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ARENS REGULARITY AND WEAK SEQUENTIAL
COMPLETENESS FOR QUOTIENTS OF THE FOURIER

ALGEBRA

COLIN C. GRAHAM

ABSTRACT. This is a study of Arens regularity in the context of quotients of the Fourier algebra on a
non-discrete locally compact abelian group (or compact group).

(1) If a compact set E of G is of bounded synthesis and is the support of a pseudofunction, then A (E)
is weakly sequentially complete. (This implies that every point of E is a Day point.)

(2) If a compact set E supports a synthesizable pseudofunction, then A(E) has Day points. (The
existence of a Day point implies that A(E) is not Arens regular.)

We use be L2-methods of proof which do not have obvious extensions to the case of Ap(E).
Related results, context (historical and mathematical), and open questions are given.

1. Introduction

This introduction first gives a summary of the sections of the paper and then states
the definitions which we shall need, as well as providing some background for the
results. Further background will be found also in the later sections.

For related results of the author, see [6] (every lca group has countable subsets E
such that A(E) is Arens regular in every bounded multiplication while neither A(E)
nor A(E)** is Arens regular), [7] (Ap(E) is not regular if E supports a synthesizable
pseudofunction), and [8] (A(E + F) is not regular if E, F are perfect compact).

1.1. Survey ofArens regularity. Section 2 is a brief discussion of (non) Arens
regularity in the context of group algebras. Readers familiar with the subject may
skip it. In that section we show (in particular) that if E has a tenting sequence that is
also a Sidon sequence, then A(E) is not Arens regular. (The result is stated in terms
of general Banach algebras, and, in that form, the result may be new.)

1.2. General lemmas. In Section 3 we give technical lemmas that are used in
later sections and most usefully grouped together.
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1.3. Discussion of results.

Result 1 ofAbstract. This result is proved in Section 4, first for abelian groups
and then for non-abelian compact groups. The result may not be new, as it was
stated, in a stronger form (with no proof and no hypotheses on synthesizability) by
Meyer in 1970 [19, 6.2.10]. Unfortunately, even Result 1 is false without some sort
of synthesizability assumption. A discussion appears in Remarks 4.1.4 (i).

The proof for the non-abelian case uses a simple lemma concerning operators on
Hilbert space to estimate the norm of a sum of pseudofunctions. That lemma appears
to be new.

Result 1 greatly extends (for p 2) the result of [10, p. 131 ], which shows that
certain subspaces of At,(G) are weakly sequentially complete. The result here for
quotient spaces appears to be new, and somewhat surprising, in spite ofRemarks 4.1.4.
For the sake of completeness we include, as Proposition 4.1.1, the result from 11
which says that weak sequential completeness for Ap(E) implies the existence ofDay
points. The conclusion about Day points was inspired by results of Granirer [11 ]’.
However, the results of this paper (e.g., 5.1.3-5.1.4) do not include Granirer’s results,
since his results apply to symmetric sets E, not all of which support pseudofunctions,
while our results apply to (some) sets supporting pseudofunctions.

Result 2 ofAbstract. In Section 5 of this paper, we show how one can obtain the
result of Granirer [11] for sets of multiplicity, i.e., the set supports a synthesizable
pseudomeasure whose Fourier-Stieltjes transform"vanishes at infinity". (The relevant
definitions and some lemmas are given in Section 4.) We first prove the abelian case.
It is, again, unclear if the abelian case is new (see above).

Since ultrathin sets never support pseudofunctions, Result 2 is in a different direc-
tion from Granirer’s. Also, Result 2 is very much an "L2" result, and the proof does
not have evident generalization to the case of At,(E) for p 2. See Section 6 where
we give evidence for the difficulty of such a generalization.

The proof for compact non-abelian groups is given at the end of the section. It, like
the abelian proof, is still an "L2’’ result. See [7], where a weaker version of Result 2
is obtained for quotients of the Ap (G) algebras of Herz.
We end with a list of open questions.

1.4. Notation and definitions.

Definition 1.4.1. A Banach algebra A is Arens regular if the two Arens multipli-
cations on its second dual A** coincide.

L (G) is Arens non-regular, for every infinite locally compact Hausdorff group.
(Due to Young [26] for the non-abelian case and Civin and Yood [3] for the abelian
case.) On the other hand, C*-algebras are Arens regular [3]. See Section 2 for more
on Arens regularity and non regularity.
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Let G be a locally compact group, and, for abelian G, let r’ denote the dual group of
G. A(G) is the Fourier algebra of G, and for a compact subset E of G, A(E) denotes
the set ofrestrictions ofelements ofA(G) to E, each restriction being given its quotient
norm. Elements of A(G)* are called pseudomeasures and the collection of them is
denoted PM(G). An important subspace of PM((G) is the space ofpseudofunctions
PF(G): apseudofunction is an element of PM(G) whose Fourier transform vanishes
at infinity on r’ (in the case of abelian groups) or (in the non-abelian case and true
for the abelian case as well) a pseudofunction is an element of PM(G) that is in the
norm closure of LI(G). (Of course A(G)

_
LI(F) and A(G)*

_
L(I"), and so

it makes sense to talk about "vanishing at infinity".) Pseudofunctions are important
in questions of multiplicity and spectral synthesis; e.g., see, [9], 17], [16] and their
references. A pseudomeasure S is called synthesizable (or admits synthesis) if it is
the weak* limit of measures concentrated on the support of S; e.g., see [9, p. 69ff]
for background and major results on spectral synthesis and non-synthesis in abelian
groups. The pseudomeasures (resp. pseudofunctions) supported on a closed E C G
will be denoted by PM(E) (resp. PF(E)).

1.5. Tenting sequences and Day points.

Definition 1.5.1. Let M > 0, E a closed subset of the locally compact group G,
and a 6 E. A tenting-M sequence at a is a sequence {fn} C A(E) such that:

(1.5.1)
(1.5.2)
(1.5.3)

f A(E) --< M for all n > 1;

fn (a) 1 for all n > 1;

For every neighborhood U of a, there is N > 1 with Supp fn C U
forn > N.

Remarks. (i) Tenting sequences are marginally more general thanfamilies moy-
anntes of Lust-Piquard 18].

(ii) Any weak* (tr(A(G)*, A(G)**)) accumulation point of a 1-tenting sequence
on A(G) is an invariant mean on A(G)* [12], [18]. See also Remark 2.5.1.

(iii) Nothing is lost if (1.5.3) is replaced with the following:

(1.5.3 bis) For every open neighborhood U of a, lim IIl\v f, [[A(En(G\U O.

To adapt the proofs that appear in this paper to ((1.5.3 bis)), just replace {f with
{gn fn where the gn are one in a neighborhood of a and have norms tending to 1.
With the correct choices of gn, one has Ilgf fnlla(e O, which is enough for
everything that follows.

(iv) Lust-Piquard [18, p. 192] showed (for sets in metrizable abelian groupsmthe
statement is slightly different in the more general abelian case) that if every tenting
sequence in A(E) is weak (that is, tr(A(E)*, A(E)) Cauchy, then every element
tx A(E)* is totally ergodic, that is, 6x */z is ergodic for every x 6 G. In the
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same paper, Lust-Piquard [18, p. 212] shows that A(E)** has a commutative Arens
multiplication (and therefore A(E) is Arens regular) if and only if A(E)* C WAP,
that is, /z A(E)* implies {p/z: p F} is weakly (that is, cr(A(G)**, A(G)*))
compact. That result seems to be a special case of an earlier result of N. J. Young" a
locally convex semi-topological algebra is Arens regular if and only if every contin-
uous linear functional on the algebra is weakly almost periodic [28, Lemma 2] (see
also [27]).

(v) Granirer [11] has shown that if the subset E of an locally compact group
contains the translate of an ultrathin set (e.g., see, [9, p. 333ff and p. 88 (7)]), then
A(E) is not Arens regular (because A(E) contains a tenting Sidon sequence, i.e.,
there exist Day points; see also Corollary 5.1.3 and Corollary 5.1.4 below).

