
ON THE CESARI-CAVALIERI INEQUALITY

BY

TOGO NISHIURA

The present paper concerns the inequality proved by L. Cesari in 1951
[3], [4], [7] relating the Lebesgue area of a continuous surface S (as a con-
tinuous image of a simple closed Jordan region) and the generalized length
of the related sets of contours. Much research has followed this initial work
(see bibliography for some of the references). The inequality (successively
denoted as the Eilenberg inequality, the Cavalieri inequality, and finally the
Cesari-Cavalieri inequality, see [12]) is based on a detailed study of proper-
ties of Carath6odory ends and prime-ends of open plane sets. L. Cesari
and J. Cecconi applied this inequality to surface area theory and the calculus
of variations. R. E. Fullerton extended the notion of generalized length
and the inequality to mappings from any compact two-manifold with or
without boundary [li], [15].

In [7] the inequality was given only for mappings from simple closed Jordan
regions, while most of the area theory there was developed for mappings from
admissible plane sets (including among others all open sets and all finitely
connected Jordan regions). In [8] we showed the need of proving the Cesari-
Cavalieri inequality for mappings from all admissible sets. It is the purpose
of this paper to obtain this extension. To this end we shall use the familiar
process of invading the admissible sets with Jordan regions, and make use of
results of R. E. Fullerton in [14], [15]. This in turn requires a preliminary
and subtle analysis, which is new, of a monotone relationship of Carath6odory
ends and prime-ends for sets c r, open relative to finitely connected
closed Jordan regions J c jr. We dedicate Section 2 to this task. In
Section 3 we then define generalized length for mappings from an admissible
plane set, and in Section 4 we prove the Cesari-Cavalieri inequality for
continuous mappings from admissible plane sets.

1. Preliminary discussion

We shall discuss below Carathodory ends and prime-ends for certain
classes of sets. For clarity of exposition we shall proceed by steps. In 1.1,
simply connected open sets of the plane E are considered. In 1.2, connected
sets which are open in a finitely connected Jordan region J and whose bound-
ary relative to J is connected are discussed. Finally, in 1.3, connected sets
open in a finitely connected Jordan region are considered.

If X is a subset of the plane, then X*, 3, X will denote respectively the
boundary, closure, and interior of X.

1.1. Simply connected open sets in E.
We summarize here some basic concepts as given in [7] and [16].
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Let a be a bounded open set in the plane E. with a connected boundary.
Then a is a simply connected open set. An arc b is said to be an end-cut
of a if

bna* {w} and b cau{w},

where w is an end-point of b. An arc b is said to be a cross-cut of a if

* w2} and b ( O LI {Wl, ’W2},bna {wl,

where wl and w2 are end-points of b. A point w0 e a is said to be accessible
from a if there exists an end-cut b of a such that b n a {w}. From [17,,
p. 162] it follows that the set of all points of a accessible from a forms an,
uncountable dense set in a For every cross-cut b of a, a b is open and
the union of exactly two components al and a2 each of which is simply con-
nected.
We shall now define an equivalence relation on the set of all end-cuts of a

and call each equivalence class an end r of a*. Two end-cuts b and b’ of a

are said to be equivalent if
(1) b and b’ have the same end-point w e a

(2) either b n b’ n (V w) # 0 for every neighborhood V of w, or there
exist subares bl of b and b[ of b’ and a simple are c such that

b n b’ {w}, c c o, C rl bl {wl}, C n b {w;},

and the open Jordan region J whose boundary is bl o b’l u c is contained in .
Let n} denote the family of all ends of a*. Let ni (i 1, 2, 3, 4) be four

