ON THE CESARI-CAVALIERI INEQUALITY

BY
Togo Nishiura

The present paper concerns the inequality proved by L. Cesari in 1951 [3], [4], [7] relating the Lebesgue area of a continuous surface S (as a continuous image of a simple closed Jordan region) and the generalized length of the related sets of contours. Much research has followed this initial work (see bibliography for some of the references). The inequality (successively denoted as the Eilenberg inequality, the Cavalieri inequality, and finally the Cesari-Cavalieri inequality, see [12]) is based on a detailed study of properties of Carathéodory ends and prime-ends of open plane sets. L. Cesari and J. Cecconi applied this inequality to surface area theory and the calculus of variations. R. E. Fullerton extended the notion of generalized length and the inequality to mappings from any compact two-manifold with or without boundary [14], [15].

In [7] the inequality was given only for mappings from simple closed Jordan regions, while most of the area theory there was developed for mappings from admissible plane sets (including among others all open sets and all finitely connected Jordan regions). In [8] we showed the need of proving the CesariCavalieri inequality for mappings from all admissible sets. It is the purpose of this paper to obtain this extension. To this end we shall use the familiar process of invading the admissible sets with Jordan regions, and make use of results of R. E. Fullerton in [14], [15]. This in turn requires a preliminary and subtle analysis, which is new, of a monotone relationship of Carathéodory ends and prime-ends for sets $\alpha \subset \alpha^{\prime}$, open relative to finitely connected closed Jordan regions $J \subset J^{\prime}$. We dedicate Section 2 to this task. In Section 3 we then define generalized length for mappings from an admissible plane set, and in Section 4 we prove the Cesari-Cavalieri inequality for continuous mappings from admissible plane sets.

1. Preliminary discussion

We shall discuss below Carathéodory ends and prime-ends for certain classes of sets. For clarity of exposition we shall proceed by steps. In 1.1, simply connected open sets of the plane E_{2} are considered. In 1.2 , connected sets which are open in a finitely connected Jordan region J and whose boundary relative to J is connected are discussed. Finally, in 1.3, connected sets open in a finitely connected Jordan region are considered.

If X is a subset of the plane, then X^{*}, \bar{X}, X^{0} will denote respectively the boundary, closure, and interior of X.

1.1. Simply connected open sets in E_{2}.

We summarize here some basic concepts as given in [7] and [16].
Received July 9, 1962.

Let α be a bounded open set in the plane E_{2} with a connected boundary. Then α is a simply connected open set. An are b is said to be an end-cut of α if

$$
b \cap \alpha^{*}=\{w\} \quad \text { and } \quad b \subset \alpha \mathbf{u}\{w\}
$$

where w is an end-point of b. An arc b is said to be a cross-cut of α if

$$
b \cap \alpha^{*}=\left\{w_{1}, w_{2}\right\} \quad \text { and } \quad b \subset \alpha \mathbf{u}\left\{w_{1}, w_{2}\right\}
$$

where w_{1} and w_{2} are end-points of b. A point $w_{0} \in \alpha^{*}$ is said to be accessible from α if there exists an end-cut b of α such that $b \cap \alpha^{*}=\{w\}$. From [17, p. 162] it follows that the set of all points of α^{*} accessible from α forms an uncountable dense set in α^{*}. For every cross-cut b of $\alpha, \alpha-b$ is open and the union of exactly two components α_{1} and α_{2} each of which is simply connected.

We shall now define an equivalence relation on the set of all end-cuts of α and call each equivalence class an end η of α^{*}. Two end-cuts b and b^{\prime} of α are said to be equivalent if
(1) b and b^{\prime} have the same end-point $w \in \alpha^{*}$;
(2) either $b \cap b^{\prime} \cap(V-w) \neq \emptyset$ for every neighborhood V of w, or there exist subares b_{1} of b and b_{1}^{\prime} of b^{\prime} and a simple are c such that

$$
b_{1} \cap b_{1}^{\prime}=\{w\}, \quad c \subset \alpha, \quad c \cap b_{1}=\left\{w_{1}\right\}, \quad c \cap b_{1}^{\prime}=\left\{w_{1}^{\prime}\right\}
$$