Definition 1.5.2. A bounded sequence {fn} C A (where A is a Banach space)
is a Sidon sequence if there exists 8 > 0 such that for each integer N > 0 and
complex numbers cl, cv, ]--0 c IIa >_ 7--0 Icj I. The Sidon sequence is

a strong Sidon sequence if for each < 1 there exists J such that _- c33 IIa >
__

levi liminfj_>j IIf’ IIa holds for all integers N > J and all complex numbers
CJ CN.

Sidon sequences are useful in constructing copies of 1 inside A (particularly
A(E)), and hence, copies of in the dual (or quotients of the dual) of A (or A(E)),
with all the complexity that e implies. It is perhaps worth pointing out that a Sidon
sequence {fn} cannot converge weakly. Indeed, the closed subspace spanned by
{fn} is isomorphic to one-sided 1, {fn} corresponds to the usual basis of e l, and,
obviously, the usual basis of e cannot converge weakly. Strong Sidon sequences
give almost isometric copies of 1.

Definition 1.5.3. Let E be a compact subset of the locally compact group G. If
there is a tenting-M sequence in A(E) at a E which contains a Sidon subsequence,
we say that a is a Day-M point. Day-1 points will be called simply Day points. The
Day points in E will be denoted by D(E). If there is a tenting-1 sequence at a E
which contains a strong Sidon subsequence, we call a a strong Day point, and we
denote by Ds(E) the set of strong Day points for A(E).

Day points were first defined in Granirer 11]. Strong Day points allow for more
precise estimates than Day points, and imply that A(E)* has quotients which are
arbitrarily close (in Banach-Mazur distance) to .

Definition 1.5.4. A Banach space is a Sidon space if every subsequence has either
a norm-convergent subsequence or a Sidon subsequence.

Sidon spaces were first defined by Meyer [19].
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2. Arens regularity and tenting sequences

2.1. Overview. In this section, we give a criterion for Arens regularity and then
show that various algebras are not regular. The results of this section are not new.

The following result from [21, 4.2] is well-known, but it will be useful to have a
formal statement.

2.2. Criterionfor Arens regularity.

THEOREM 2.2.1. Let A be a Banach algebra. Thefollowing are equivalent.

(1) A is Arens regular
(2) For all {gn} and {hm} bounded sequences in A and S A*, the existence of

the two limits

lim lim (S, gnhm) and lim lim (S, gnhm)
n---- cx m--+ cx: m--- cxz n--+x

implies their equality:

(2.2.1) lim lim (S, g,hm) lim lim (S, gnhm}.
n-+ cx m--+ cx: m-+x n--:x

Remarks 2.2.2. It will be useful to have some proofs of the occurance of non-
regularity (these are, of course, not new). The first argument reappears, e.g., at (2.2.2).
The second result will be used repeatedly.

(i) One-sided e is not Arens regular (with the usual multiplication). Indeed, let
X {102m+1 -+- 102n" m > n}, and let S Ix. We let gn oz,, n > 1 and
hm --102m+ m > 1. Then

and

lim lim (S, gnhm}-- 1
n--+x m---x

lim lim (S, gnhm O,
m-- cx) n--+x

so one-sided e is not Arens regular.
(ii) One sided e is not Arens regular, where N is given maximum multiplication.

(See [22, p. 106], where the weakly almost periodic functions on this algebra are
identified with Co + C1.) Indeed, let S Ix, where X {2m + 1" m > 1}. Let
gm 2m+l and hn 2n, for n, m > 1. Then

(2.2.3)

but

lim lim (S, gmhn lim lim (S, 82n 0,
m-+cx n--+c m--- n--+

(2.2.2) lim lim (S, gmhn) lim lim (S, 2m+l) 1.
n--+a m--+cx n-- cx m---x

The conclusion now follows from Theorem 2.2.1.
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2.3. Point ofspectral synthesis.

Definition 2.3.1. Let A be a commutative Banach algebra with maximal ideal
space AA. Let a 6 AA. If every element f 6 A with f(a) 0 can be approximated
in A-norm by elements that vanish in a (Gelfand topology) neighborhood of a, then
we say that a is a point ofspectral synthesis for A.

2.4. Day points imply non regularity.

THEOREM 2.4.1. Suppose A is a commutative Banach algebra with maximal ideal
space AA, and a AA is both a Day-M pointfor some 0 < M < o and a point of
spectral synthesis. Then A is not Arens regular.

LEMMA 2.4.2. Let fn be a Sidon sequence in a Banach space Y. Let X C
Then there exists lz Y* such that n < Iz, fn > is thefunction lx.

ProofofLemma 2.4.2. Left to the reader.

ProofofTheorem 2.4.1. We begin with some simple observations. First, by re-
placing each fn with a function fn’ with fn f’. < < , we may assume that

fn 1 in a neighborhood of a and that {fn} is still Sidon. Here ) > 0 and is
from the definition of Sidon. [That follows from (i) the assumption that singletons
are points of spectral synthesis, and fn (a) 1 for all n, which allow the approxima-
tion, and (ii) an examination of the estimate defining Sidon sequence, which uses the
approximation (the latter point is from [19, Prop. 1, p. 243]).] Second, by passing to
a subsequence, we may assume that

(2.4.1) fnfm fn if n > m.

[That follows from the preceding step. We do not care what fn2 equals! This puts us
essentially in the situation of Remarks 2.2.2 (ii), which we apply below.]

Let/z 6 A(E)* be such that

1 ifk 2m + 1 for somem > 0,
(2.4.2) (/z, fk) 0 otherwise.

Such a/z exists by Lemma 2.4.2.
Let

(2.4.3) gm f2m+l and hn f2n.
Now we may apply (the argument of) Remarks 2.2.2 (ii). ffl

Remark 2.4.3. The requirement that f(a) 1 is necessary. For example, one
can have a pup-tenting Sidon sequence (see Problem 25) {fn} such that Ilfnfmll <
2-min(n’m) for all n, m. This makes the preceding proof fail.
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2.5. Day points and TIMs.

Remark 2.5.1. (i) Let x be a Day point for A(E). Then there are at least c distinct
elements in.T’(x, E) {f 6 A(E)**: fg f forallg 6 A(E)withg(a) 1}. The
proof is immediate using ultrafiltres. Compare with Problem 21, where Sidonicity is
not assumed.

(ii) Each element of.T’(x, E) gives rise to a "translation invariant mean" on A(G)*.
See [11].

3. Lemmas and background for Results 1-2

This section contains technical lemmas which are for the most part used in more
than one section below, and which, in any case, are conveniently grouped together.
Most proofs are written to include the non-abelian case (hence we use G to denote the
dual group (abelian case) or the dual object (non-abelian case). We put the notation
and definitions which we use for the non-abelian case at the end of this section, in
subsection 3.5. See [15, Section 34ff] for additional details.

3.1. Reduction to the compact metrizable case. We assume that G is either
an infinite compact group (not necessarily abelian) or an abelian non-discrete, non-
compact group.
We begin with the reduction to the metrizable case, assuming compactness if G is

not abelian. We suppose that we have a sequence fn A(E). Then the fn collectively
involve only a countable number ofFourier coefficients (whether we are in the abelian
case or not), and those together determine a closed normal subgroup H of G such that
G/H is metrizable. It is easy to see that the image zr E (in G/H) of E is of bounded
synthesis if E is, and that pseudofunctions on E are carded to pseudofunctions on
zr E, with synthesizability preserved. If there is a weak limit of fn, then there is a
weak limit for zrfn (in the obvious abuse of notation). If the fn are a tenting sequence,
then zrfn is a tenting sequence for zr E and if zrfn has a Sidon subsequence then, a
fortiori, fn has a Sidon subsequence.
Now we give the reduction to the compact abelian case, assuming that G is locally

compact, abelian and non-discrete. Under these conditions, G has an open subgroup
ofthe form ]n )< H, where n > 1 and H has a compact open subgroup C. The compact
set E (assumed in Sections 4-5) is contained in a set of the form W x (B + C), where
W C ]1n is compact and B is a finite subset of H. We now choose an image of Zn in
]n such that the mapping rrn" Rn ]ln /Zn has A(E) and A(zrn E) isomorphic with
Banach space distance at most (say) 3. [This is standard: we can assume that W is a
symmetric n-cube centered at 0 and choose Zn so that (W + W / W) f) Zn) {0}.]
This reduces to the case that G has a compact open subgroup.