distinct ends, and bi (i 1, 2, 3, 4) any four end-cuts in the respective
equivalence classes defined by the ends n (i 1, 2, 3, 4). Suppose that
b--{w} are all mutually disjoint, where w is the end-point b n , and
suppose that b. and b are connected by an are c so that bl o C O ha forms a
cross-cut and c n b 0 c n ba. The cross-cut bl u c o ba separates a into
two components, and b and b4 may be in different components or in the same
component. This property is independent of the end-cuts we choose in the
respective equivalence classes r (i 1, 2, 3, 4) and the are c above, and
hence this is a property of the ends n (i 1, 2, 3, 4). If b and b4 lie in
different components of a --(b u c u b), then we say that r, separates, m in {v} (and then v2, r4 separates 1, ra in {}). Therefore the collec-
tion {} can be cyclically ordered. If we denote by any one of the ends

of {}, then, given any two distinct ends nl and v2 different from , by the
open interval (1, ) in {v} we mean the set of ends e {n} such that r and
separates 1 and n2 in {rt}. By the closed interval [, r] we mean
(1, n2) U 1, n2}"

Let [’, n:] (n 1, 2,...) be a nested sequence of closed intervals of
{n} such thag ag mosg one end is contained in all intervals (r, r) and
[n’ " " 2, ). The collection of all such nested+1, gin+l] C (nn, ]n) (n 1,
sequences of intervals can be partitioned into equivalence classes in the usual
way, and each equivalence class will be called a prime-end o of a*. Each end
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r e {r} is a prime-end o, but there may be prime-ends 0 which are not ends
r. The family {0} of all prime-ends of a can be cyclically ordered by
using the eyelie ordering on In}.

For each r e {n} let w, be the accessible point determined by .. Let o be a
fixed prime-end of a*. Then E is the set of all points w which have the
following property"

There is a sequence rk (/c 1, 2, ..-) of ends of a* such that nk e [r’ ,n:k]
(/c 1, 2, and w, --+ w, nl -- as k --+ , where [rt’ r:] (n 1, 2,
is a sequence in the equivalence class determined by o.

The set E does not depend upon the particular sequence [’, rt] (n
1, 2, -..) of o and is a subeontinuum of a* [16, p. 109], [7, (19.3)].
If o v {v}, then w, e E but Eoo -{w,} need not be empty. ,
Suppose a is an unbounded connected open set such that a s compact,

connected, and nondegenerate. Then all the above discussion can be carried
out with obvious modifications.

1.2. Connected sets open in a Jordan region with connected boundary.
In the discussion to follow, we shall adopt the following notation. Let X

be a subspace of the plane, and let A c X. Then B[A :X], I[A :X], and
C[A :X] will denote the boundary, interior, and closure of A in the space X.
If J0, J1, J are simple closed Jordan regions, J c J0 J n Ji 0,
i#j,i,j 1,--.,,weshalldenotebyJ (J0,J, "",J)thefinitely
connected closed Jordan region J J0 (J u u j0). From now on,
by a Jordan region we shall mean a finitely connected closed Jordan region.

Let A be a connected subset of a Jordan region J (J0, Jt, J,) E:
(0 <_- < such that A is open in J and B[A:J] is connected and non-
degenerate. Clearly, A* B[A:J], and A* has only a finite number of com-
ponents. A* and B[A:J] are related in two possible ways:

(b)
B[A’J] is a component of A*.
B[A’J] is not a component of A*.

Consider ease (a). Denote B[A :J] by ,. Then A* y is a union of
components of J* U :=0 J’ Since the components of A* are compact and
finite in number, we can discuss the ends and prime-ends of in exactly the
same way as before in 1.1. The collection of ends {n} and the collection of
prime-ends {0} of y with respect to A is again cyclically ordered, and the set
E associated with each o e {0} is formed in the same way.