and the open Jordan region J whose boundary is $b_{1} \cup b_{1}^{\prime} \cup c$ is contained in α.
Let $\{\eta\}$ denote the family of all ends η of α^{*}. Let $\eta_{i}(i=1,2,3,4)$ be four distinct ends, and $b_{i}(i=1,2,3,4)$ any four end-cuts in the respective equivalence classes defined by the ends $\eta_{i}(i=1,2,3,4)$. Suppose that $b_{i}-\left\{w_{i}\right\}$ are all mutually disjoint, where w_{i} is the end-point $b_{i} \cap \alpha^{*}$, and suppose that b_{1} and b_{3} are connected by an arc c so that $b_{1} \cup c \cup b_{3}$ forms a cross-cut and $c \cap b_{2}=\emptyset=c \cap b_{4}$. The cross-cut $b_{1} \cup c$ u b_{3} separates α into two components, and b_{2} and b_{4} may be in different components or in the same component. This property is independent of the end-cuts we choose in the respective equivalence classes $\eta_{i}(i=1,2,3,4)$ and the arc c above, and hence this is a property of the ends $\eta_{i}(i=1,2,3,4)$. If b_{2} and b_{4} lie in different components of $\alpha-\left(b_{1} \mathbf{\cup} c \mathbf{u} b_{2}\right)$, then we say that η_{1}, η_{3} separates η_{2}, η_{4} in $\{\eta\}$ (and then η_{2}, η_{4} separates η_{1}, η_{3} in $\{\eta\}$). Therefore the collection $\{\eta\}$ can be cyclically ordered. If we denote by ∞ any one of the ends η of $\{\eta\}$, then, given any two distinct ends η_{1} and η_{2} different from ∞, by the open interval $\left(\eta_{1}, \eta_{2}\right)$ in $\{\eta\}$ we mean the set of ends $\eta \epsilon\{\eta\}$ such that η and ∞ separates η_{1} and η_{2} in $\{\eta\}$. By the closed interval $\left[\eta_{1}, \eta_{2}\right]$ we mean $\left(\eta_{1}, \eta_{2}\right) \cup\left\{\eta_{1}, \eta_{2}\right\}$.

Let $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right](n=1,2, \cdots)$ be a nested sequence of closed intervals of $\{\eta\}$ such that at most one end is contained in all intervals $\left(\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right)$ and $\left[\eta_{n+1}^{\prime}, \eta_{n+1}^{\prime \prime}\right] \subset\left(\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right)(n=1,2, \cdots)$. The collection of all such nested sequences of intervals can be partitioned into equivalence classes in the usual way, and each equivalence class will be called a prime-end ω of α^{*}. Each end
$\eta \in\{\eta\}$ is a prime-end ω, but there may be prime-ends ω which are not ends η. The family $\{\omega\}$ of all prime-ends ω of α^{*} can be cyclically ordered by using the cyclic ordering on $\{\eta\}$.

For each $\eta \epsilon\{\eta\}$ let w_{η} be the accessible point determined by η. Let ω be a fixed prime-end of α^{*}. Then E_{ω} is the set of all points w which have the following property:

There is a sequence $\eta_{k}(k=1,2, \cdots)$ of ends of α^{*} such that $\eta_{k} \in\left[\eta_{n_{k}}^{\prime}, \eta_{n_{k}}^{\prime \prime}\right]$ $(k=1,2, \cdots)$ and $w_{\eta_{k}} \rightarrow w, n_{k} \rightarrow \infty$ as $k \rightarrow \infty$, where $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right](n=1,2, \cdots)$ is a sequence in the equivalence class determined by ω.

The set E_{ω} does not depend upon the particular sequence $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right](n=$ $1,2, \cdots$) of ω and is a subcontinuum of α^{*} [16, p. 109], [7, (19.3)]. If $\omega=\eta \in\{\eta\}$, then $w_{\eta} \in E_{\omega}$ but $E_{\omega}-\left\{w_{\eta}\right\}$ need not be empty.

Suppose α is an unbounded connected open set such that α^{*} is compact, connected, and nondegenerate. Then all the above discussion can be carried out with obvious modifications.