The finite set B generates a finitely generated subgroup L of G, obviously. We may
assume that the torsion subgroup F of L is already contained in B, so L F + Zm
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for some m > 0. If m 0, we are done. Otherwise we chose a subgroup of the form
tZm for some large integer t. Then as before, we have a projection of G --+ G/(tZm)
which carries E to an isomorphic copy, preserving all the pseudomeasure properties.
We omit the remaining details.

3.2. Frompseudomeasures to (pseudo)measures. We begin with several lemmas.
We first note that because A(G) is a commutative Banach algebra, A(G)* is an A(G)
module. Thus, fS makes sense for f A(G), S A(G)*.

LEMMA 3.2.1. Let S be a non-zero pseudomeasure on the metrizable compact
group G. Let a Supp S. Then there exists a sequence hn ofcompactly supported
elements ofA(G) such that (1.5.3) holds (with hn in place of fn), IIh SIIP 1 for
all n, limn(hn, S) limn(1, hnS) 1, andlimn hn S a weak* in PM(G).

ProofofLemma 3.2.1. We use the fact that a singleton (e.g., {a}) is a set of
spectral synthesis. For example, see [9, A.3] for a proof in the case of G T. The
general abelian case follows from [24, 7.2.4]. For the non-abelian case, see, e.g., [15,
34.46(d)] or [20, 19.19].
We also use the fact that for each a G and every neighborhood V of a, there

exists f A(G)with IlfllaG 1, f(a) 1, and f 0 outside V:e.g., just apply
[15,34.21].
We may assume that a 0. Choose a neighborhood base Un" n > 1 of compact

sets at 0 with Un+l C Un for n > 1.
Because 0 Supp S, for each n > 1 there exists gn A(G) such that Supp gn C

Un and (gn, S) - 0. Thus, gnS :/: O, so there exists g A(G) such that

I(g’n’ gnS) IlgnSIII < 2- IlgnSII and IIg’ 1.

Let hn IIgSI1-1 gngn forn > 1. Then

and

IlhnSII _< 1 for n > 1,

lim(hnS, 1) lim(hn, S) lim IlgnSII- (gS, g’) 1.
n n n

Furthermore, because {0} is a set of spectral synthesis, limn (f, h,,S) f (0). [Indeed,
for any > O, we can write f f(O)k + m where k 1 in a neighborhood of 0 and
IlmllA(G) < . Then lim, (k, hS) 1, so limn(f, hnS)-f(O)l < supn I(m, hnS)l <

Hence, (hnS) --+ 1 pointwise on the dual group. It follows that limn hnS exists
weak* and equals 30. [3

Remark. We need to be careful about "limits" of the form limn fnS (f A(G),
S PM(G)). In some circumstances there can be multiple (or even c!) accumulation
points. See [9, p. 394] for more on this point and for a reference.
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LEMMA 3.2.2. Let S be a non-zero pseudomeasure on the metrizable compact
group G. Let f A(G).

(1) If S PF(G), then fS PF(G).
(2) If S is synthesizable, then fS is synthesizable.
(3) When fS is synthesizable, (fS, g) (fS, g’) wheneverg g’ on the support

of fS.

ProofofLemma 3.2.2. We first prove this in the case that G is abelian.

(1) By definition S PF(G) if and only if Co(F). Since f LI(F),
f. Co(), so fS PF(G).

(2) Since S is of synthesis, there is a net {/z, of measures in the support of S that
converges weak* to S in A(G)*. Of course, each f/z is concentrated on the
support of fS, so f/zc --+ fS weak*. Hence, fS is synthesizable.

(3) If g g’ on E, then

(g, fS) lim(g, f/z) lim(g’, f/za) (g’, fS),

by the definition of synthesis and the fact that the f/z are measures.

Here is the proof for the non-abelian case.

(1) By definition, S PF(G) C L(t) if and only if S is a norm limit of
elements that have finite support in . Since f LI(), f * Co().

(2) Since S is of synthesis, there is a net {/z measures in the support of S that
converges weak* to S in A(G)*. Of course, each f/z is concentrated on the
support of fS, so f/zc --+ fS weak*. Hence, fS is synthesizable.

(3) If g g’ on E, then

(g, fS) lim(g, f/za lim(g’, f/xa (g’, fS},

by the definition of synthesis and the fact that the f/za are measures.

The following lemma is stated for both the abelian case and the non-abelian case,
though we will need a non-abelian version (Lemma 3.2.5, given below).

LEMMA 3.2.3. Let E be a compact subset ofthe compact group G. Suppose that
E is the support ofa pseudofunction T and that lz is a measure supported on E. Then
for every > 0 andfinite subset F C , there exists a pseudofunction S on E such
that

(3.2.1) I,-/21 < e on F

and

(3.2.2) IISIIPM < (1 + )lllt21l.
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COROLLARY 3.2.4.
subset ofG such that

Let G be a compact metrizable group, and E be a closed

(1) E is a set ofbounded spectral synthesis; and
(2) E is the support ofa nonzero pseudofunction.

Then every pseudomeasure on E is the weak* limit of a (pseudomeasure norm)
bounded sequence ofpseudofunctions supported on E.

Proofof Corollary 3.2.4. Approximate the pseudomeasure boundedly by mea-
sures and apply Lemma 3.2.3 to each approximant.

ProofofLemma 3.2.3. We first assume that/z is discrete and has finite support,
say xl, Xm.

The obvious method is to use Lemma 3.2.1 (applied at each xj) to obtain a pseud-
ofunction which is weakly close to/z. This will give us (3.2.1) but (3.2.2) might
fail if, for example, the transforms of the approximants to the non-negative masses
decreased less rapidly at infinity than the approximants to the positive masses. To
avoid that difficulty, we do the approximation in stages.

Let N be any integer greater than 1 + 211IIM(G/II21I. Let v /z. Let F1 F.
Let T1 be a pseudofunction (which exists by application of Lemma 3.2.1 to each of
the point masses) such that libl fi[ < e/2N on F and [ITIIIPM < IlvllM(>. Let
F2 F1 t.J {): /11 > e/2N}. Since T is a pseudofunction, F2 is finite.

Inductively, for 2 < g < N, we find F2

___
c_ Fv and Tg. To such that

I#e 1 < e/2N on Fe

and

IITelIM <_ IIVlIM(G.

Straightforward calculations now show that S YI/v Te has the required proper-
ties.

That completes the proof in the case that/z is a finitely supported discrete measure.
In the general case we replace/x at each stage with a discrete measure. We use a
Riemann sum argument, the terms in the sum depending on the finite set of charac-
ters Fn. This produces at each stage a (probably new) discrete measure, which is
approximated itself (using the first part of the proof). A smaller error term is needed
to allow for the final summation: the resulting pseudofunctions are summed, as in
the discrete case.

Here is how we begin. As before, we let N be any integer greater than 1 -t-
211tXlIMG/IllxlleM. Let v /z. Let Fl F. Let v’ be a discrete measure with
IIv’llMa) IIvlIM) and I’ 1 < e/2N on El. Use the discrete case of the lemma
to find a pseudofunction Tl with liT111’M --< IIvlIM() and Ii71 1 < e/2N on F1 (if
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1 is sufficiently close to ’, then 1 will be close to ). Let F2 {.: I1 > /2N}.
We now proceed as above. We omit further details.