Consider ease (b). Denote B[A:J] by , again, and let M be the compo-
nent of A* which contains y. Then A* M is a union of components of
J*. Since the components of A* are compact and finite in number, we can

discuss, as in ease (a), ends and prime-ends of M with respect to A M.
M is a finite collection of open ares contained in J* [6, (2.v)], and every
point of M ,isaeeessible fromA M. Let us denote bym (i 1,
2, t) the finite number of open ares of M ,. It can be shown that the
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end-points of the arcs mi are accessible from A M. If v} M is the collection
of ends of M with respect to A M, then Iv}- is cyclically ordered, aud to

" 2 t)each mi there corresponds an open interval u (, (i 1,
[6, 3]. Hence {7} M is divided into 2t linearly ordered intervals, that is,
t and zi (i 1, 2, ..., t) where i denotes the closed intervals
of {} i=lti. Let us suppose the indices are taken so that
i < < +1 < t,i+1 (i 1, ..., t- 1).

(i) Suppose B[A J] is of type (a ). Then there exists a sequence of simple
closed curves l (n 1, 2, with the following properties:

(1) In c A for all n, and 1, are mutually disjoint;
(2) l separates " from l where m > n;
(3) lim 1. [J Eo,, where the union is talcen oer all prime-ends oo of .

with respect to A.

(ii) Suppose B[A:J] is of type (b). Then there exist sequences of arcs
l(n) (n 1, 2, ), (i 1, 2, t) with the following properties"

(1) l( A for all n and all i, and l) are all mutually disjoint;
(2) l) is a cross-cut in A M with one of its accessible points in m_ and

the other in m (i 1, 2, t). (We suppose mo mt .)
(3) limnl(n) (Jo,Eo, (i 1, 2,... t), where z also denotes the

collection of prime-ends associated with the interal z defined aboe;
(4) l( separates l() from l() in A, where m > n, i j, l 1, 2,...,

and from l() where t < n < m.

Proof. The proofs of (i) and (ii) above are established by invading A
with Jordan regions J, such that J,, c I[Jn+" J] c J+l c A (n 1, 2,
and U n= J A.

1.3. Connected sets open in a Jordan region.
Let us consider a more general case than the one considered in 1.2 bove.

Let a be a connected set open in J (J0, J,"-, J) (0 =< v < q-m).
Then B[a" J] is compact but not necessarily connected. Let / be a non-
degenerate component of B[a" J], and let A (% a) be the component of J ,
which contains a. Then B[A (, a)’J] T, and the discussion of 1.2 applies
for , and A (,, a).
An end-cut b of , with respect to A (% a) is said to be admissible if b a

has w as an accumulation point, where w is the accessible point of , from
A (% a) determined by b.
An end of -/with respect to A (% a) is said to be admissible if r has an

end-cut b, which is admissible. An interval of ends [n’, ’] of , with respect
to A (, a) is said to be an admissible arc if each end r e In’, n] is admissible.
A cyclic collection of ends Iv} of /with respect to A (% a) is said to be an
admissible cycle if each end r e {} is admissible.

(i) THEOREM. If n is an admissible end of "l with respect to A(’I, a), then
every end-cut b, of n is an admissible end-cut [14].
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(ii) THEOREM. Suppose " is a component of A*, where A A(% a).
Then every end of " with respect to
is an admissible cycle [14].

(iii) THEOREM. Suppose "y is not a component of A*, where A A(, a),
and let zi (i 1, 2, t) be defined as in 1.2 above. If has an admissible
end , then is an admissible arc [14].

(iv) Remarlc. In 1.2, (i) we can also suppose that l a (n 1, 2, -..)
and in 1.2, (ii) we can suppose, for each i such that is an admissible arc,
that l:)

a (n 1, 2, ...). Then for case (u), that is, is a component
of A* where A A(% a), we have that l and l (m > n) form an annular
region H,, and for all n large enough H A and Y H D . If we
consider case (b), that is, is not a component of A*, and is an admissible
arc, then for all n large enough l( and l) (m > n) bound u simply connected
set () in J such that **(i)mn C A, J H()mn D u Ua> l) u U< l), and
B[tt+ J] (+> u ( +> c a.

(v) Let be a component of J , and b, an admissible end-cut of with
respect to A (, a). Then b, a does not have w, as an accumulation point.