1.2. Connected sets open in a Jordan region with connected boundary.

In the discussion to follow, we shall adopt the following notation. Let X be a subspace of the plane, and let $A \subset X$. Then $B[A: X], I[A: X]$, and $C[A: X]$ will denote the boundary, interior, and closure of A in the space X. If $J_{0}, J_{1}, \cdots, J_{\nu}$ are simple closed Jordan regions, $J_{i} \subset J_{0}^{0}, J_{i} \cap J_{j}=\emptyset$, $i \neq j, i, j=1, \cdots, \nu$, we shall denote by $J=\left(J_{0}, J_{1}, \cdots, J_{\nu}\right)$ the finitely connected closed Jordan region $J=J_{0}-\left(J_{1}^{0} \cup \cdots\right.$ u $\left.J_{\nu}^{0}\right)$. From now on, by a Jordan region we shall mean a finitely connected closed Jordan region.

Let A be a connected subset of a Jordan region $J=\left(J_{0}, J_{1}, \cdots, J_{\nu}\right) \subset E_{2}$ $(0 \leqq \nu<\infty)$ such that A is open in J and $B[A: J]$ is connected and nondegenerate. Clearly, $A^{*} \supset B[A: J]$, and A^{*} has only a finite number of components. $\quad A^{*}$ and $B[A: J]$ are related in two possible ways:
(a) $B[A: J]$ is a component of A^{*}.
(b) $B[A: J]$ is not a component of A^{*}.

Consider case (a). Denote $B[A: J]$ by γ. Then $A^{*}-\gamma$ is a union of components of $J^{*}=\bigcup_{i=0}^{\nu} J_{i}^{*}$. Since the components of A^{*} are compact and finite in number, we can discuss the ends and prime-ends of γ in exactly the same way as before in 1.1. The collection of ends $\{\eta\}$ and the collection of prime-ends $\{\omega\}$ of γ with respect to A is again cyclically ordered, and the set E_{ω} associated with each $\omega \epsilon\{\omega\}$ is formed in the same way.

Consider case (b). Denote $B[A: J]$ by γ again, and let M be the component of A^{*} which contains γ. Then $A^{*}-M$ is a union of components of J^{*}. Since the components of A^{*} are compact and finite in number, we can discuss, as in case (a), ends and prime-ends of M with respect to $A-M$. $M-\gamma$ is a finite collection of open arcs contained in $J^{*}[6,(2 . v)]$, and every point of $M-\gamma$ is accessible from $A-M$. Let us denote by $m_{i}(i=1$, $2, \cdots, t)$ the finite number of open arcs of $M-\gamma$. It can be shown that the
end-points of the $\operatorname{arcs} m_{i}$ are accessible from $A-M$. If $\{\eta\}_{M}$ is the collection of ends of M with respect to $A-M$, then $\{\eta\}_{M}$ is cyclically ordered, and to each m_{i} there corresponds an open interval $\mu_{i}=\left(\eta_{i}^{\prime}, \eta_{i}^{\prime \prime}\right)(i=1,2, \cdots, t)$ [6, §3]. Hence $\{\eta\}_{M}$ is divided into $2 t$ linearly ordered intervals, that is, μ_{i} and $\sigma_{i}(i=1,2, \cdots, t)$ where σ_{i} denotes the t closed intervals of $\{\eta\}_{M}-\bigcup_{i=1}^{t} \mu_{i}$. Let us suppose the indices are taken so that $\sigma_{i}<\mu_{i}<\sigma_{i+1}<\mu_{i+1}(i=1, \cdots, t-1)$.
(i) Suppose $B[A: J]$ is of type (a). Then there exists a sequence of simple closed curves $l_{n}(n=1,2, \cdots)$ with the following properties:
(1) $l_{n} \subset A$ for all n, and l_{n} are mutually disjoint;
(2) l_{m} separates γ from l_{n}, where $m>n$;
(3) $\lim _{n \rightarrow \infty} l_{n}=\cup E_{\omega}$, where the union is taken over all prime-ends ω of γ with respect to A.
(ii) Suppose $B[A: J]$ is of type (b). Then there exist t sequences of arcs $l_{n}^{(i)}(n=1,2, \cdots),(i=1,2, \cdots, t)$ with the following properties:
(1) $l_{n}^{(i)} \subset A$ for all n and all i, and $l_{n}^{(i)}$ are all mutually disjoint;
(2) $l_{n}^{(i)}$ is a cross-cut in $A-M$ with one of its accessible points in m_{i-1} and the other in $m_{i}(i=1,2, \cdots, t) . \quad\left(W e\right.$ suppose $\left.m_{0}=m_{t}.\right)$
(3) $\lim _{n \rightarrow \infty} l_{n}^{(i)}=\bigcup_{\omega \in \sigma_{i}} E_{\omega}(i=1,2, \cdots, t)$, where σ_{i} also denotes the collection of prime-ends associated with the interval σ_{i} defined above;
(4) $l_{n}^{(i)}$ separates $l_{m}^{(i)}$ from $l_{k}^{(j)}$ in A, where $m>n, i \neq j, k=1,2, \cdots$, and from $l_{k}^{(i)}$, where $k<n<m$.