Non-abelian case. The proof is identical to the abelian case, except that we replace
estimates of the form I(.)1 < /2N with estimates of the form II(r)llo <
/2N, and similarly when the inequality is the reverse. The set F2 is defined by
F2 {or: IIT(r)ll<o > /2N}. We omit further details.

We now observe that the convolution S T of two pseudomeasures is well-defined
by duality theory. In the case of abelian G, the convolution S T corresponds to
the pointwise multiplication of the transforms on the dual group. In the non-
abelian case, we have a similar representation. With that observation, we can state a
non-abelian version of Lemma 3.2.3:

LEMMA 3.2.5. Let E be a compact subset ofthe compact group G. Suppose that
E is the support of a pseudofunction T, that W is a pseudofunction supported on
G, and that tx is a measure supported on E. Then for every > 0 there exists a
pseudofunction S on E such that

(3.2.3) IIS * W I * WIIM < , IIW * S W /IIM <

and

(3.2.4)

ProofofLemma 3.2.5. The proof is similar to that of Lemma 3.2.3. We indicate
the differences between the two proofs.

Since W PF(G), a 2-argument (as in the proofofLemma 3.2.3) shows that we
may assume that W is in fact a trigonometric polynomial. But then the requirements
of (3.2.3) are met by ensuring that S is sufficiently close (weak*) to Ix. Now the proof
of Lemma 3.2.3 applies directly, taking into account the definition of the norm of

3.3. Convolution by a pseudofunction is a compact operator

LEMMA 3.3.1. Let W be apseudofunction on the compactgroup G. Suppose that
Sa is a bounded net ofpseudomeasures on G convergine weak* to S in PM(G).Then
Sa W converges in pseudomeasure norm to S W and W S converges in norm
to W S. In other words, the mappings S -> S W and S - W S are compact
from PM(G) PM(G).

There is less to this than meets the eye: in the abelian case it says that if g Co,

then the mapping f - fg from e ---> Co is compact.
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ProofofLemma 3.3.1. We prove the assertion for S W. Indeed, since W is
a pseudofunction, we may approximate W in PM-norm by a sequence {Wn} of
trigonometric polynomials (times Haar measure on G). Of course, S Wn are
continuous funtions--even trigonometric polynomialsmand S W thus converges in
uniform norm (!) [look at the Fourier coefficients, abelian or not] to the trigonometric
polynomial S Wn on G. Now a 3-argument completes the proof, yl

3.4. Sums ofpseudofunctions in avon Neumann algebra. We now state and
prove the simple (but apparently new) lemma which we use to sum pseudofunctions
on non-abelian groups. It is more particular to the non-abelian case, and is the reason
we need the formulation of (3.2.3). This lemma is used in application to operators on
L2(G), that is, to A(G).

LEMMA 3.4.1. Let 92 be avon Neumann algebra and A, B 92. Suppose that
IIA 1 > IIB b. For every > 0 there exists 3 > 0 such that IIAB* < S and
IIA*BII < S imply IIA + nil < + .

ProofofLemma 3.4.1. We use the fact that for a von Neumann algebra, the norm
is the spectral radius; therefore, to estimate the norm of an operator D, it suffices to
estimate the norm of powers of DD*.

Thus, IIA -t- Bll equals the square root of II(A + B)(A* + n*)ll, and that (by
multiplying) equals the square root of the spectral radius of AA* + AB* + BA* -t-
BB*. We expand (AA* + AB* + BA* + BB*)n into its 4n terms (remembering
that we cannot assume commutativity)" each term consists of words of length 2n.
We use the triangle inequality to replace the norm of the sum with the sum of the
norms.
We note that [[AB*[[ [[BA*I[ and [[A*B[[ [[B*A[I. Then (with a slight

rearrangement of the usual binomial order of terms), we have

((A + B)(A + B)*)2 AA*AA* + BB*BB*

+ AA*BB* + BB*AA* + AA*AB* + AA*BA*

+ AB*AA* + AB*AB* + AB*BA* + AB*BB*

+ BA*AA* + BA*AB* + BA*BA* + BA*BB*

+ BB*AB* + BB*BA*

In the above expression, we note that every term except the first two (the "bad" ones)
have within them one or more juxtapositions of the forms AB*, BA* A’B, or B*A.
Furthermore, the product of any two different "bad" terms (in either order) is not a
"bad" term. It follows that

IIA + BI[4n II((A + B)(A -F B)*)2nl[ _< 2 -b (16n 2)3.
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Let n be such that 3/4n < 1 + e, and let 8 16-n. Then A + B ((A + B) (A +
B)*)2nl[ 1/4n < 31/4n < + .

From Lemma 3.4.1 we can conclude that if S, T are two pseudofunctions on G
with IIST*IIA(G). and [IS*TIIA(G). small, then IlS / TIIA(G)* is not much larger than
the maximum of the norms of S, T.

3.5. Backgroundfornon-abelian compactgroups. We give the non-abelian group
facts and notation used in this paper.

Let G be a compact group, and let A(G) Lg(G) L2(G) be the usual Fourier
algebra [5]. We let G denote the dual object, that is, t is a maximal set of in-
equivalent unitary representations U,: G fl3(Ha) on the Hilbert space Ha. Here
fl3(H) denotes the space of all bounded linear operators on the Hilbert space H. Let

I’larfl3(Ha). Let L(t) be the set of all elements T (T)a6) such that

sup IIT I1(o) < o; then L() is (isomorphic to) the dual space of A(G); e.g.,
see, [15, 34.19 and 34.46]. As in the abelian case, some of the elements of L (()
come from measures on G: each regular bounded Borel measure/z on G gives rise
to an element of L(t) via the "Fourier-Stieltjes" transform [15, 34.1-2 and 34.24]
/2(tr) 6 fiB(Ha) where

() f ()dtx(x) for all 0, ( 6 Ha and all or.

The finite linear combinations of the functions x - (U(x)r/, () (, ( Ha) are
called "trigonometric polynomials" 15, 27.7].

Definition 3.5.1. An element S A(G)* is in A(G)*o if S is the norm-limit of
elements such that {tr: T,, 0} is finite. We’ll call such S pseudofunctions for short
and denote the set of all pseudofunctions by P F(G). The set of pseudofunctions
supported on a compact set E will be denoted by PF(E).

Each pseudofunction translates norm-continuously, that is, the mapping x - 3x*S
is continuous from G to A(G)*, where the latter space is given its dual space norm
topology. Here 3x * S is the element of A(G)* defined by f - (8-x * f, S).

The support of elements of A(G)* is determined analogously to the abelian case;
see [15, 34.46(b)]. An element S A(G)* L(G) is synthesizable if S is the
weak* limit of measures concentrated on the support of S (the limit being taken in
the weak* topology). A closed subset E C G is of synthesis if every pseudomeasure
supported on E is synthesizable. Singletons in amenable groups are sets of spectral
synthesis. See, e.g., [15, 34.46(d)] or [20, 19.19] for a proof of that fact.
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4. Weak sequential completeness and Arens non-regularity of A(E)

4.1. Results and general remarks. In this section we are inspired by a result
of Granirer 11, proof of Theorem 3] to give a stronger result (though subject to a
slightly stronger hypothesis) than Theorem 5.1.1, namely, Theorem 4.1.3. We begin
with an abstract version of 11, proof of Theorem 3].

PROPOSITION 4.1.1 11, Proof of Theorem 3]. Suppose that A is a commutative,
regular Banach algebra with maximal ideal space AA, E C A is closed, a E is
not an isolatedpoint in E and that A(E) is weakly sequentially complete. Then every
tenting sequence at a in A E) has a Sidon subsequence.

ProofofProposition 4.1.1. This proof is lightly adapted from 11, Proof of The-
orem 3]. Suppose that a 6 E and that fn is a tenting sequence in A(E) at a. By
a well-known theorem of Rosenthal, [23, p. 808], either the tenting sequence has
a Sidon subsequence or a weakly convergent subsequence. We show that "weakly
convergent subsequence" is not possible.

