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GAUfi-MANIN CONNECTION ARISING FROM
ARRANGEMENTS OF HYPERPLANES

HERBERT KANAREK

ABSTRACT. We study local systems arising from flat line bundles over topologically trivial families U S
ofhyperplane complements in n. Imposing some genericity condition on the monodromy, one knows that
fiberwise the cohomology of the local system is concentrated in the middle dimension and is computed by
the Aomoto complex, a subcomplex of global differential forms on a good compactification zr: X S
with logarithmic poles along D’ X \ U.
The families .A’ considered are obtained by fixing a configuration .,4 of hyperplanes and moving one

additional hyperplane. The line bundle is the structure sheaf, endowed with the connection drel + 09, for a
logarithmic relative differential form o. In this situation we construct the Gaug-Manin connection V on

Rnr,(f*x/s(log D’), drel + a0. We show that these sheaves are free. Using the combinatorics of .At’ we
give a basis for these sheaves and an algorithm to express the connection V in this basis. The corresponding
matrix depends too much on the combinatorics of the arrangement to be given in a closed form, but we
illustrate the method with some examples.

These results can be seen as a generalization of the hypergeometric functions.

Introduction

Let {Hi }iEl be a collection of different hyperplanes in pn, let U I?n \ UiEl Hi
and let X be a smooth compactification of U such that the divisor D X \ U has
normal crossings. Let w be a global holomorphic one-form on U with logarithmic
poles along the divisor D. As do9 0, this form induces an integrable connec-
tion V d + o9 on Ox. The flat sections of V define a rank 1 local system V.
Deligne proved in [D 1 that if o9 has no positive integers as residues the cohomol-
ogy of the local system V is given by the cohomology of the de Rham complex
induced by V. Moreover, Esnault, Schechtman and Viehweg showed in [ESV] that
if o9 has no integers as residues, the cohomology of the local system is given by
the Aomoto complex which is the subcomplex of global sections of the de Rham
complex with logarithmic poles. Under the same genericity conditions, Esnault
and Viehweg proved in [EV] that the cohomology of V is concentrated in the n-th
term.

In this article we consider a topologically trivial deformation of the arrangement
,A I,.Jil Hi C n and study how the cohomology of the local system varies.
We take Jr’ in such a way that there exists i0 I such that the hyperplane Hio is
in general position with respect to the arrangement A I,.Jil\{io}ni C ]n. We
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742 HERBERT KANAREK

assume that Jt contains a system of coordinate hyperplanes. The deformation we
consider is given by moving the hyperplane Hio and leaving 4 fixed in such a way
that we do not obtain new bad crossings. Given an arrangement of hyperplanes in
/In the discriminant Discr(J[) is defined as the locus in nv given by the hyperplanes
H C lln for which the arrangement H U jt gets new bad crossings. In fact, it is
itself an arrangement in the dual projective space. Our deformation is a family X
of arrangements over S ]1nv \Discr(4). When talking about the family, we will
denote the hyperplane Hio by Hs with s S. For the fiber of our family over s S,
we consider a local system given as before by the kernel of a differential Vs with
logarithmic poles and constant residues along the arrangement Hs t.J Jt such that the
residues remain constant when we move s S. This gives us a relative connection
on our family of arrangements. We show that this relative connection can be lifted
to an absolute connection V on X. This implies the existence of the GaufS-Manin
connection. This connection is defined on the GauB-Manin bundlesHR(X/S, D, V)
which are defined as the relative de Rham cohomology sheaves. This connection has
logarithmic poles along Discr(j[), and under the genericity conditions has as flat
sections the direct images of the absolute local system V ker(). Proposition 3.2
together with Theorem 3.3 give a generalization of the results obtained by Esnault,
Schechtman and Viehweg concerning the cohomology of the family. They imply that
the GauB-Manin bundle is free and generated by global sections. In a standard way,
one can calculate a representation of the GaufS-Manin connection. For the classical
case of hypergeometric functions on I? with poles along three different points, it is
well known, from Riemann’s integral representation formula, that one can express the
hypergeometric system of differential equations as a direct image (as a variation of
cohomology) of a rank one system; see [S, Theorem 2] and [M, Proposition, p. 373].
Hence the representation of the GaufS-Manin connection induced by Theorem 3.3
gives a generalization of hypergeometric differential equations. For some cases one
can apply results from the theory of differential equations [D 1,11.5.6] to calculate the
local monodromies.

Section 1 of our article is devoted to show the existence of the GauB-Manin con-
nection.

Section 2 contains several results concerning aspects of the combinatorics for the
theory of hyperplane arrangements. We present two important results. The first is
due to Bj6rner [Bj] and gives a basis for the cohomology with constant coefficients
on the complement of an arrangement. The second is a description of a basis for the
ideal of relations ff for the Orlik-Solomon’s Algebra. We will need these two results
in Section 3 to obtain a representation of the GaufS-Manin connection.

In Section 3 we give a representation of the GauB-Manin connection. Using
Proposition 3.2 and Theorem 3.3, we show that under the genericity conditions, the
cohomology of the relative local system is given by the relative Aomoto complex,
even for the non-normal crossings case. This allows us to describe an algorithm for
the GaufS-Manin connection. In Sections 4 and 5 we illustrate the method with some



ON THE GAUI]-MANIN CONNECTION 743

examples. We construct the Gaul3-Manin connection for the following arrangement:

This example is ofparticular interest because its discriminant is the "Ceva" configura-
tion which has been intensively studied in [BHH] for the construction of ball quotient
surfaces. The second example illustrates the method in the case where we have a
non-normal crossings arrangement.

The appendix contains some geometric constructions and vanishing theorems
needed throughout the article.

This article is a short version of my PhD. thesis of the University of Essen which
I defended in May 1996. After finishing this article we learned that Kaneko [Kj]
independently studied the GauB-Manin connection of arrangements of hyperplanes,
obtaining similar results for some special cases.