Proof. The proofs of (i) and (ii) above are established by invading A with Jordan regions J_{n} such that $J_{n} \subset I\left[J_{n+1}: J\right] \subset J_{n+1} \subset A(n=1,2, \cdots)$ and $\cup_{n=1}^{\infty} J_{n}=A$.

1.3. Connected sets open in a Jordan region.

Let us consider a more general case than the one considered in 1.2 above. Let α be a connected set open in $J=\left(J_{0}, J_{1}, \cdots, J_{\nu}\right)(0 \leqq \nu<+\infty)$. Then $B[\alpha: J]$ is compact but not necessarily connected. Let γ be a nondegenerate component of $B[\alpha: J]$, and let $A(\gamma, \alpha)$ be the component of $J-\gamma$ which contains α. Then $B[A(\gamma, \alpha): J]=\gamma$, and the discussion of 1.2 applies for γ and $A(\gamma, \alpha)$.

An end-cut b of γ with respect to $A(\gamma, \alpha)$ is said to be admissible if $b \cap \alpha$ has w as an accumulation point, where w is the accessible point of γ from $A(\gamma, \alpha)$ determined by b.
An end η of γ with respect to $A(\gamma, \alpha)$ is said to be admissible if η has an end-cut b_{η} which is admissible. An interval of ends $\left[\eta^{\prime}, \eta^{\prime \prime}\right]$ of γ with respect to $A(\gamma, \alpha)$ is said to be an admissible arc if each end $\eta \in\left[\eta^{\prime}, \eta^{\prime \prime}\right]$ is admissible. A cyclic collection of ends $\{\eta\}$ of γ with respect to $A(\gamma, \alpha)$ is said to be an admissible cycle if each end $\eta \in\{\eta\}$ is admissible.
(i) Theorem. If η is an admissible end of γ with respect to $A(\gamma, \alpha)$, then every end-cut b_{η} of η is an admissible end-cut [14].
(ii) Theorem. Suppose γ is a component of A^{*}, where $A=A(\gamma, \alpha)$. Then every end η of γ with respect to $A(\gamma, \alpha)$ is admissible, and hence $\zeta=\{\eta\}_{\gamma}$ is an admissible cycle [14].
(iii) Theorem. Suppose γ is not a component of A^{*}, where $A=A(\gamma, \alpha)$, and let $\sigma_{i}(i=1,2, \cdots, t)$ be defined as in 1.2 above. If σ_{i} has an admissible end η, then σ_{i} is an admissible arc [14].
(iv) Remark. In 1.2, (i) we can also suppose that $l_{n} \subset \alpha(n=1,2, \cdots)$ and in 1.2, (ii) we can suppose, for each i such that σ_{i} is an admissible arc, that $l_{n}^{(i)} \subset \alpha(n=1,2, \cdots)$. Then for case (a), that is, γ is a component of A^{*} where $A=A(\gamma, \alpha)$, we have that l_{m} and $l_{n}(m>n)$ form an annular region $H_{m n}$, and for all n large enough $H_{m n} \subset A$ and $J-H_{m n} \supset \gamma$. If we consider case (b), that is, γ is not a component of A^{*}, and σ_{i} is an admissible arc, then for all n large enough $l_{n}^{(i)}$ and $l_{m}^{(i)}(m>n)$ bound a simply connected set $H_{m n}^{(i)}$ in J such that $H_{m n}^{(i)} \subset A, J-H_{m n}^{(i)} \supset \gamma \cup \cup_{h>m} l_{k}^{(i)} \cup \cup_{k<n} l_{k}^{(i)}$, and $B\left[H_{m n}^{(i)}: J\right]=l_{n}^{(i)} \cup l_{m}^{(i)} \subset \alpha$.
(v) Let β be a component of $J-\bar{\alpha}$, and b_{η} an admissible end-cut of γ with respect to $A(\gamma, \alpha)$. Then $b_{\eta} \cap \beta$ does not have w_{η} as an accumulation point.