Indeed if fvj were weakly convergent, then because A(E) is weakly sequentially
complete, there exists f 6 A(E) with fnj "-+ f weakly. But because fn is a tenting
sequence,

(4.1.1) fn(X) -- 0

for all x E\{a} and f,,(a) -- 1. It follows that f is not continuous, an
absurdity.

f21ger [25, Theorem 3.3] shows that aweakly sequentially complete Banach algebra
(commutative or not) with no unit and with a bounded approximate identity is not
Arens regular. Proposition 4.1.1 suggests a slightly stronger result and an easier
proof, but only in the commutative case, as follows.

COROLLARY 4.1.2. Let A be a commutative Banach algebra with no identity
but with a bounded approximate identity hi. Suppose that A is weakly sequentially
complete and that the elements with compact support are dense. Then c is a Day
pointfor the unitized A + C1. In particular, A is not Arens regular.

Sketch ofproof. Indeed with E AA U {c} and a c, the proof of Proposi-
tion 4.1.1 applies, since 1 hi satisfies (4.1.1) at oo. (We pass to a separable quotient
of A + CI if necessary.)

Hence A + CI is not Arens regular. Since adjoining an identity does not affect
regularity, A is not regular (see also the proofofArens regularity of"blocked algebras"
in [6]).

Here is the main result of this section (Result 1 of the abstract).
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THEOREM 4.1.3. Let G be a non-discrete locally compact abelian group or a
non-discrete compact group, and E be a closed subset ofG such that

(1) E is a set ofbounded spectral synthesis; and
(2) E is the support ofa nonzero pseudofunction.

Then A(E) is weakly sequentially complete.

Remark 4.1.4. (i) Is the abelian group version of this result new? Y. Meyer
19, 6.2.10] states an even stronger conclusion for the line, but with neither the first

hypothesis on E, nor the hypothesis of spectral synthsis on the pseudomeasure whose
support is E. However, if E is a Helson set supporting a non-zero pseudofunction,
then A(E) C(E), for which the conclusion of Theorem 4.1.3 is false. Since
such Helson sets exist, by a famous result of K6rner (see [9, 4.6.4]), an additional
hypothesis such as "synthesizable" is needed. However, [19] provides no details of
the argument. Thus, it is unclear if either the result or proof here are new.

(ii) Granirer and Cowling [10, p. 131] show that if the compact set E has non-
empty interior, then the set of elements of the Herz algebra Ap(G) supported on E
is weakly sequentially complete. This is then used to show that if aEb f’l H has
non-empty (relative) interior in the infinite closed subgroup H C G, then E has Day
points for Ap(E). It is that argument which inspired us.

(iii) If F E1 q- E2, where the Ej are disjoint compact subsets of a Kronecker or
Kp-set, then A(F) is not weakly sequentially complete unless F is finite. [Look at
sequences of the form 1 (R) j, where the j are tents in C(E2) and gj (R) 1 (gj tents in
C (El)).] Hence, we can have non-regularity without weak sequential completeness.

(iv) Hypothesis (1) can be weakened slightly to "bounded approximation by pseud-
ofunctions", and hypothesis (2) weakened to "non-zero synthesizable pseudofunc-
tion". It would be interesting to know if such a weakening is meaningful, that is,
if there are sets not of (bounded?) synthesis for which bounded synthesis held for
synthesizable pseudomeasures.

COROLLARY 4.1.5. Let G be a compactgroup ora locally compactabelian group.
Let E be a compact subset ofG such thatfor elements a, b G and a closed infinite
subgroup H of G, aEb N H has a closed subset which is ofbounded synthesis (for
H) and which supports a pseudofunction or H). Then E has Day points.

Proofof Corollary 4.1.5. As per [11, proof of Theorem 3].

4.2. Proof of Theorem 4.1.3mabelian case. We may assume that the group is
compact and metrizable, by subsection 3.1.

Let {fn} be a sequence in A(E) that converges weakly. We first reduce the proof
to a matter of showing that (a suitably modified version of) the sequence fn --+ 0
weakly.
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We may assume that IIfnIIA(E) < 1. Let {gn} C A(G) be such that g,le fn and
[[glla(G) < 21lflla(e) for all n.

Since is countable and discrete, we may assume that -- g pointwise on (.
Of course g L() with Ilgll() _< 2. Let h . Consider

kn fn-hl, n> 1.

It will now suffice to show that kn -’+ 0 weakly in A(E).
So suppose that kn -/+ 0 weakly. Then there exists S A(E)* such that

(4.2.1) (kn, S} 1.

We shall show that (4.2.1) implies that kn has a Sidon subsequence (which cannot
not converge weakly--see the paragraph following the definition of Sidon sequence),
giving a contradiction. Thus, (4.2.1) cannot occur, and the theorem will be proved.

To this point we have not used the hypotheses on E. We now do so. First,
because E is of spectral synthesis, the quantities (kn, W) do not depend on the coset
representatives we use for k,, whatever be the W PM(E). With this in mind, we
choose gn h as our representatives. [We will eventually have a "g}iding hump"
argument ([2]), since ’n h n g converges pointwise to 0 on G. Intuitively,
we think of finding finite sets Fn C where "most of" , lives. In fact, that will be
implicit, because we need to keep our weak approximations in mind.]

The idea is to replace S with a sum ceSe of pseudofunctions, so that ,e agrees
with as far as ke is concerned, and e is small on the other km’s and {ce} is a bounded
sequence ofcomplex numbers. Then the Sidonicity ofke will follow. We shall need to
pass--in this proof at two places--to a subsequence of the km’s, so that "subsequence
of" km will become implicit. We may assume that IISIIPg 1.
We use induction. Let n(1) 1. We apply the property of "bounded spectral

synthesis" to find a finite regular Borel measure/z on E such that

1
](kn(), lZ)- (k, S)I < 1--

and

where C is a fixed constant. Now use Lemma 3.2.3 to find a pseudofunction T on E
such that

(1)(4.2.3) IIT IIM C 1 +

and

(4.2.2) I(kn(), /z)- (kn(), T)I < 1"--
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Thus,

2
(4.2.4) [(kn(1), S)- (kn(t), T1)I < 1-6"

Assume that rn > 1, that pseudofunctions T Tm supported on E, and that
integers n (1) < n (2) < < n(m) have been found so that

1 1
(4.2.5) e(.) ()) < -i-07 if E 17(Z)l > -’ 1 < e < m,

l<_k<e.

2
(4.2.6) I(kn(e), S) (ke, Te)l < 10-’--7, 1 < e < m,

1
(4.2.7) I(kn(j), Te)l < 10--’ 1 < e < j < m,

(1)(4.2.8) IITelI’M < C 1 +-- 1 <.g. < m.

The vacuous sum in (4.2.5) for g 1 means that we ignore the condition (4.2.5)
for that g. To obtain (4.2.7), we passed to a subsequence (that was the first time--see
next paragraph).
We now choose N > n(m) such that I(k, Te)l < for 1 < g < m, and

n > N. That uses the two facts (i) the Te are pseudofunctions and (ii) the n go to
zero pointwise on (, as well as the fact that the values (kj, Te) are independent of
the particular coset representatives chosen for the restrictions.

Let n (m + 1) N. Now chose a finite measure/z (again using bounded synthesis)
which satisfies

1
(4.2.9) I/2(L)- (Z)[ 10m+

for all . with

(4.2.10) 17k(Z)[ >
1

10m+l
l<k<m

and which also satisfies

(4.2.11) [(kn(m+l), ) -(kl, S)[ <
10m+l

Replace/z by a pseudofunction (using Lemma 3.2.3) Tm+I such that

(4.2.12)
1

](kn(m+l), Tm+l) (kn(m+l), /2.) < 10m+
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and

1
(4.2.13a) (;) ’m+l ().) <

10m+

whenever

10m+ll<k<m

That completes the induction.
We now replace {kn(m)} with its subsequence {kn(2m)} and consider the sums

(4.2.14) W ce(Tm+ Tm).