I am very grateful to H. Esnault for her help and encouragement during the research
and preparation of this article. I would also like to thank E. Viehweg for his help
and useful suggestions, in particular during the preparation of Appendix I. I wish
to express my gratitude to R. Hain, S. Mtiller-Stach and to V. Welker for the useful
discussions and suggestions; in particular Proposition 2.12 was obtained jointly with
V. Welker.

Moreover I want to express my gratitude to the referee for his useful suggestions
and comments.

I. Existence of the GauB-Manin connection

Let Jt be an arrangement of rn n + r + 1 hyperplanes in ]?n. We do not assume
A to have normal crossings but that it contains a complete system of coordinate
hyperplanes. We fix once and for all an order "<" on the set of hyperplanes such that
{H0 Hn }, the first n + 1 hyperplanes, are linearly independent. Let (z0, Zn)
be homogeneous coordinates for I?n. We choose the coordinates so that zi is a
homogeneous defining equation of Hi for 0, n. We have

n

Hj :-- ,j,i zi 0
i=O

(j =n+ 1,...,m).

We denote by ]tnv the projective space dual to n. As every point p e ]Pnv

represents a hyperplane/-/p C ]pn we can now consider the locus in IPnv defined as the



744 HERBERT KANAREK

set p Pnv such that the configuration AU Hp C ]n has more non-normal crossings
than A. This set, is known as the discriminant of A, forms a divisor in ?nv and will be
denoted by Discr(A). Even if ,A is a normal crossing divisor, Discr(A) need not be.

Let {ho hn be homogeneous coordinates of nv dual to (z0 Zn) and let
Sv be the homogeneous coordinate ring of ?nv. We can identify Sv with the set of
homogeneous polynomials in the hi’s. Let J Mm+l,n+l (,5’v) be given by

f 1

0
J k0,0

’r,0
\ ho

,0,n

krn
hn

(1)

]tnv X ]1n

)nv

-’ n (2)

The discriminant of A is defined as the union of the zero set of all non-trivial
(n + 1)-minors of J that contain the row {h0 hn }.

Let us consider now a family of arrangements in ]In given by the projection

7r" ]nv X ]n nv.
The fiber of rr over p (h0 hn) 6

nv represents the arrangement A plus a
hyperplane Hp that moves with p 6 nv. The extra hyperplane is defined by the
fibers of

A (ho hn) x (zo Zn) ]nv X n Zh :-- hizi 0
i=o

The divisor D [nv x 4] U A U [DiscrG4) x n] C ]nv x 1?n does not have normal
crossings.

Let/2(Discr(A)) be as in Definition 5 in the appendix. Let

0: ’ "’’" ]
nv

be a blow up along the elements of/2(Discr(A)) as constructed in the appendix. Let
X xn and D’ ( x i@,)- (D). We will denote the pullback ofthe projection
r under the morphism 0 again by zr. Let p" X ---+ X be the blow up, constructed
in the appendix, along the elements of (D’) such that p* D’ has normal crossings.
We will denote p* D’ by D. We have the diagram
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(log/3) be the coherent sheaf of (.9:-modules of relative/-forms of overLet 2/
with logarithmic poles along
We fix once and for all the hyperplane H0 as the hyperplane at infinity. For

1 < < m let COi drelXi/xi, with xi zi/zo, be the differential form holomorphic
on U " \ A with a logarithmic pole along Hi with residue 1, and a logarithmic
pole along H0 with residue-1. Let ffi (or orr’)*coi. Let W nv x n\ D and let
cos dreXs/Xs be the differential form holomorphic on W where xs := 1 + -il lixi
with li hi / ho, xi zi/zo and where the differential dre is the relative differential,
i.e., dre],r-’Os =- O. The differential form cos has then a logarithmic pole along A
with residue 1, and a logarithmic pole with residue -1 along zo 0.

,abs dxs/xs has also a logarithmicRemark 1.1. The absolute differential form%
pole along ho 0 with residue -1.

Notation 1.2. Let Ho and H’ two hyperplanes in/n defined by the equations zo
and z’. We take Ho as the hyperplane at infinity. Let x’ z’/zo be the affine equation
of the hyperplane induced by H’ on the affine space pn \ Ho. We denote by [-7-]dx’
or by dz-- dz0] the global differential form, holomorphic on W n \ H’ U Ho,Z’ Z0
with a logarithmic pole along H’ with residue and a logarithmic pole along H0 with
residue -1. Sometimes we omit the brackets.

Let co e H(W, f2v/s) be given by

m

co _a a co q-ahcos
i=1

with al e C for 1 m, h with coi and cos as before. This form induces
(log/))). This form has residue ai along thethe differential form & H(, f2:/

pole Hi, ah as residue along A and _,itL ai as residue along the exceptional divisor

eL cr-l(L) for L (D).
We consider the operator V dre + c5. As drew& 0 we have a logarithmic

de Rham complex

(log/)) v v n0 O: v__> ----> 2/(log/) 0. (3)

(log/))) defines a relative local constant system Vrel overker(V" O --->

the complement of/3 in , relative to .
Definition 1.3. The i-th de Rham cohomology on , relative to with respect to

V as the sheaf of (9-modules Rizr, (f2c/(log/)), V) where Rizr,2/(log/)) is the

hyperderived functor of the functor Rzr,. We will denote it by HioR(/, ), V).
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To show the existence of the GauB-Manin connection we follow the algebraic
presentation given by Katz in [Ka, 3.0].

Procedure 1.4. Let (f2/(log D), V) be the relative de Rham complex as above.
Step 1. We extend the differential V on the relative complex to an absolute one by

taking
m dxi dxs.ai "+’ah
’= Xi Xs

(log b)) (4)E H(J, f2?

where Xi and xs are as before and where d is the absolute differential on (92. We define

V d + g2. Asd 0 we have2 0. This defines the complex (f2 (log/3), ).
Let V ker(V--: (.9, -- f2,l (log 13)) be the absolute local system on , \/).

