
i=1 Xi Xl

where the differential is no longer the relative differential and where x; = z;/zo,
li=hi/ho,x; =1+ l1x1 + lyx; and dx;/x; are taken as in Remark 1.2. We extend
@ to X to an element € H°(X QL (log D)) as Q = p*Q2. We have the operator

V = d + . We have the GauB- Mamn connection
V: H*(X/S,V) — H*(X/S,V) ® Os.

To write the matrix of the Gau-Manin connection with respect to the basis (31)
we apply the relations (14). The matrix is given as follows.
The first column is

((—a1 = as)[F2 — G2] — ap[ G2 — G2T)
—as[ %2 — 4
as[-"-’ﬁL d—hl]
ast"—’ﬂ ﬂ'ﬂ]

k X J

The second column is

—a [‘ﬂl !hg+hz[]
( 2 (ho+h2)
—a; [4_}11 d!hg+h2!] a [ﬂl d!hg+hz!]
hy (ho+h2) (ho+h2)
[d_,lz (hQ+hz )]
(ho-+h2)
0
dh d(hg+h
(—as — as)[ 1 — Shuthy)]

dh (ho+hy)
\ as(5 = Giozig /
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The third column is

d(hi+hy)
( e s
—a [ﬂz

hi+hy
0

a [d!hl+h2!
hy+hy

(—a1 — a)[LQuth) — du]_ g[dh _ dh)

\ (—a; — ag) [t _ dia) )

ﬂz] \

i’m]
ho

m]

hy+hy

The fourth column is

( (a1 + as)[ % —
0

d(ho+hy i] \
ho+hy

(—as [.d_h_L

- éh
a3 [ ho+hy
as [ﬂz

\ e
The fifth column is

(

—ay [ML

a[ﬂ_hz

d(ho+hy)
ho+hy

!hg+h|2] [@z

1hg+h| Z]
ho+hy

(hg+h ) ]
ho-+h)

0

]

d(hot+hy+h) ]

ho+h,+hy
0

d!hg+h1!]
ho+hy

ho+hi+h;

d(ho+h+hy) 1

(—az — a5)[ﬂ'i _Q_'Q_*il_ﬂ'.zl]

ho+hy+h,

The sixth column is

( a [d(h|+h2)

\ as[ 9 — 4]

a [@1 dlhohyth) |
ho+hi+h;

0
(—a1 — a)[FLE —

__ d(hoth+hy) ]
hi+hy ho+hy+ha

d(ho+h1+hz)]

hy+hy
a [d_’_'z

adihﬂzl

hy+hy
d(hy+h d(ho+h+h:
\(_a3 —as)[ (hy+hy) _ d(hothi+ 2)]

hy+hy ho+hy+h,

ho+hy+hy

d(ho+hi+hy) ]
ho+hy+h>

é_h.z]

[gﬂ d(ho+hy+hy) ])
ho+hi+hy
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Appendix

Let {H;}ic; be a family of distinct hyperplanes in P”, A = ), ; H; the associated
effective divisor and U = P”" \ A the complementary affine open set. We have the
following definition given in [ESV, Definition (Bad)].

Definition A.1. (a) Given a linear subspace L C P", let
IL={iel|LcCH]}
(b) We define the set
L;j(A) = {L c P" linear | dimL = j andL = Njey,\io) H; for every ig € I}
forO0 < j <n-—2.Let
L(A) = UiZ3L;(A).

The loci where A has non-normal crossings are exactly the linear subspaces con-
tained in £(.4). When there is no possible confusion about the divisors we will write
only £. Let X be the variety obtained by considering successive blow ups along the
elements of £ in the following way.

Letn™ =t1,0---071,,

X, 5 X, 2 ox, B Py (32)
where 1; is the blow up of X;_; along the proper transform 7;_; under 7 ¢~ of the
elements of £;_;. As shown in [ESV, Claim], T;_, is the disjoint union of closed
nonsingular subschemes. Let X = X, and w = 7 ®»~D, Then X is nonsingular.

Definition A.2. Letm: X —> P”" be the standard resolution of A.

LEMMA A.3. Letl’' C I andconsiderthedivisorH' =3 ;. H;. Letn": X' —
P" be the standard resolution of H'. Then there exists a morphism y: X — X’
such that

x L x
TN\ Va4
Pn

commutes.

Proof. Let E} = L(H') be the bad strata of dimension j of H' and let £ =
;’;3[.}. Note that £; C £;. Let tj: X; —> Xj_; be the j-th blow up of H'".
Assume that we have constructed inductively a morphism y;: X; — Xj. Since X},
is obtained by blowing up part of the center of ;. there exists yj41: X;411 — X j’ +1
aswell. 0O



ON THE GAUB-MANIN CONNECTION 763

We would like to apply the previous lemma to the special case when I’ = I \ {io}
with ip € I.