Proof. Let us consider case (b), that is, γ is not a component of A^{*}. Suppose $b_{\eta} \cap \beta$ has w_{η} as an accumulation point. Since b_{η} is an admissible end-cut, there exist m and $n(m>n)$ such that if $H_{n m}^{(i)}$ is the region defined in 1.3, Remark (iv), then $H_{n m}^{(i)} \cap b_{\eta} \cap \beta \neq \emptyset, B\left[H_{n m}^{(i)}: J\right]=l_{n}^{(i)}$ u $l_{m}^{(i)} \subset \alpha$, and $B\left[H_{m n}^{(i)}: J\right]$ separates J. Since it is assumed that w_{η} is an accumulation point of $\beta \cap b_{\eta}$, we have $\beta \cap b_{\eta} \cap\left(J-H_{m n}^{(i)}\right) \neq \emptyset$. This implies that β is separated, a contradiction since β is a component of $J-\bar{\alpha}$. Hence $\beta \cap b_{\eta}$ does not have w_{η} as an accumulation point.

In case (a), (v) is established in a similar manner.

2. A monotone relationship on ends

Let J^{\prime} and J be two Jordan regions, $J^{\prime} \supset J$, and let α^{\prime} be a connected subset of J^{\prime} and open in J^{\prime}. Then $J \cap \alpha^{\prime}$ is open in J, and $J \cap \alpha^{\prime}=\mathrm{U} \alpha$, where α is a component of $J \cap \alpha^{\prime}$ and the union is taken over all such components α. For each α and each nondegenerate component γ of $B[\alpha: J]$, the discussion of 1.3 applies. Hence for each α and γ, a nondegenerate component of $B[\alpha: J]$, we have either a finite number of admissible arcs σ_{i} or an admissible cycle ζ. $B\left[\alpha^{\prime}: J^{\prime}\right]$ need not be connected, but there does exist a nondegenerate component γ^{\prime} of $B\left[\alpha^{\prime}: J^{\prime}\right]$ which contains γ. Let $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ be that component of $J^{\prime}-\gamma^{\prime}$ which contains α^{\prime}. $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ need not contain $A(\gamma, \alpha)$; hence every end-cut b of γ with respect to $A(\gamma, \alpha)$ need not be an end-cut of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$.
(i) Lemma. If $\zeta=\{\eta\}_{\gamma, \alpha}$ is an admissible cycle of γ with respect to $A(\gamma, \alpha)$, then $\gamma=\gamma^{\prime}, A(\gamma, \alpha) \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$, and the collection of all ends η of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ is the same as ζ and hence an admissible cycle.

Proof. γ is a component of A^{*}, where $A=A(\gamma, \alpha)$. The components of $E_{2}-\bar{A}$ are of two kinds, those components V with $V^{*} \subset \gamma$ and those components W with $W^{*} \cap \gamma=\emptyset$. Clearly $\gamma^{\prime} \cap V=\emptyset$, for otherwise γ would separate α^{\prime}. Consequently $\left(\gamma^{\prime}-\gamma\right) \cap(\gamma \cup \cup V)=\emptyset$, where $\cup V$ is the union of all components V with $V^{*} \subset \gamma$. Suppose $\gamma^{\prime}-\gamma \neq \emptyset$. Then there exists a point $w_{0} \in \gamma^{\prime}$ such that $w_{0} \notin \gamma \cup \cup V$. By 1.3, Remark (iv), there exists a simple closed curve l_{n} such that w_{0} and γ are separated by l_{n} and $l_{n} \subset \alpha$. Hence γ^{\prime} would be disconnected, a contradiction. Therefore $\gamma^{\prime}=\gamma$. The remaining parts of the lemma now follow easily.
(ii) Lemma. Suppose $\sigma_{i}=\left[\eta^{\prime}, \eta^{\prime \prime}\right]$ is an admissible arc of γ with respect to $A(\gamma, \alpha)$. Suppose $\eta_{0} \in\left(\eta^{\prime}, \eta^{\prime \prime}\right)$ and $b_{\eta_{0}}$ is an end-cut of η_{0} such that no subend-cut is contained in $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. Then either every end $\eta \epsilon \sigma_{i}$ with $\eta>\eta_{0}$ has no end-cut b_{η} with $b_{\eta} \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$, or every end $\eta \in \sigma_{i}$ with $\eta<\eta_{0}$ has no end-cut b_{η} with $b_{\eta} \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$.