Step 2. We filter the complex (f2 (log/)), V) by

FTM C F C C F (log

where

o-i (log/)).F *f(log(0*Discr(A)))/x 2
Step 3. We construct a spectral sequence abutting 11,(2 (log/})). The E

terms are equal to (log 0* (Discr(A))) (R)O Rbr,(/(log/})) and the differential

dl" E’b E+l’b (5)

has bidegree (1, 0).
Step 4. From the filtration in Step 2 we have

This is just the exact sequence of complexes

-1 (log b)0 -- :r* [ (log O* (Discr(A)) (R) f22/

(log/)
(logD)0.

* 2(log*Discr(A))/x 2-2(log/) f2/ (6)

The differential (5), for the case a 0, is the connecting morphism for the long
exact sequence of cohomology obtained from (6). Using the projection formula, with
local calculation one can show that it satisfies the Leibniz property. This connection
is called the GauB-Manin connection; see [Ka,4.6]. We still denote it by V.
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Step 5. To show the integrability of the GauB-Manin connection we have the
following diagram:

0 0 0

0 -- F1/F2 F/F2 ---+ F/F 0

0 ---->" F1/F3 --->" F/F3 F/F ---> 0 (7)

F2/F3 F2/F3

0 0

The curvature is then given by the map

-2. Rbzr,(FO/F1) ---+ Rb+27r,(F2/F3)"

For an element c RbTr, (F/F1), the connecting morphism of the middle horizontal
exact sequence in (7) gives us an element in Rb+17r,(F1/F3). From the left vertical
exact sequence in (7) one has the integrability of the GauB-Manin connection.

This proves the following key proposition.

PROPOSITION 1.5. For :r and w as above, theform f2 defines an integrable con-
nection on Hiot(/, ), V) which is called the Gaufl-Manin connection.

Remark 1.6. As we will see in Section 3 the condition that none of the residues
of co is an integer will imply that RiTr, V is zero, for n and is equal to the local
system of flat sections of V on Rnr.(f2 o2/ (log D). Moreover the latter sheaf will
turn out to be free. To this aim, and to give an explicit representation ofthe connection
we use some combinatorics to obtain a basis of the GauB-Manin bundle.

2. Some combinatorics

Let .A be an arrangement of m n + r hyperplanes in the affine space Cn.

Definition 2.1. Let L LG4) be the semi-lattice of all non-empty intersections
Nij Hj 0 of elements of .A. We assume Cn 6 L(.A) as the intersection over the
empty set, i.e., J 0.
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One has a partial order "" on the elements of L given by reverse inclusion: for
X, Y L we say that X -< Y if and only if Y c_ X. Let X, Y L be such that
X -< Y. A chain from X to Y is a set {Z0 Zn C L such that X Z0 -< Z1 -<

-< Zn Y. We then say that this chain has length n. A chain is maximal if for
every {0 n 1 there does not exist W L such that Zi -< W -< Zi+.

Definition 2.2. For X L we define rank(X) as the codimension of X C Cn.
Let Ln-r L {Z L rank(Z) r}. We have L Cn, Ln-1 L is the set
of hyperplanes of our arrangement and L0 is a set of points in C.
LEMMA 2.3. Maximal elements ofL(A) have the same rank.

Proof. See [OT, Lemma 2.4].

Definition 2.4. We define rank ofL L(.A) as the rank ofany maximal element.

Given a subset S C L of points in a semi-lattice we have rank(f3/4esH) < ISI.

Definition 2.5 [OT, Definition 3.2]. For S C L we say that S is independent
if t’lttssH is non-empty and if rank(CltssH) ISI; otherwise we say that S is
dependent.

Definition 2.6. Maximal independent subsets will be called bases and the mini-
mal dependent sets will be called circuits and will be denoted by C(A).

Remark 2.7. In our case, one can easily see that, for/2 as in Definition A.1, we
have 6/2 if and only if the set {Hi It} contains a circuit.

Recall that we fixed a linear order for the elements of .A.

Definition 2.8. Let C C L be a circuit and p 6 L the least element of C.
Then we say that C {p} is a broken circuit. The family of sets which do not
contain a broken circuit will be called non broken circuits and will be denoted as
nbc-elements. Maximal nbc-elements will be called nbc-bases.

Definition 2.9. For a broken circuit C C L let princ(C) 6 L be such that
C t.J {princ(C)} is a circuit and is the smallest element with this property. In a similar
way, for B C L independent but not nbc we define princ(B) 6 L as the least
element of L with the property that there exists a broken circuit C C B such that
princ(B) U C is a circuit.
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Let E1 be the complex vector space freely generated by elements {ell: H A}
and let E be its exterior algebra. For S C A we denote the element AHeSeH by es
respecting the order chosen. A subset S C .A is said to be dependent if there exists
H’ .,4 such that f’)HeS\IH’}H HsH. We have the morphism

(8)

given by Oe(nt rip) Yf=l(-1)iel/x.../x ///x.../x ep for e(n up) p where
as usual ^means that this element does not appear. It is a morphism of algebras
and it is easy to see that 02 0. Let ,.7" be the graded ideal of generated by Oes
with S C .A dependent. The quotient /ff is a graded algebra known as the Orlik-
Solomon algebra and appeared for the first time in [OS]; see [OT] also. From [OS,
Theorem 5.2] we have the isomorphism

/,7" ---+ H*(U, C) (9)

with U cn\.A.
We have the following theorem due to A. Bj6rner; see [Bj, Theorem 4.2] and [SV].

THEOREM 2.10 (Bj6mer). The set ofr-nbc-elementsforms a basisfor Ar.

Remark 2.11. This last theorem together with formula (9) is a generalization of
Brieskorn’s theorem [B, Lemma 5].