Proof. Let us cousider case (b), that is, + is not a component of A*.
Suppose b+ has w, as n ccumulatiou point. Since b, is aa dmissible
end-cut, there exist m and n (m > n) such that ifH is the region defined in
1.3, Remark (iv), then n b, n , Br(). j] u c a, and
B[H(’J] separates J. Since it is assumed that w, is an accumulation point
of n b,, we have n b, n (J H() . This implies that is separated,
a contradiction since is a component of J . Hence n b, does not have
w, as an accumulation point.

In ease (a), (v) is established in a similar manner.

2. A monotone relationship on ends

Let J’ and J be two Jordan regions, J’ D J, and let a’ be a connected sub-
set of J’ and open in J’. Then J n a’ is open in J, and J n a’ U a, where
a is a component of J n a’ and the union is taken over all such components
a. For each a and each nondegenerate component of B[a:J], the discussion
of 1.3 applies. Hence for each a and , a nondegenerate component of B[a: J],
we have either a finite number of admissible ares
B[a’:J’] need not be connected, but there does exist a nondegenerate compo-
nent ’ of B[a’:J’] which contains . Let A’(’, a’) be that component of
J’ ’ which contains a’. A’(’, a’) need not contain A(, a); hence every
end-cut b of with respect to A(, a) need not be an end-cut of ’ with
respect to A’(’,

(i) LM. U f {vl,. is an admissible cycle of with respect to A(% a),
then ’, A(% a) A’(’, a’), and the collection of all ends n of ’ with
respect to A’(’, a’) is the sane as and hence an admissible cycle.
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Proof. 7 is a component of A*, where A A (7, a). The components of
EN 2 are of two kinds, those components V with V* c 7 and those com-
ponents W with W* n 7 O. Clearly 7’ n V 0, for otherwise 7 would
separate a’. Consequently (7’ 7) n (7u U V) 0, where U Visthe
union of all components V with V* 7. Suppose 7’ 7 0. Then there
exists a point w0 e 7’ such that w0 7 u U V. By 1.3, Remark (iv), there
exists a simple closed curve l such that w0 and 7 are separated by l and
In C a. Hence 7’ would be disconnected, a contradiction. Therefore 7’ 7.
The remaining parts of the lemma now follow easily.

(ii) LEMMA. Suppose [’, v] is an admissible arc of 7 with respect
to A(7, a). Suppose vo (v’, v") and b,o is an end-cut of vo such that no
subend-cut is contained in A’(7’, a’). Then either every end with v >
has no end-cut b, with b, A’(7, a’), or every end v e with v o has no
end-cut b, with b, A’(7’, a’).

Proof. Since a is an admissible arc, we have that v0 is an admissible end,
and, by 1.3, Theorem (i), b,o is an admissible end-cut of 7 with respect to
A (7, a). Hence a b,o has W,o as an accumulation point. Also, by hypoth-
esis, b,o has no subend-cut which is contained iu A’(7’, a’), and hence b,o
has w, as an accumulation point. Suppose the lemma is false. Thea there
exist two ends w and vN in with w v0 < vN and two corresponding end-cuts
b,1 and b, such that

b, n b, n A(7, a) 0 and b,i u b, {wt/1 w72 A’(7’, a’) fl A(7,

From 1.3, Remark (iv), there is a simply connected region H( such that
b,0 n 7’ has a nonempty intersection with I[H(.,)’J] and both b, and b, have
nonempty intersection with both l() and () the components of
Therefore, there is a simply connected region B J such that

B* li) u l() u b, u

and B contains a point of b,0 n 7’. B* n 7’ 0 since

B* l(i) u l(, u bni U b, {w, w,,.} A’(7’, a’).

Since W,o B, we have 7’ n (J B) . This implies 7’ is disconnected, a
contradiction. Hence Lemma (ii) is proved.