Proof. Since σ_{i} is an admissible arc, we have that η_{0} is an admissible end, and, by 1.3 , Theorem (i), $b_{\eta_{0}}$ is an admissible end-cut of γ with respect to $A(\gamma, \alpha)$. Hence $\alpha \cap b_{\eta_{0}}$ has $w_{\eta_{0}}$ as an accumulation point. Also, by hypothesis, $b_{\eta_{0}}$ has no subend-cut which is contained in $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$, and hence $b_{\eta_{0}} \cap \gamma^{\prime}$ has $w_{\eta_{0}}$ as an accumulation point. Suppose the lemma is false. Then there exist two ends η_{1} and η_{2} in σ_{i} with $\eta_{1}<\eta_{0}<\eta_{2}$ and two corresponding end-cuts $b_{\eta_{1}}$ and $b_{\eta_{2}}$ such that
$b_{\eta_{1}} \cap b_{\eta_{2}} \cap A(\gamma, \alpha)=\emptyset \quad$ and $\quad b_{\eta_{1}} \cup b_{\eta_{2}}-\left\{w_{\eta_{1}}, w_{\eta_{2}}\right\} \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right) \cap A(\gamma, \alpha)$.
From 1.3, Remark (iv), there is a simply connected region $H_{m n}^{(i)}$ such that $b_{\eta_{0}} \cap \gamma^{\prime}$ has a nonempty intersection with $I\left[H_{m n}^{(i)}: J\right]$ and both $b_{\eta_{1}}$ and $b_{\eta_{2}}$ have nonempty intersection with both $l_{m}^{(i)}$ and $l_{n}^{(i)}$, the components of $B\left[H_{m n}^{(i)}: J\right]$. Therefore, there is a simply connected region $B \subset J$ such that

$$
B^{*} \subset l_{m}^{(i)} \cup l_{n}^{(i)} \cup b_{\eta_{1}} \cup b_{\eta_{2}}
$$

and B contains a point of $b_{\eta_{0}} \cap \gamma^{\prime} . \quad B^{*} \cap \gamma^{\prime}=\emptyset$ since

$$
B^{*} \subset l_{m}^{(i)} \cup l_{n}^{(i)} \cup b_{\eta_{1}} \cup b_{\eta_{2}}-\left\{w_{\eta_{1}}, w_{\eta_{2}}\right\} \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)
$$

Since $w_{\eta_{0}} \notin B$, we have $\gamma^{\prime} \cap(J-B) \neq \emptyset$. This implies γ^{\prime} is disconnected, a contradiction. Hence Lemma (ii) is proved.
(iii) Remark. From Lemma (ii) above we see that at most one subare $\tilde{\sigma}_{i}$ of an admissible arc σ_{i} of γ with respect to $A(\gamma, \alpha)$ is contained in an admissible are σ^{\prime} or an admissible cycle ζ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. This subarc may be degenerate. Clearly, the admissible arc σ_{i} depends on the pair (γ, α). Let $\left(\gamma_{1}, \alpha_{1}\right)$ and (γ_{2}, α_{2}) be two distinct pairs, and let σ_{1} and σ_{2} be two admissible arcs of γ_{1} and γ_{2} with respect to $A\left(\gamma_{1}, \alpha_{1}\right)$ and $A\left(\gamma_{2}, \alpha_{2}\right)$, respectively. Suppose $\gamma_{1} \cup \gamma_{2} \subset \gamma^{\prime}$, and suppose $\tilde{\sigma}_{1}$ and $\tilde{\sigma}_{2}$ are subarcs of σ_{1} and σ_{2}, respectively, which are contained in the same admissible arc σ^{\prime} or admissible cycle
ζ^{\prime} of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. Then, from 1.3, (v) above, we see that $\tilde{\sigma}_{1}$ and $\tilde{\sigma}_{2}$ are nonoverlapping in σ^{\prime} or ζ^{\prime}.