Let fir ff fq r where r denotes the degree r subgroup of the graded algebra
and let ,.7" be as before. We would like to give a basis for the ideal of relations

ff in the Orlik-Solomon algebra. Actually in Section 3 we will need a basis for
ker(: An H(U, Cn)).

Consider the map ’: r Ar induced in the natural way by the map1 A
where ’(eH) d log(H) for H Jr. The map ": r Hr(u, C) factors
through A as " o ’.
We have the following proposition obtained jointly with V. Welker.

PROPOSITION 2.12. Let Im=n+r Cn
’i=o Hi C be an arrangement and the

Orlik-Solomon algebra. Then a basisfor fir is given by elements Ofr ofthefollowing
form:

(i) eB for B C .4 dependent and IBI r;
(ii) Oeh for B independent ofrank r but not an r-nbc.

Proof We have

Irl Ir-nbcl + {Ir -circuitsl + Ir -broken circuitsl}.
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One can see that the sets (i) and (ii) are disjoint and that (i) generates ker ’. As the
number of elements in (i) together with (ii) equals I1 Ir-nbcl, to show that they
form a basis we only have to show that they generate ker(b). We will prove this by
induction by showing that, with the help of the elements in (i) and (ii), one can write
any element of A as a linear combination of non broken circuits. The induction
will be taken on the lexicographic order on the elements of A induced by the order
chosen for the set of hyperplanes.

As the first element of A is already a non broken circuit, the statement is true for
the base of induction. Let C (H Hr) be independent but not nbc. By the
induction hypothesis we can assume that the statement is true for any base B < C.
Let t C tO princ(C) as in Definition 2.8; then

princ(C)

Oe?: . e.\{n, -t-- e.\{U, }. (10)
i--1 i--princ(C)

Every summand in the first sum in (10) contains a circuit so they all are elements of
(i). For the second sum, the first element is C and the rest contain princ(C) so they
have lexicographic order smaller than C. Applying our induction hypothesis we can
write C as linear combination of circuits, which vanish under ’, and r-nbc.

Remark 2.13. A basis for ker(: An ----+ H"(U, C)) is given by the image of
the elmements in (ii) under ’.

Example 2.14. 5Let 4 tOi=oni be an arrangement in I2 given by

H0 := z0 0
H1 ::Zl ----0
H2 :-- Zl 0
H3 :’- Z3 :"- Zo Z 0
H4 :-- Z4 :"- zo- z2 0
n5 := Z5 := z Z2 0.

H1

(II)

(12)

Figure 1
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Take Ho to be the hyperplane at infinity. On the affine complement of Ho we have
the following arrangement:

L1 :--Xl =0
L2 :- x2 0
L3 :---x3 :--X1- 1 0 (13)
L4 := x4 := x2- 1 0
L5 := x5 := Xl x2 0.

Zl

L4

L2

L3

The set of circuits is

Figure 2

(J(4) {(L1, L3), (L2, L4), (L1, L2, Ls), (L3, L4, L5)}.

These are the only dependent subsets of .A. The nbc’s are

nbc(4) {(L1, L2), (L1, L4), (L1, L5), (L2, L3), (L3, L4), (L3, Ls)}.

Clearly the only broken circuits are {(L2, Ls), (L4, Ls)} for which (L1) princ(L2,
Ls) and (L3) princ(L4, Ls).

Let 1 be freely generated by {ei Li E ,A} and let be its exterior algebra. Let
if" be the ideal of generated by Oes for S C dependent. By Proposition 2.12,
,7"n ff fq ,, is generated by

7"n (el3; e24; 0e125; 0e345) (el3; e24; el2 el5 d- e25; e34 e35 -I- e45).

Under the natural identification of g with H(U, g2v, where U 2\.A, given by
ei - d_ these relations lead to the following relations of 2-forms"

Xi

dxldx2 dxldx5
X1X2 X1X5

dx3dx4 dx3dx5
x3x4 x3x5

dxldX3 =0
x1 x3
dx2dx4 =0
x2 x4
dxEdx5+ =0
x2x5

dxadx5+ =0.
x4x5

By Proposition 2.12 these relations are linearly independent.

(14)



752 HERBERT KANAREK

3. The GauB-Manin matrix

Let 4 be an arrangement of m n + r + 1 hyperplanes in n as in Section 1.
Contrary to Section 1 we don’t compactify the space of parameters. We have a family
of arrangements in I?" given by the projection

7" S x In ..--. S

where S ,v \ Discr(jt). Let D, W S x l?n \ D and o H(W, f2v) be as in
Section 1 but restricted to S x I?n. Hence D S x .A 4- A N [S x n] where 4 is
the constant_ arrangement and A the additional hyperplane.

Let p: X ---+ S x I?" be the blow up along E(D), as in (2). As our space of
parameters is taken as the non compactified space, we have Z(D) Z(S x A).

Remark 3.1. Under the assumptions made above, Z2(D) S x Z(4) C D, i.e.,
the bad loci have at most codimension n. Letting zr’: Y I?n be the standard
resolution along elements of L(jt) as described in (32) in the appendix, one has
2=Sx?.

/3) be the coherent sheaf of (.92-modulesWe denote p*(D) by/ Let 2/s(log
of relative/-forms of , relative to S with logarithmic poles along/3. Let &

(log/)) Then is the differential form with residues ah alongp*w H(, f2y:/s
n,i=o hizi 0, ai along Hi with ao ’im= -ai ah and such that for every L e

/(4) the form has residue Y4eh ai along the exceptional divisor eL p- (S x L).
We consider the operator V dr + &. As d,e& 0, it gives a logarithmic

de Rham complex (f2/s(log D), V).
Let At’ C zr, f2v/s be generated over Os by

{ dxiJ Pjl;xi drelXSxs
We have the subcomplex A" C zr, f2v/s given by

O’--’+ OS V-+A1 v v An-- ""-- -- 0. (15)

PROPOSITION 3.2. Let D be the family of arrangements on zr" S x I?n -- S
considered above. Let p" ---+ S x ]W be the standard resolution along the
elements of .(D) such that the divisor ) p*(D) has normal crossings. We have
Ap (:rro p),f2P/s(log(D)).