(iii) Remarlc. From Lemma (ii) above we see that at most one subarc
of an admissible arc of 7 with respect to A (7, a) is contained in an admissible
arc ’ or an admissible cycle f’ with respect to A’(7’, a’). This subarc may
be degenerate. Clearly, the admissible arc depends on the pair (7,
Let (71, a) and (TN, aN) be two distinct pairs, and let and aN be two ad-
missible arcs of 71 and 7N with respect to A (Tt, al) and A (TN, aN), respectively.
Suppose 71 U 72 I 7’, and suppose a and a. are subarcs of o-1 and aN respec-
tively, which are contained in the same admissible are ’ or admissible cycle
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’ of / with respect to A’(,),’, a’). Then, from 1.3, (v) above, we see that
1 and 92 are nonoverlapping in ’ or ’.

Let [’, "] be an admissible arc of , with respect to A (% a), and let
be the maximal collection of ends e such that v is also aa admissible

end of an admissible arc ’ or cycle ’ of -’ with respect to A’(/, a’). Since
is a subinterval of , ai will consist of the empty set, or of one proper

subinterval of ai, or of two proper subintervals of ., or of itself. Denote
by h any one of the nonempty intervals of zi i, and let A w, v hi}.

(iv) LEMMA. Ai c E, for some prime-end o of the admissible arc ’ or cycle

’ of "’ with respect to A’(’I’, a’).

Proof. We shall prove the lemma for the case k zi and ’ is an admissible
arc. The remaining cases are handled in a similar manner.

Leta [v’,v"],b b,,,b2 b,,,,w w,,,andw, w,,,. As in 1.2,
let m and m_ be the open arcs of M which correspond to the open arcs
of ends u nd _, where M is the component of A*, A A(% a), which
contains 7. Since h , ’ n A(% a) is nonempty, and ’ n A(% a) n m_
has w as a limit point, and ’ n A (% a) n m has w2 as a limit point.

For nd A(, a), there is, by 1.3, Remark (iv), sequence of rcs l) a

(n 1, 2, with the properties" (a) l) has only its end-points in mi_
and m (n 1, 2,... ); (b) lim l( O, Eo ; and (c) l) separates,

() from () (m > n > r). Consider now m_ n A’(’, a) andin A (, ),
m n A’(’, a). Each is collection of open rcs S(i) nd S-), nd each
(i) meets one of these arcs, say S) and _,(-). Hence the closure of

l(i) o S() o ,(-) contains a cross-cut b) for the arc a’ of ’ with respect to
A’(’, a’). Clearly, we may assume b) b) ’ for m n. Let us
denote one of the ends of ’ with respect to A’(’, a’) determined by b)

as . Then the cross-cuts b) (n > 1) form a collection of intervals [’n, n]
of ’ with the property that one of the following holds" [’n, ] is disjoint

" ] properly, or [’ ] is contained] or [tn n] contains [,from [
in [, n:] properly (m > n > 1). Consequently, by extracting a subsequence
if necessary, we may assume that either all the intervals [n’n, n:] are nested
or the intervals are all mutually disjoint. In the latter case, we may suppose,
again extracting a subsequence if necessary, that

for all n.

Let us now apply a Carathodorytransformation C to A’(,’, a’). That is,
C maps A’(.)/, a’) homeomorphically into the interior of the unit circle so
that the transform of any cross-cut of A’(.),’, a’) is a cross-cut of the unit
circle and that the end-points of such transforms of cross-cuts of A’(,’,
are dense on the circumference. (See [7, Chapter VII for a discussion of
Carathodory transformations.) The problem now reduces to showing that
lim SUpn- C(b(n)) is degenerate. Since b() c A(,, a) and lim.b( ,,
we have that lira SUpn-. C(b()) is contained in the circumference of the
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unit circle. Suppose lim supn C(b(i)) is nondegenerate. Then there
exists an end-cut b of ’ with respect to A’(7’, a’) such that C(b) has its
end-point in lira SUpn- C(b(i)) and C(b) n C(b(])) for an infinite number
of n. Hence b n b(] for an infinite number of n. This implies that the
accessible point determined by b is in . Clearly, b is not contained in A (% a).
Therefore, the accessible point determined by b is either w or w, say Wl.
Consider ’ n m_. S(]-) (n 1, 2, partition ’ n m_ into disjoint
classes which converge to Wl. Consequently, the components of ’ n A (, a)
which meet mi-1 are partitioned into disjoint classes ’. There is a spherical
neighborhood U of w such that lira SUpnn is not contained in U. Other-
wise, there would be an end-cut b’ of with respect to A (, a) which has Wl
as an accessible point and b’ A’(’, a’); and this is impossible. Now there
is a subinterval b0 of b such that Wl is an end-point and b0 U. Let n and