We have the diagram

x L x
TN\ V4
]P)n
In [ESV, Section 2], one finds the following lemma which we prove in [K2] by
algebraic methods without referring to A.7.

LEMMA A4. Let H = Y ,, H; be a non-trivial configuration of hyperplanes
inP", r: X —> P" a standard resolution and D = nt*(H) the reduced pull back
divisor of H. Then, for p > 0, we have

HP (X, Q% (log D)) = 0.

Let z; be the projective defining equation for H;. We fix Hy with 0 € I as the
hyperplane at infinity. Let x; = z;/zo and let w; = dlogx; be the differential form
with a logarithmic pole along H; with residue 1 and a logarithmic pole along Hy with
residue —1. Letw € HO(U, Q2},) be given by

o= ao (33)
iel\{0}

with @; € C. The section w has a logarithmic pole along Hy with residue ap =
—Yieno @- Let ® = m*» where 71 X — P" is the standard resolution of A
and let D = n*(A). As H°(X, Q) (log D)) injects into HO(U, Q,), we still denote
7*w; by w;. The form w defines a connection d +  on the rank 1 bundle Oy which,
as dw = 0, is integrable. We have U = X \ D and let j: U —> X the inclusion.
Let 27, be the de Rham complex with the differential V = d + . We have a local
constant system V over U given as V = ker(V).
LetI'? = HO(X, Q% (log(D))).

Definition A.5. Let AP C I'? be given as

P
A”=|/\w,~j |ijel\{0}] (34)
j=1
where, as above, wj; is the pull back of the logarithmic differential form w;.
Taking the exterior product by w from Definition A.5 we obtain the complex
0— A" Al 25 A2 5 .. 2 A" 0. (35)

This complex appeared for the first time in [A].
From [ESV] we use the following theorem; also see [Y].
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THEOREM A.6. Letw € H(U, Q1)) be as in equation (33), let V = d + » and
let V. = Ker(V) be the corresponding local system. Suppose that for every i € I and
everyl € L, the residues a; and y ;. a; don’t lie in N \ {0}. Then the inclusion

A* — H'(U,Qy, V)
is a quasiisomorphism.

Brieskorn [B, Lemma 5] proved the following lemma using topology. We give an
algebraic proof of this lemma here; we will apply a similar method in Section 3.

LEMMA A.7. The set AP generates I'? as a C vector space.

Proof. The proof will be by induction on |I|. For |I| = 1 we only have one
hyperplane, namely Hy, the one at infinity, so A? = @. On the other hand, from the
exact sequence

0 — Qf, —> QB (log H)) — Q& — 0 (36)
we have
HO(P", Qf, (log(Ho))) = 0 €2
forp > 0.

Let |I| > 1. For I’ C I a proper not empty subset, we can assume that 0 € I’
otherwise we can choose another hyperplane as the one at infinity. Let

I = H(X, Q% (log y*(D")))

where nr’: X' —> P" is the standard resolution of H' = ), ,, H;, D’ = n™*(H')
and y: X — X' is the morphism given by Lemma A.3.(a). Let A” = {/\,?; wy; |
ij € I\ {0}}. As the induction hypothesis we assume that the claim holds true for
any proper subset I’ C I. We fix ip € I with iy # Oand let I’ = I\ {ip}. We have
the exact sequence

0 — Q% (ogy*(D")) — Q% (og D) — Q"D;l(log y*(D") lp,) — 0. (38)

Applying Lemma A .4 to the exact sequence of cohomology obtained from (38) we
have the following exact sequence

0 — H°(X, Q4 (logy*(D))) — H(X, Q% (log(D)))
—> H(D;, Q5" (log(D")|p,,)) — 0. (39)
The left map in (39) is given by the natural inclusion and the right one is given by
0 if ij#Fiforl<j<p

wil/\---/\a’),j/\o-./\w,-qlg,o if ij=ipfor 1<j<p.
(40)

a)il/\'“/\a),'ql-—) {
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By induction on the dimension the restriction of this map to A” A wj, is surjective
and one obtains

AP = A" + A" Ay, (41)

Induction on |I| proves the claim. O

Remark A.8. Theorem A.6 follows from Lemma A.7 and Lemma A.4. Since the
latter is obtained algebraically this proof is different from the one in [ESV], which is
based on Brieskorn’s Lemma.

Remark A.9. The sum (41) is a direct sum for the case when I N H;, # [ for every
1 € L,i.e., when H;, does not contain “bad loci”.

Proof. The result follows directly from Proposition 2.12, since one can see
that there exists no non trivial relation equal to zero involving elements of A” and
AN w,. O
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