Proof. q (log b) we define the function hp on S asFor 2/s
q (log/))Is)q (log/))) dim Hp (2Ishp (s, 21s
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q (log/))Is is just the restriction to the fiber -1 (S) S X ]1n. By thewhere f2/s
lemma in [ESV, Section 2] (see Lemma A.4 in the appendix), for p > 0 this function
is constant zero. Applying base change [Ha, III, 12.11 implies the result. El

Let V be the kernel of the absolute connection V d + f2 considered in (4).

THEOREM 3.3. Under the hypothesis of Proposition 3.2, assuming further that
ai q Zfori E {0, m, h} withao Y’im__l ai--ah andYil, ai q Zforevery L, itfollows thatRP (r op),f2"2/s(log )) 0 for p 5 n andRn V is the kernel of the

Gaufl-Manin connection Rn (rro p),f2/s (log/)) --+ an (n. o p),f2/s (log 6) (R) fl
constructed in Section 1. Moreover, for s S, the fibre Rnrr, Vls is the n-th
cohomology ofthe restriction of Vrel to the fibre Us ofzr" W --+ S over s.

Proof. From Proposition 1.5 the sheaf of Os-modules RP(yr o p),2/s(log D)
carries an integrable connection. As is well known this implies that this bundle is

(log b) is locally free it is flat over S. Applying [Ka,locally free. As the sheaf flc/s
Theorem 8.0] we have base change. For s S,

Rp (yr o p),f2/s(log D) (R) k(s) Hp(s, flc/s(log b) Is) (16)

where k(s) is the residue field over s S. Applying [EV1, Corollary 1.5] (see The-
orem A.6 in the appendix), completes the proof for p 5 n.

Since zr" W -----+ S is topologically trivial, Rnzr. VIs Hn(Us, Vrells). By the
construction of the sequence (6) one has a natural map

Rn:rr, V KerR"(rr o p),2/s(log D) -- Rn(rr o p),a/s(log D) (R) f2s
By (16) this map is an isomorphism on all fibers, hence it is an isomorphism.

Under the hypothesis of Theorem 3.3 the GauB-Manin connection is given as

V: Rn(rr o p),2/s(log D) -- f2s (R) Rn(rr o p),f2/s(log D). (17)

Definition 3.4. Let Acp C Ap be the subalgebra generated by

ij e {1 m} and Xij < Xik if j < k
j--1 Xij

As we will see in the next lemma, A is the Aomoto complex for the constant part
of part for the family of arrangements.
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LEMMA 3.5. The complex A is obtained as the tensor product with Os of the
Aomoto complex ofthe constant arrangement 4 on I?n. One has the decomposition

dxsAp APc A APc -1. (18)
Xs

Proof. We have the exact sequence

0 ---+ Rzr,(X, (log V*(p(S x .,4))) -----+ Rzr,(X, :(log(pc*(D))))
-----+ Rzr,(A, f2P-l(log(pc*(A))lzx)) 0 (19)

where p and Pc are the standard resolution of S x I?" along D and S x A respectively
and where ?, is as in Lemma A.3. This sequence gives an injection of the Aomoto
complex on A into A. Since the generators are the fight ones, one obtains the first
part of the lemma.

For the second half, one can see that on the fiber over s 6 S we have the arrangement
4 to Hs, where Hs is defined by xs := 1 + Y’4n=l lixi 0 with s (1, ll,..., ln)
S C 1?nv. For every e ;(Jt tO Hs) we have Hs which from Remark A.9 implies
that

dxsaPs aPc[s A aPc -1 Is" (20)
Xs

q (log/3)Is); see Lemma A.7.By Brieskom’s Lemma, Ap generates HP(2Is, f2:/s
There exists a non empty Zariski open set U C S where the kernel of the natural
morphism

dxsAPc A AP -1 --+ Ap (21)
Xs

is locally free. As a consequence we can extend the decomposition (20) to global
sections as

dxsAp Acp m Acp-1. (22)
Xs

THEOREM 3.6. Let nbc(A) be an nbc-basisfor the arrangement A. Then Rn (zr o

p),’2/s(log D) is afree Os module, generated by nbc(A).

Proof. From the exact sequence

0 A -- A -- __2+ An

_
Rn(zr o p),2}c/s(log )) ---+ 0

where as always, t5 p*w with o) ,im=l aiooi + ahws and ah 7 O, calculating
the homology one has a telescoping series which together with the exactness of the
complex one can write any element ofRn (zr o p),f/s(log D) in terms of the nbc(A)
which implies the result.
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In [FT] the authors show that the set of fl-nbc’s form a basis for the local system;
see [Z, Section 1 ]. In our case we prefer to use Theorem 3.6. Actually, when taking
an order for the set of hyperplanes such that the moving hyperplane is the first one,
this basis is composed of fl-nbc’s.

Remark 3.7. Ifthe arrangement .A has normal crossings, the sheafof (.gs-modules

Rnzr* x n/S (log D) is free of rank () over Os with basis

ij e {1 n+r}dx._._A
j=l xij

and ij < ik when j < k }
Remark 3.8. The order on the set of hyperplanes induces an order on the basis of

_<Theorem 3.6 for R(zr o p),2c/s(log D), where we say that A= Xi

when there exists k 1 n} such that a_ < a_ and a_ for < k.
Xik Xjk Xi Xj

Procedure 3.9. The procedure to write the matrix of the GauB-Manin connection
with respect to the basis given in Corollary 3.6 is as follows: As before, we take
affine coordinates for the complement of z0 0 in/?n as xi zi/zo. We do the
same for the complement of h0 0 in nv by taking li hi/ho. We extend the
relative differential form w to a global form f2, as in Section 1. In affine coordinates

’ i=ln ai dXixi + ah dXtxt where Xl 1 + llXl -+- -[- lnxn and where the differential
is the absolute one. The procedure is the standard one. We take an element of the
basis given in Theorem 3.6, apply to it the connection and write its image again in
terms of this basis. To do this, in the non-normal crossing case, we need to apply the
basis of relations given in Proposition 2.12. These relations allow one to write the
image under the connection of an element of the basis canonically, in terms of the
former basis. In the source of the computation, we have basically two cases. The
first is when we apply the connection to the first element of the basis in Corollary 3.6.
The hyperplanes involved with this element are given by the set of affine coordinates
chosen. We use the standard procedure, applying the connection and writing the
image in terms of the basis. In the second case, we apply the connection to any other
elements of the basis. We then reduce the problem to the first case by making a
change of the affine coordinates.