() () () contains with nn be such that b n b0 - n b0 and n2n
l(i) i(i)Since n and are contained in , there exists an arc C such that

l(i) ](i) (i)C is connected. Now (b0 bn n C) {wi} separates the
plane, and there exists simple closed curve P in (b0 u b b() . c) {wi}
which separates and , and P n ’ 0. This cannot be since
and ’ is connected. Hence lira SUpn C(b()) is degenerate. This com-
pletes the proof of Lemma (iv).

3. Definition of 9ener]ized
We first define generalized length for Jordan regions as given by R. E.

Fullerton [15]. Let (T, J) be a continuous mupping from Jordan region
J E into En and let a be any set open in J. Thena 0 a,where

are the components of and the union is taken over all such components
a. With each a we have associated the collection {}, of nondegenerate
components of B[" J]. And, with each , we have either a finite col-
lection {a)},, of admissible arcs a) or an admissible cycle (). Let
() [, w,"’, w]bepurtitionofa ;thatis,a [’ ], and let P)

v’ "" w v". Let
z(p); J) ;: T(w,+,) V(,) l,

where w, is the accessible point of from A(, a) determined by the end
and the absolute value sign denotes the Euclideun distance. Finally, let

()(); J) sup z(P ;J),
where the supremum is taken over all partitions P) of a). In a similar
way we define a number ((); J). Hence for each e {}, we have a
number (; J) equal to (() J) or (a J), where the sum
ranges over a)},,. If B[’J] has no nondegenerate component, then
( J) will be defined to be zero. The number

( T, J) . x( J)
is called the generalized length of (T, B[a J]) [15].
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If J (, 1, 2,..., m)is a finite collection of disjoint Jordan regions,
(T, U=I J,) is a continuous mapping, and a is open in UI Jr, then we define

(; T, U= J) 7=( J T, ).

(i) THEOREM. Let J’, J, J,..., J be Jordan regions such that
J’ U= J and J J, for . Let T, J’) be a continuous mapping
into E and let a’ be a set open in J’. Then

l(a’; T, J’) l(a’ n UT= J T, UT= J).

Proof. We prove the theorem for the cse m 1. The cse where m > 1
follows in similar manner. Also, it is enough to prove the inequality for
the cse where a’ is connected.

Let J J. By 2, Lemm (i), n dmissible cycle of with respect to
A (, a), where a is component of J n a’ nd is nondegenemte compo-
nent of Bin: J], is lso n dmissible cycle for the lrger Jordan region J’.
Hence (; J) k(; J’) for ech dmissible cycle of J.

Let z be n dmissible rc of with respect to A (, a), ad let be the
mximl subrc of z which is contained in n dmissible rc z’ or cycle of

’ with respect to A’(’, a’). If h is defined s in Section 2, then by 2,
Lemm (iv), A E for some prime-end of z’ or ’. If T is not constant
on A, then, by [7, 20.2, (iii)], h(z’; J) + or h(’; J) +. If T
is constant on A, then (z J) ( J). Hence, by 2, Remark (iii),
we hve in any case that

(’; J’) ( ;J) or (’; J’) ( ;J),

where the sums on the right-hand sides re extended over 11 dmissible rcs
z of J which hve subrc contained in z’ or ’ respectively.