Here {ce is any bounded sequence ofcomplex numbers. Straightforward calculations
will show that the sum in (4.2.14) converges weak* in PM(E) (with norm the order
of C Ice I) and that I(k2,n, W) Cm -+ 0, which is enough to prove that k2m is a
Sidon sequence. [21

4.3. ProofofTheorem 4.1.3--non-abelian case. We may assume that the group
is metrizable, by subsection 3.1.
We indicate the changes that need to be made to allow for the (possible) non-

commutativity of G, the changes basically involve the summing of the pseudofunc-
tions.
We proceed, without change from the abelian case, to obtain (4.2.4), and all

that preceeds (4.2.4). Note that we have advanced the formula numbers to have
agreement (in the third component) with the abelian proof. Assume that rn > 1, that
pseudofunctions T1 Tm supported on E, and that integers n(1) < n(2) < <
n(m) have been found so that

< ...o’. > 1 < <m,(4.3.5) ie (cr) (cr)
/, ]-07 /, -i-0-i-

l<_k<e

2
(4.3.6) I(kn(e), S) (ke, Te)l < 10---, < < m,

1
(4.3.7) I(kn(j), Te)l < 10J’

< < j < m,

(4.3.8) IlZellPM < C 1 + 1 < g. < m.
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As in the abelian case, the vacuous sum in (4.3.5) for 1 means that we ignore
the condition (4.3.5) for that . To obtain (4.3.7), we passed to a subsequence (that
was the first timemsee next paragraph).

for 1 < < m andWe now choose N > n(rn) such that I(kn, Te)l <

n > N. That uses the two facts (i) the Te are pseudofunctions and (ii) the n go to
zero pointwise on , as well as the fact that the values (kj, Te) are independent of
the particular coset representatives chosen for the restrictions.

Let n(m + 1) N. Now chose a finite measure/z (again using bounded synthesis)
which satisfies

1
(4.3.9) II(cr)- (r)ll <

10m+l
for all representations cr with

1
(4.3.10) 117k(cr)llH >

10m+l<k<m

and which also satisfies

1
(4.3.11) I(kn(m+l), Iz)- (kl, S)I <

10m+l

Replace/z by a pseudofunction (using Lemma 3.2.3) Tm+l such that

(4.3.12) I(kn(m+l), Tin+l)- (kn(m+l), /z)l "<
10m+l

and

(4.3.13) (cr) m+l (or)
H 10m+l

for all cr with

1

l<k<m

That completes the induction.
We now replace {kn(m)} with its subsequence {kn(2m)} and consider the sums

(4.3.15) W ce (Tm+I Tm).

Here {ce is any bounded sequence ofcomplex numbers. Straightforward calculations
will show that the sum in (4.3.15) converges weak* in PM(E) (wth norm the order
of C _, Ice I) and that I(k2m, W) Cm 0, which is enough to prove that k2m is a
Sidon sequence. D
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5. PF(E) and Arens regularity of A(E)

5.1. Overview. We prove Result 2 of the abstract. We also discuss its history.

THEOREM 5.1.1. Let G be a non-discrete locally compact abelian group or a
non-discrete compact group. Let E be a closed subset ofG. Suppose that E supports
a non-zero synthesizable pseudofunction S, a Supp S and M > 1. Then every
tenting-M sequence at a has a Sidon subsequence. Furthermore, a is a strong Day
point.

Remarks 5.1.2. (i) The restrictions of compact and metrizable are not necessary,
but they are convenient in the proof. The reduction to the general case is routine and
left to the interested reader.

(ii) Theorem 5.1.1 does show that the second alternative in the definition of Sidon
space (that is, every tenting sequence has a Sidon subsequence) may arise for all
sets supporting a synthesizable pseudofunction, which is certainly evidence for the
assertion of 19, 6.2.10].

(iii) a must be a non-isolated point of E, since if there is an isolated point in the
support of a pseudomeasure on a non-discrete group, then the pseudomeasure cannot
be a pseudofunction.

COROLLARY 5.1.3. Let G be a locally non-discrete compact abelian group or
a non-discrete compact group. Let E be a closed subset of G and H a closed
non-discrete infinite subgroup of G and a, b G. If aEb N H supports a non-
zero synthesizable pseudofunction S for H, then D(E) 7 qb. In fact D(E) D
[.J{a-1SuppSb-1" S PF(aEbNH)}.

Proofof Corollary 5.1.3. Let {fn} C A(E) be a tenting sequence at x
H. Then the restrictions ofthe fn toaEbNH form a tenting sequence in A(aEbH).
By the theorem, there is a Sidon subseqence of the restrictions. It is obvious that the
unrestricted subsequence is also a Sidon sequence.

COROLLARY 5.1.4. Let G be a non-discretelocally compact abelian group or a
non-discrete compact group. Let E be a compact subset of G and H a closed non-
discrete infinite subgroup of G and a, b G. If aEb fq H supports a non-zero
synthesizable pseudofunction Sfor H, then A(E) is not Arens regular.

Proofof Corollary 5.1.4.
llary 5.1.3.

This is immediate from Theorem 5.1.1 and Coro-

5.2. Proof of Theorem 5.1. lmabelian case.
compact and metrizable, by subsection 3.1.

We may assume that the group is



732 COLIN C. GRAHAM

The reader will note that, in what follows, if the estimates are done with smaller
quantities (replacing the constant "3", for example, at each induction step with "1 +ej",
where j 0+), one will obtain the assertion about strong Day points. We omit
those details.

In any case, the proof uses Lemma 3.2.1 to produce two sequences of pseudofunc-
tions uj, "rj and elements gj, hj of A(G) having the properties that for 1 < j < J <
O,

(5.2.1a) vj gj S, rj hj S, a Supp(vj + rj),

(5.2.1b)

and
J

<3_8-
The supremum is taken over the dual group 1" of G. Also, gj, hj A(G) are such
that vj, rj are weak* close to unit point masses (which can be done by Lemma 3.2.1).
We will also find a subsequence {f,j of {fn} such that for k > j > 1

Supp f,,k N Supp(vj + rj) b Supp fnj Supp

while for k > j

(5.2.4) I(fn, u r)l < 8-;
and, for all j,

(5.2.5) [1 -(fnjVj}[ < 8-j2.

It then follows that any finite sum g Ckfn, has norm that can be estimated
as follows. First,

(5.2.6) >_ lcl 1-

by iterating (5.2.4)-(5.2.5). (If ck 0, we define Ax. to be 0.) SinceIc,

(5.2.7)

8 N

(5.2.8) IIgIIA(E) > Icl.3

Now apply (5.2.8) to conclude that fn is a Sidon sequence with d >
3
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[Note: the quantity 9 appearing in (5.2.6) and (5.2.8) comes from calculating the

-’error, 8- __
< 8- _8 -’7 1-8- 7"8"7 49"

It remains to show how (5.2.1)-(5.2.5) can be achieved.
We begin (here we use the metrizability) by chosing a neighborhood basis {Un at

a consisting of open relatively compact sets such that

(5.2.9) On+ C Un for n >_ 1.

We may assume (by passing to a subsequence) that

(5.2.10) Supp fn C Un for n >_ 1.

We begin with some preliminary remarks concerning (5.2.2)-(5.2.5).
Ad (5.2.2. If we did not have to worry about (5.2.2)-(5.2.5), we could achieve

(5.2.2) by using only the facts that S is a pseudofunction supported on E, and vj
gj S, rj hiS, so that if 1 < K, and vj, rj (1 < j < K) are such that (5.2.2) holds
for 1 < J < K, then there is a finite (a. k. a. compact) subset L C F such that

(5.2.11)
J

Ij fjl < 16-J

outside L, and, so for one of the compact neighborhoods Ur of a, it is true that if
vc+,, rc+ are any probability measures supported in Ur, then [t+ ’tc+ll <
16-c on L. We replace "any probability measure" with pseudofunctions using
Lemma 3.2.2, to ensure that vj and rj are pseudofunctions which satisfy the (5.2.11);
that will follow from taking pointwise limits on L (a consequence of the weak*
convergence). Now (5.2.2) follows for J K + 1.
Ad (5.2.3). This is easily obtained by using (1.5.3), since we ensure that the

(closed) supports of the i)j and rj exclude a.
Ad (5.2.4). For any J, the functions fnj, 1 < j < J are a fixed finite collection.