As the basis for the GauB-Manin bundle given in Theorem 3.6 depends on the
combinatorics of our arrangement, we cannot give an explicit form for the matrix.
Nevertheless, the basis nbc(Jt) and the basis of relations in Proposition 2.12 are given
in such a precise way that, for any explicit example, we are able to compute the matrix
of the Gaul3-Manin connection. Moreover for the normal crossings case there is an
explicit form of the Gaul3-Manin matrix; see [K, section 4].



756 HERBERT KANAREK

Figure 3

4. Example I

In this section we give an example for the method given in the previous section.
We take an arrangement of six lines in2 in general position. The discriminant in this
case is Ceva’s arrangement, (see [BHH] for an intensive study of this configuration).

Let .A t.J=oHi be the arrangement in ]p2 given by

H0 :-- z0 0
H1 :-" Zl :0
H2 :-" Z2 --0
H3 :-- z3 :-- Z0 -I- Zl if- Z2 0

(23)

where we can take zo, Z l, Z2 as a local frame for 2. In this case, the discriminant is
given as Discr() {ho 0, h 0, h2 0, ho h 0, ho hE 0, hE h

H1 (24)

Figure 4

LetX=SxI?2\{A’=h0z0+hlzl+h2z2=0}t.J{Sx.A}andzr" X S
be a family of arrangements parameterized by S ]P2v \ Discr(,4). We denote the
divisor S x .A t_l {A f3 S x IP2 by D.
We fix H0 as the hyperplane at infinity of the arrangement (23). Let

(log D)a H (S x I?2, sp2
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be given as

drelXi drelXl
09 ai -t- ah

i=1 Xi Xl

where xi zi/zo, li hi/ho and Xl llXl + 12x2 + 1, where d_ is taken as inx,.
Remark 1.2 and where the differential is taken as the relative differential along S. We
assume that ai ’ Z for {0 3, h }, and that =0 ai -t- ah O.

The operator V dre + o9 defines the complex

D) _V 2 (log D) 0.0 Ox _v__, f2S x ]?2/s(lg f2S x I72/S

Let V be the relative local system defined as the sheaf of fiat sections of V. Theo-
rem 3.3 implies that for 0, 1,

Rizr* x 2/s(lg D) 0. (25)

For 2 we have

dx /x dx2 dXl A dx3 dx2 A dx3R2r*f2 x 2/s(lg D) Os Os Os (26)
XlX2 XlX3 x2x3

We can now extend o9 to

x-,3 dzi dzh
ai --k ah

i=0 zi Zh

where the differential is no longer the relative differential but the absolute one over
S. The operator V d + f2 which, when using affine coordinates in particular on
the complement of zo 0 and ho 0, takes the form

3 dxi dxlV d + .ai d-ah..= Xi Xl

With respect to the basis (26) the GauB-Manin connection

:- H2(X/S, V) H2(X/S, V) (R) f2(log(Discr(A))).

is represented by the matrix

dhlhl dhO]hf).. [dh2 d(ho-h2)] a[dh_.t d(hg-hl)]
ho-h a2t h2 ho

d(hl-h2) d(ho-h2)
d(h -h2) d(ho-hl)--lt hi_h_ ho-h2 --all[dh2 dho] --a3[dh--2 d(ho-h2)]--a3t h2 ho hi_h2 ho_hl

ho-h
rd(hl-h2) d(hf)-hl)’

a3[dhl dho] [d(hl_h2 d(ho_h2)] --u2t hi_hr,_ ho_hl
ht ho --a2t h-h2 ho-h2 _a3[a_y_t_ d(lio-h)

i-hi ho-hl

(27)
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We would now like to calculate the monodromy of the GaufS-Manin connection
along different elements of the fundamental group of S.

For Hi Discr(A) we have the residue map along Hi,

Resn;(): H2(X/S, V) H2(X/S, V) (R) (logDiscr(,4))
---+ H2(X/S, V) OH,,

defined in the usual way; see [D 1, 11.3.7].
Fix a base point p S and let ’i zr(S, p) be a loop around Hi . Discr(.A) with

base point p.
Let

T/--- exp(-2rri Resni (V)). (28)
If we suppose that the difference of pairs of different eigenvalues of Resni (V) are not
in Z \ {0} then by [D1, II.5.6] the local monodromy around Hi is given by T/. The
global monodromy is then given as a conjugacy class of T/.

In our case, from the residue matrices along the hyperplanes of the discriminant
one can see that almost all the eigenvalues are zero. Assume that ai "+- aj Z \ {0}
for 1 < < j < 3. By [D1, II.5.6], the local monodromy is given by T/. The image
of ?’i zr(S, p) under the global monodromy is conjugate to 7.

To illustrate we compute the local monodromy around Hi" h 0 which is given
as follows.