Therefore, we hve from the definition of generalized length that

(’; T, J’) (’ 3; T,

This concludes the proof of Theorem (i).
We now define generalized length for mppings from dmissible sets. Let

us recall the definition of dmissible set [7]. A setA E is clled admissible
if
() AisnopensetinE;
(b) A is the union of finite number of disjoint Jordan regions;
(c) A is set open in the type (b) bove.
Let A be n dmissible set, nd B ( 1, 2, sequence of sets with

the following properties"

(1) B is the union of finite number of disjoint Jordan regions
( , 2,...);

(2) B I[B+I:A] B+A ( 1,2,...);
(3) =B A.
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Let a be a set open in A. Then n B is open in B, and l(a n B T, B)
is defined. By 3, Theorem (i), we have

1( n B,+I T, B+I) >_- l( n B T, B) (v 1, 2, -.-).

Hence, l(a; T, A) lim+ l(a n B, T, B) exists and is called the generalized
length of (T, B[a’A]). Since B I[B+I’A] (v 1, 2, ...), it is clear that
the limit is independent of the sequence B, (v 1, 2,...). Also, since
U =1B U =11[B’A] A, if A is compact, then B A for all v suffi-
ciently large. Hence this new definition is clearly an extension of generalized
length for Jordan regions given earlier.

4. The Cesari-Cavalieri inequality
Let (T, A) be a continuous mapping from an admissible set A E. into

En, and let f be a continuous real-valued function defined on E. Then fT
is a continuous real-valued function on A. Let be a real number, and let

D+(t;f) {weA fT(w) > t}, D-(t; f) {weA fT(w) < t},

C(t; f) {w e A fT(w) t}.

Since D-(t; f) D+(-t; --f), we need only consider D-(t) D-(t; f).
D-(t) is open in A. Hence l(D-(t); T, A) is defined (Section 3). Let

l(t; T, A, f) l(D-(t) T, A ).

(i) LEMMA. l(t; T, A, f) is a measurable function of t.

Proof. Let J = J, be ny finite union of disjoint Jordan regions contained
in A. Then by [15], l( 13 __1 J,. D-(t); T, (J = J) is mesumble function
of t. Sinee l(t; T, A, f) is limit of such mesumble functions, it is lso
mesumble function of t.

(ii) LEMMA. lira inf_,_0 l(r; T, A, f) >- l(t; T, A, f).

Proof. Let I.J = J be s in the proof of Lemm (i) bove. Then by
[15], we have

l( U= J o D-(t); T, t3= J) _<_ lira inf_,_0 l(U= J n D-(t); T, U =. J)

=< lira inf_,_0 l(r; T, A, f).

Since (J= J, is rbitmry,

l(t; T, A, f) <= lira inf,_,_0 l(r; T, A, f),

nd Lemm (ii) is proved.
It should be noted that, by [7, 20.3, Lemm (iv)], Lemm (ii) bove lso

implies the measurability of l(t; T, A, f).
We re now ble to establish the Cesri-Cvlieri inequality.
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(iii) THEOREM. Let T, A) be a continuous mapping of an admissible set
A c E into E, and let f be a real-valued Lipschitzian function of Lipschitz
constant K 0 defined on E,. Then

KL(T, A) >__ l(t; T, A,f) dt,

where L( T, A is the Lebesgue area of (T, A ).

Proof. Let B ( 1, 2,.-. be sequence of sets which satisfy condi-
tions (1), (2), and (3) of Section 3. Then from [15] we have for each ,

KL(T, B) >= l(B, n D-(t); T, B) dt.

Hence by [7, 5.14, (iv)] and the theorem of Beppo Levi,

KL(T, A) lim KL(T, B) >= lim l(B n D-(t); T, B) dt

lim l(B n D-(t); T, By) dt l(t; T, A,f) dt.

Thereby, Theorem (iii) is proved.
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