Their continuity will tell us that (5.2.4) will follow if vj+,+ are point masses
sufficiently close to a. We now use Lemma 3.2.1 (applied to those two point masses)
to replace those two point masses with pseudomeasures.
Ad (5.2.5). We will achieve this by ensuring that the support of rj misses the

support of fnj (see the remark above concerning (5.2.3)), and also ensuring that vj is
sufficiently close (weak*) to a unit point mass near a (see the preceding paragraph).
We now begin with : we choose r, to be any pseudofunction of the form g S

whose support excludes a and which has pseudomeasure norm 1.
We now choose fn, such that Supp f,, N Supp rl 4’, which is possible by

(1.5.1)-(1.5.3). Now use (1.5.2) and a weak* approximation of a point mass (using
the fact that fn, e A(E)) to choose a pseudofunction v of the form h,S such that
a 9 Supp v, (5.2.5) holds for j 1 and v, 1.
We have now satisfied (5.2.1)-(5.2.5) ((5.2.4) is vacuous here) for j 1. That

begins the induction.
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We now suppose that K > and that we have found pseudofunctions vj, rj such
that (5.2.1)-(5.2.5) hold for 1 < J < K.

Choose a neighborhood U of a such that U does not intersect the supports of any
of the vj, rj, 1 < j < K. That is possible by (5.2.1). If necessary, make U smaller,
so that (5.3.2) holds for J K + 1 for all pairs vtc+l’, :tc+l’ of probability measures
supported in U. We, of course, immediately replace those probability measures by
weak* approximants of the form hS as above. See Ad (5.3.2) for how to do this.
If necessary, make U smaller still so that (5.2.4) holds for all pairs Vr+l, rtc+ of
probablity measures supported in U. See Ad (5.2.4) for how to do this.
Now use (1.5.3) to choose nr+l so large that U fq Supp/x is not contained in

Supp fnr+. With this, we can choose rr+l gjS to be a pseudofunction supported
in U\ Supp f,,r+ that is sufficiently close (weak*) to a probability measure (e.g., a
unit point mass) supported in that set.

Finally, choose Vr+l hiS such that a Supp VK+l but (5.2.5) holds for j
K + 1. See Ad (5.2.5) for how to do this.

That completes the induction and the proof. IXl

COROLLARY 5.2.1. Let E be a subset of the locally compact abelian group G.
Suppose that H is a closed non-discrete subgroup of G and that E contains the
translate, K + x,ofa relatively open subset K of H. Then E contains Day-1 points.

Proof. The Haar measure of H, restricted to a compact subset of K, is a mea-
sure (even) whose Fourier-Stieltjes transform vanishes at infinity on/-). Now apply
Corollary 5.1.3. D

Remark 5.2.2. Compare with 11, Cor. 10, p. 417], for example.

5.3. Proof of Theorem 5.1. lunonabelian case. We give the Theorem 5.1.1 in
the non-abelian case. Here, G will denote a compact (hence, amenable) group. We
may assume that the group is metrizable, by subsection 3.1.

The proof closely follows the lines of the proof of Theorem 5.1.1, but using
Lemma 3.4.1 to give the conclusion that we can sum appropriate elements of PF(G)
with the norm being bounded. We note that if x, y are sufficiently close to each other,
then all eight norm differences

(5.3.1) 4-y) sll A(G)* and s (8+/-x 3+/-y)[I A(G)*
are small (by a 2C-argument using the fact that S is a pseudofunction, i.e., norm limit
of elements of LI(G)), and (5.3.1) also holds if the point masses are replaced with
elements of A(G)* with supports close to each other and norm 1, where we again
use the fact that S is a pseudofunction to obtain the conclusion. (The fact that S is
a pseudofunction is used by approximating S in PM-norm by an element of L(G),
using continuity of translation, from both sides, in L 1, and a 3C-argument.)
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Use Lemma 3.4.1 (as indicated above) to produce two sequences of pseudofunc-
tions vj, "cj and elements gj, hj of (A(G) having the properties that for 1 < j < J,

(5.3.2a) vj gj S, rj h S, a ’ Supp(v + rj),

(5.3.)

J

(5.3.3) I1 IIA<r 3 8-J.

We are using the notation of 5.2 to make the parallels clearer. Also, gj, hj A(G)
are such that vj, rj are weak* close to unit point masses (which can be done by
Lemma 3.2.1).
We will also find a subsequence {fn} of {fn} such that for k > j > 1,

(5.3.4) Supp fnk
while for k > j,

(5.3.5)

and, for all j,

(5.3.6)

](fnV r) < 8-’;

I1 -(Ajvj) < 8-.i.

Then any finite sum g Y’ cfn has norm that can be estimated as follows.
First,

(5.3.7) (g, (vj rj))

by iterating (5.3.5)-(5.3.6). Since

>_ levi 1-

A(G)*

we have

1 8 N

(5.3.9) IlgllA(e) > 49 Icl.3

Now apply (5.3.3) to conclude that fn is a Sidon sequence with d > 1-4

It remains to show how (5.3.2)-(5.3.6) can be achieved.
We begin by choosing a neighborhood basis Un at a consisting of open relatively

compact sets such that

(5.3.10) 0n+l C U, for n > 1.
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We may assume (by passing to a subsequence) that

(5.3.11) Supp fn C Un for n > 1.

We begin with some preliminary remarks concerning (5.3.3)-(5.3.6). Many details
are identical to those in the corresponding parts of Section 5.
Ad (5.3.3). If we did not have to worry about (5.3.4)-(5.3.6), we could achieve

(5.3.3) by using only the facts that S is a pseudomeasure, and vj gjS, rj hiS
have norm 1, so that if 1 < K, and vj, "rj (1 < j < K) are such that (5.3.3) holds
for 1 < J < K, then there is a finite subset (because the dual object ( is discrete)
L C such that - Ilvj rjll(n < 16-J for p ( L, and so for one of the
compact neighborhoods Ur of a, it is true that if v/+, rtc+ are any probability
measures supported in Ur, then

(5.3.12) IIv+ r/+ II(n) < 16-//dr

for all r L. Now replace the probability measures u/+, rr+ with pseudomea-
sures of the forms v:+ g:+ S, rc+ hK+ S still (by weak* approximation)
satisfying (5.3.12). Now (5.3.3) follows for J K + 1.
Ad (5.3.4). No change from the discussion Ad (5.2.3): this is easily obtained by

using (1.5.3), since we ensure that the (closed) supports of the vj and rj exclude a.
Ad (5.3.5). No change from the discussion Ad (5.2.4).
Ad (5.3.6). We will achieve this by ensuring that the support of rj misses the

support of fn (see the remark above concerning (5.3.4)), and also ensuring that the
support of vj is sufficiently close to a (see the preceding paragraph).
We begin with r. We choose r g S to be any pseudomeasure of that form, of

norm 1, whose support excludes a. We now choose f,, such that Supp f,,t NSupp r
b, which is possible by (1.5.3). Now use (1.5.2) and the continuity of fn to choose
a first an x # a and then a pseudomeasure v hS weak* close to x such that
a ( Supp v and (5.3.6)hold for j 1.
We have now satisfied (5.3.2)-(5.3.6) (item (5.3.5) is vacuous here) for j 1.