Let AHt be the residue matrix of the connection along H1. From (27) we have

AH ReSH (V) 0

\ a3 0

For n > 1, we have

At (-al a3)n-lAHl.
One can see that (-al a3) is the trace of the matrix AHt which is an eigenvalue. We
have A"H (tr(AHt))"-IAH where tr is the trace of the matrix. If al + a3 9( Z \ {0}
then, from (28), the monodromy transform is given by a conjugacy class of

-al 0 al
(-a-a3) (-a-a3)

T1 I + (exp(-2rri. (-al- a3))- 1). 0 0 0
a 0 -a

(--a!--a3) (--al--a3)

For any other hyperplane H ,4 the residue matrix An has the same property,
namely

AnH otn-l AH
where c is the trace of the residue matrix which at the same time is an eigenvalue of
AH. This implies that if ct 9’ Z \ {0}, the local monodromy is given as

Ct -1TH I + (exp(--2zri tr(AH)) 1)tr(AHt) -1 otAH,
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5. Ceva’s configuration

Let 4 U)=oHi be Ceva’s arrangement in 2 given by

no :-- zo 0
H1 :’-Zl --0
H2 :=zi =0
H3 :-- z3 :-" Zo Zl 0
H4 :-- Z4 := Z0 Z2 0
H5 :-- z5 :-’- Zl z2 0;

(29)

see (12).
The discriminant is

DiscrG4) {ho=0, hl=0, h2=0, ho+hl=0, hl+h2=0, ho+h2=0,

ho + h + h2 0}.

Let X S x 2 \ {A :-- hozo + hlZl -}- h2z2 0} U {S .A} and zr: X ---> S
be a family of arrangements parametedzed by S ]?2v \ Discr(.A). We denote the
divisor (S x .A) t.J {A tq (S x 1?2)} by D.

Let p" , --+ S x ]2 be the blow up along the elements of/2(D) as in (2); see
Remark 3.1. Let/3 p* (D).

Let Ho be the hyperplane at infinity of the projective arrangement (29). Let
W \/3. Let w H (W, f2[v) be given by

5 drelXi drelXl
o ).ai d- ah

i=1 xi Xl

where Xi Zi/Zo, li hi/ho Xl llXl d- 12X2 + 1 and is taken as in Remark 1.2
xi
5with the relative differential along S. We assume that Yi=0 ai -I- ah 0, ai . Z for

(log/))) be6 {0,..., 5, h} and ,ih ai Z for L 6 /2(A). Let 6 H(, f22
giveri as & p*w.

As in Section 4, the operator drel + ff defines the complex

l(log D) - f2- /s (log /)) O.0--- 02 --- f22

From Theorem 3.3 and [D 1, II.6], the cohomology of the local system V obtained as
the flat sections of 7 is

(log b) 0H (X/S, V) R rr.2/s (30)

fori 0, 1.
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For 2, from Theorem 3.6 we have

H2(2/S, V) Razr, f2"/s(log ))
dx A dx2 dXl A dx4 dx m dx5Os Os Os

XIX2 X1X4 XlX5
dx2 A dx3 dx3 A dx4 dx3 A dx5Os Os Os

X2X3 X3X4 X3X5
(31)

We lift w to fl e H (W, flw) given by

5 dxi dxl
.ai +ah.= xi Xl

where the differential is no longer the relative differential and where xi zi/zo,
li hi/ho, Xl 1 + llXl / 12x2 and dxi/xi are taken as in Remark 1.2. We extend

(log/))) as 2 p’f2. We have the operator& to X to an element Q H(2 Q2
V d + f2. We have the Gaug-Manin connection

V" H2(2/S, V) -----+ H2(2/S, V) Os.

To write the matrix of the Gaul3-Manin connection with respect to the basis (31)
we apply the relations (14). The matrix is given as follows.

The first column is

The second column is

--a2[dh2 d(ho+h2)
h2 (ho+h2)

--al dh d(ho+h2, d(ho+ht)
hi (ho+’h2’)]--a4[dh-h2 (ho+h2)

[dh2 d(ho+h2)ma5t h2 (ho+h2)’
0

dh___l, d(ho+h2)(--a3 as)t h, (ho+h2)

a r d(ho+h.)
5l h (ho+h’)
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The third column is

rd(h+h2) d2
t2 h l’+h2
--a4[dh2hE "o

a(h,+hE) ahg. as[ dh’o(--al a2)[ hi+hE ho

0
d(h+hE) dhoa4[ hid’hE ho

d(hl+hE) dhg.(--a3 34)[ hi+hE ho

The fourth column is

( (al + a5)[---L d(ho+hl)]ho+hl
0

(_as[d--h d(hod’hl)]h hod’h!

_a3[d--_th d(ho+hl)]_ a2[dh d(ho+hl)]hi ho+hl h2 hod-hi

a4[dh2 d(ho+hl)
h2 ho+hl

\ a5[ dh2 d(hod-hl)]h2 hod’hi

The fifth column is

0

_al [dh__ d(hod’hld’hE)
hi ho+hl+h2

0

a2[dh2 d(ho+hl+hE)]hE hod,hid.h2

[d.d.d d(hod,hld,h2 [dh2 d(hod.hld,hE)(--83 a5)t h! ho’+hld,h2 a4t h2 hod,hid,h2

as[d_h dh
hi h2

The sixth column is

’ rd(hld.h2) d(hod-l-hld,hE)
u2t hid.h2 hod,hid.h2

0

(_al xrd(hld.h2) d(hod,hld.hE)
U2JL hi+h2 ho+hl+h2
[dh d(ho+hl+h2,a2t hg_ ’ho+ht+hz

d(hld,h?,) dhEa4[ hid,h2 h2
d(h!+h2) d.(ho+hl+h2) rdh2(-a3 a4)[ hi+hE ho+hl+h2 t5L hE

d(ho+hl+h)
ho+hl+h2
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Appendix

Let Hi }i EI be a family of distinct hyperplanes in I?n, .A -iEI Hi the associated
effective divisor and U 1?n \ .A the complementary affine open set. We have the
following definition given in [ESV, Definition (Bad)].

Definition A.1. (a) Given a linear subspace L C ]?n, let

II={i6IILCHi}.

(b) We define the set

/2j(4) {L C ]1n linear dimL j andL Oilt,\{io}ni for every i0

for 0 < j < n- 2. Let

/(,,A) n-2U=o(A).
The loci where J[ has non-normal crossings are exactly the linear subspaces con-

tained in/2(A). When there is no possible confusion about the divisors we will write
only/2. Let X be the variety obtained by considering successive blow ups along the
elements of 12 in the following way.

Let zr (r) .t. 0 0 "t’r,

(32)

where ri is the blow up of Xi-1 along the proper transform T/_ under 7r (i-1) of the
elements of/i--1. AS shown in [ESV, Claim], T/-1 is the disjoint union of closed
nonsingular subschemes. Let X Xn-1 and zr zr (n-1/. Then X is nonsingular.

Definition A.2. Let zr" X I?n be the standard resolution of

LEMMA A.3. Letl’ C I andconsiderthedivisorH’ Ei.l, Hi. Letrr" X’
Fn be the standard resolution of H’. Then there exists a morphism V" X X’
such that

n

commutes.

Proof. Let/2 /2(H’) be the bad strata of dimension j of H’ and let/2’

U]__-gZ;}. Note that/2 C/2j. Let rj: Xj Xj._I be the j-th blow up of H’.
Assume that we have constructed inductively a morphism Vj" Xj X. Since X’j+l
is obtained by blowing up part of the center of rj+ there exists Vj+" Xj+ ---+ X’j+l
as well.
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We would like to apply the previous lemma to the special case when I’ I \ {i0}
with i0 I.

We have the diagram

’ XX
r ," r’

In [ESV, Section 2], one finds the following lemma which we prove in [K2] by
algebraic methods without referring to A.7.

LEMMA A.4. Let H -’it Hi be a non-trivial configuration of hyperplanes
in ]n, zr" X ]n a standard resolution and D 7r*(H) the reduced pull back
divisor of H. Then,for p > O, we have

HP(X, f2(log O)) 0.

Let zi be the projective defining equation for Hi. We fix H0 with 0 e I as the
hyperplane at infinity. Let xi zi/zo and let o9i d log xi be the differential form
with a logarithmic pole along Hi with residue I and a logarithmic pole along Ho with
residue -1. Let 09 H(U, f21u) be given by

O) aio9 (33)
iI\{0}

with ai C. The section o9 has a logarithmic pole along Ho with residue a0

-it\{o} ai. Let ff rr*o9 where zr" X ----* Fn is the standard resolution of .A
and let D zr*(4). As H(X, f2(log D)) injects into H(U, f2;), we still denote
zr*ogi by o9i. The form o defines a connection d + o on the rank 1 bundle Ox which,
as do9 0, is integrable. We have U X \ D and let j" U X the inclusion.
Let f2 be the de Rham complex with the differential V d + o. We have a local
constant system V over U given as V --ker(V).

Let Fp n(x, fl(log(D))).

Definition A.5. Let AP C Fp be given as

where, as above, oi is the pull back of the logarithmic differential form o.

Taking the exterior product by 09 from Definition A.5 we obtain the complex

0----+ A A A2 o An

This complex appeared for the first time in [A].
From [ESV] we use the following theorem; also see [Y].

(35)
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THEOREM A.6. Let o9 H(U, f2) be as in equation (33), let V d + o9 and
let V Ker(V) be the corresponding local system. Suppose thatfor every I and
every _., the residues ai and i.Il ai don’t lie in N \ {0}. Then the inclusion

A H(U, ’v, V)

is a quasiisomorphism.

Brieskorn [B, Lemma 5] proved the following lemma using topology. We give an
algebraic proof of this lemma here; we will apply a similar method in Section 3.

LEMMA A.7. The set AP generates Fp as a C vector space.

Proof. The proof will be by induction on II I. For III 1 we only have one
hyperplane, namely H0, the one at infinity, so AP 0. On the other hand, from the
exact sequence

q-10-----> fln -’--> fln(log H1)-----> f21_ 0 (36)

we have

H(IPn, f2, (log(H0))) 0 (37)

forp > 0.
Let III > 1. For I’ C I a proper not empty subset, we can assume that 0 e I’

otherwise we can choose another hyperplane as the one at infinity. Let

F’p H (X, f2 (log y * (D’)))

where r’: X’ ---+ ]pn is the standard resolution of H’ -.iet, Hi, D’ zr’*(H’)
Pand , X ----> X’ is the morphism given by Lemma A.3.(a) Let A’p /ij coij

1 e I’ \ {0} }. As the induction hypothesis we assume that the claim holds true for
any proper subset I’ C I. We fix i0 I with i0 - 0 and let I’ I \ {i0}. We have
the exact sequence

0 f2c(logy*(D’)) ----+ 2c(log D) q-l(logy*(D’)ID,0 0. (38)Di0

Applying Lemma A.4 to the exact sequence of cohomology obtained from (38) we
have the following exact sequence

0 H(X, f2(log y*(O’))) H(X, f2x(log(D)))
.--+ H(Dio, 9,l(log(D’)lD,o )) -----> 0. (39)

The left map in (39) is given by the natural inclusion and the fight one is given by

0

(,Oil A A ogij A A ogiq [Oi

if /jsiofor l_<j <p
if ij--iofor l<_j_<p.

(40)
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By induction on the dimension the restriction of this map to A-/x O)i0 is surjective
and one obtains

Ap Atp
-.1- A

tp-l
A O)io. (41)

Induction on III proves the claim. E]

Remark A.8. Theorem A.6 follows from Lemma A.7 and Lemma A.4. Since the
latter is obtained algebraically this proof is different from the one in [ESV], which is
based on Brieskorn’s Lemma.

Remark A.9. The sum (41) is a direct sum for the case when N Hio for every
6/, i.e., when Hio does not contain "bad loci".

Proof The result follows directly from Proposition 2.12, since one can see
that there exists no non trivial relation equal to zero involving elements of A’p and
AP- A o.)io [-]
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