This begins the induction.
We now suppose that K > 1 and that we have found pseudomeasures vj gj S,

"rj hj S such that (5.3.2)-(5.3.6) hold for < J < K.
Choose a neighborhood U of a such that U does not intersect the supports of

any of the pseudomeasures vj, rj, 1 < j < K. If necessary, make U smaller, so
that (5.3.2) holds for J K + 1 for all pairs vt+, rC+l of probability measures
supported in U. See Ad (5.3.2) for how to do this. If necessary, make U smaller
still so that (5.3.3) holds for all pairs v:+, r+ of probability measures supported
in U. Then take weak* approximants of the form hS. See Ad (5.3.5) for how to do
this.
Now use (1.5.3) to choose nt+l so large that U N Supp/z is not contained in

Supp fnt+l. With this, we can choose r:+ gjS to be any norm pseudomeasure
supported in U\ Supp fnx+"
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Finally, choose I)K+ hjS such that a Supp vr+l but (5.3.6) holds for j
K + 1. See Ad (5.3.6) for how to do this.

That completes the induction and the proof.

6. No Ap-analogs of Theorem 4.1.3 and Theorem 5.1.1?

6.1. Discussion. For < p < cx, Ap(G) denotes the algebras of Herz [13, 14]:
f Ap(G) iff there exist gi LP(G) and hj Lq(G) with f Ygj hj and, Ilgd lip IIhj IIq < c. The norm if f is the infimum of the sums IIgj lip IIhj Ilq
subject to f Y gj hi. When G is amenable, the set Ap(G) is in fact a regular
Banach algebra. Of course, A2(G) A(G), the usual Fourier algebra.

In this section we give evidence that Theorem 4.1.3 and Theorem 5.1.1 may not
generalize to the Ap-spaces. The difficulty involves the extension of the lemma about
von Neumann algebras, Lemma 3.4.1.

An opposite extreme from avon Neumann algebra might be L (ql’). For that latter
space, we have the statement that follows about its elements, which is also a statement
about multipliers on L (q[,).

PROPOSITION 6.1.1. There exist f, g LI(q) such that Ilfll Ilglll 1,
f g O, and IIf / gill 2.

Proof We let fl 10(11[0, * llt_0,01). Then fl has L-norm 1. We let

f(x) f(2x). Then f has Ll-norm 1, is supported on [-3, 1/2] t.J [rr 1/2,r + 1/2]
and has Fourier transform supported on the even integers. Let g (x) e f(x + %).
Then g also has Ll-norm 1, is supported on [,r4 5’1 r @ 3] [,.j[13r4 5’1 "-3r .. 3],1
and has Fourier transform supported on the odd integers. Thus f g 0, and

IIf / gll 2. D

6.2. Difficulties for Ap(E). The following observation suggests that it will be
difficult to generalize Theorem 5.1.1 to the case of Ap-algebras.

COROLLARY 6.2.1. There exist 1 < p < 2 andfunctions f, g L1 () whose
norms I1" IIM, as multipliers on LP(fff) satisfy IIflIM, _< 1, IlgllM, _< 1, f g 0, but

IIf / gll >_ 3/2.

Proof Let f, g be the functions given in the proof of Propition 6.1.1. Since
f, g 6 LI(T), it follows that fllMp < 1 and IlgllM, --< 1. But Ilfll I111 1,

so IIflIM, >--[IflIMz --Ilfll 1 and IlgllM, >_ IlgllM --I111 1. Thus

IIflIM, IlgllM, 1. And, by approximation, if p is sufficiently close to 1, then
the norm of f + g as a multiplier on Lp (qI’) is close to its Ll-norm of 2, that is

Ilf + gllMp > " let h be a trigonometric polynomial such that Ilhlll 1 and
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Ilh * (f + g)ll > . Let G(p) Ilh * (f -t- g)llp/llhllp > . Then G is continuous
in p (0 < p < o). Since G(1) > , G(p) > for some p > 1. Hence, for that p,
Ilf+gllM, > . I-I

7. Problems

General questions.
1. If A(E)** is Arens regular, is E Helson (i.e., A(E) C(E)). Or: if A(E)

and A(E)**, A(E)**** are all Arens regular, is A(E) C(E)? Suggested by
H. H. Dales [4]

2. For which non-Helson subsets E of a locally compact abelian group is A(E)
Arens regular and A(E)** not Arens regular?

3. Can A(E)** be Arens regular for non-Helson E?
4. If E is analytic, must A(E)** be non-Arens regular?
5. If A (E) and A (F) are Arens regular, is A(E t.J F) Arens regular? [4]

Questions about Ap.
6. Under what conditions on E (and < p < 2?) can we say that Ap(E) is not

Arens regular.
7. Does there exist E such that Ap(E) is weakly sequentially complete (or Arens

regular) for some p and not others? Do (must?) the "good" p form an interval?
8. If p :/: 2, give conditions on E (and p?) so that Ap(E) contains a tenting

Sidon sequence.
9. If p 2, can Ap(Tf) contain a tenting sequence that is strong Sidon? In other

words, does 31" contain strong Day points for Ap()?
10. If 1 < p < 2, and E C qI’, can p(E) contain an element f of norm one

such that {fn} is a Sidon sequence? What if E "ll’?
11. Is Mp Arens regular? What about PFp?

WSC and bounded synthesis.
12. Let S2 denote the unit sphere in N3. Is A (S2) weakly sequentially complete?

[Surface area measure on S2 is a pseudofunction, so every point in S2 is a Day point
for A($2), but S2 is not a set of spectral synthesis [24].]

13. Find a compact set E C G (for some compact abelian group G, ideally "lr)
such that E is not a Helson set, and A(E) fails the conclusion of Theorem 4.1.3.
Alternatively, show that no such E exists. See Remarks 4.1.4.

14. Does bounded synthesis hold for the synthesizable pseudomeasures on $2?
If so, the proof of Theorem 4.1.3 shows that A(S2) is wsc. More generally, when can
bounded synthesis hold for the synthesizable pseudomeasures on a set of non-spectral
synthesis? [A Helson set of non-synthesis is one such example. Are there others?]

15. Suppose E is the closure of an open set. Is Ap(E) weakly sequentially
complete for some < p < o (all p)? [Note that Ap(E) is not quite the same as
{f Ap(G) Supp f C E}, which is wsc. See [10, p. 131].]
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16. Suppose E is the support of a synthesizable pseudofunction and that E has
empty interior. Is Ap(E) weakly sequentially complete for some 1 < p < c (all p)?

17. Under what conditions does A(E) non Arens regular imply A(E) weakly
sequentially complete? [See Remarks 4.1.4(iv).]

18. Does E countable and compact imply that Ap(E) is not weakly sequentially
complete?

19. Does there exist E such that A(E) (or Ap(E) for some, all? p) is neither
weakly sequentially complete nor Arens regular?

20. If E is of spectral synthesis and is the support of a pseudofunction, must E
be of bounded synthesis? Must A(E) be wsc?

Translation-invariant means.
21. Can a tenting sequence have just 2 weak accumulation points? Or is it the

case that the set of accumulation ,points of a tenting sequence is either a singleton or
infinite (uncountable?)? See Remark 2.5.1.

22. If A(E) is not Arens regular, must A(E)** contain c translation-invariant
means?

Tenting sequences.
23. If A(E) is not Arens regular, must A(E) contain a Sidon tenting sequence?
24. Are tenting-M sequences needed, that is, if E has a tenting-M sequence at

a 6 E, is there a tenting-1 sequence in A(E) at a?
25. Consider a generalization of tenting sequences: if for some 3 > 0 we have

(instead of (1.2))

(1.2’) IIfnIIA(E) 3 for all n > 1, and lim fn(O) O.

we say {fn} is a pup tenting-M sequence. (The other requirements are unchanged.)
What conditions are needed for A(E) to be non Arens regular if A(E) has a pup
tenting sequence which is Sidon? Meyer and Granirer [11 ], 19] show that if E C
is ultrathin, then every pup tenting sequence in A(E) has a Sidon subsequence.

26. If E has a pup-tenting sequence at a 6 E, is there a tenting sequence in A(E)
at a?
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