Let $\sigma_{i}=\left[\eta^{\prime}, \eta^{\prime \prime}\right]$ be an admissible arc of γ with respect to $A(\gamma, \alpha)$, and let $\tilde{\sigma}_{i}$ be the maximal collection of ends $\eta \epsilon \sigma_{i}$ such that η is also an admissible end of an admissible arc σ^{\prime} or cycle ζ^{\prime} of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. Since $\tilde{\sigma}_{i}$ is a subinterval of $\sigma_{i}, \sigma_{i}-\tilde{\sigma}_{i}$ will consist of the empty set, or of one proper subinterval of σ_{i}, or of two proper subintervals of σ_{i}, or of σ_{i} itself. Denote by λ_{i} any one of the nonempty intervals of $\sigma_{i}-\tilde{\sigma}_{i}$, and let $\Lambda_{i}=\left\{w_{\eta}: \eta \in \lambda_{i}\right\}$.
(iv) Lemma. $\quad \Lambda_{i} \subset E_{\omega}$ for some prime-end ω of the admissible arc σ^{\prime} or cycle ζ^{\prime} of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$.

Proof. We shall prove the lemma for the case $\lambda_{i}=\sigma_{i}$ and σ^{\prime} is an admissible arc. The remaining cases are handled in a similar manner.

Let $\sigma_{i}=\left[\eta^{\prime}, \eta^{\prime \prime}\right], b_{1}=b_{\eta^{\prime}}, b_{2}=b_{\eta^{\prime \prime}}, w_{1}=w_{\eta^{\prime}}$, and $w_{2}=w_{\eta^{\prime \prime}}$. As in 1.2, let m_{i} and m_{i-1} be the open arcs of $M-\gamma$ which correspond to the open arcs of ends μ_{i} and μ_{i-1}, where M is the component of $A^{*}, A=A(\gamma, \alpha)$, which contains γ. Since $\lambda_{i}=\sigma_{i}, \gamma^{\prime} \cap A(\gamma, \alpha)$ is nonempty, and $\gamma^{\prime} \cap A(\gamma, \alpha) \cap m_{i-1}$ has w_{1} as a limit point, and $\gamma^{\prime} \cap A(\gamma, \alpha) \cap m_{i}$ has w_{2} as a limit point.

For σ_{i} and $A(\gamma, \alpha)$, there is, by 1.3, Remark (iv), a sequence of $\operatorname{arcs} l_{n}^{(i)} \subset \alpha$ ($n=1,2, \cdots$) with the properties: (a) $l_{n}^{(i)}$ has only its end-points in m_{i-1} and $m_{i}(n=1,2, \cdots)$; (b) $\lim _{n \rightarrow \infty} l_{n}^{(i)}=U_{\omega \in \sigma_{i}} E_{\omega}=\gamma$; and (c) $l_{n}^{(i)}$ separates, in $A(\gamma, \alpha), l_{m}^{(i)}$ from $l_{r}^{(i)}(m>n>r)$. Consider now $m_{i-1} \cap A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ and $m_{i} \cap A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. Each is a collection of open arcs $S^{(i)}$ and $S^{(i-1)}$, and each $l_{n}^{(i)}$ meets one of these arcs, say $S_{n}^{(i)}$ and $S_{n}^{(i-1)}$. Hence the closure of $l_{n}^{(i)} \cup S_{n}^{(i)} \cup S_{n}^{(i-1)}$ contains a cross-cut $b_{n}^{(i)}$ for the are σ^{\prime} of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. Clearly, we may assume $b_{n}^{(i)} \cap b_{m}^{(i)}-\gamma^{\prime}=\emptyset$ for $m \neq n$. Let us denote one of the ends of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ determined by $b_{1}^{(i)}$ as ∞. Then the cross-cuts $b_{n}^{(i)}(n>1)$ form a collection of intervals [$\left.\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]$ of σ^{\prime} with the property that one of the following holds: $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]$ is disjoint from $\left[\eta_{m}^{\prime}, \eta_{m}^{\prime \prime}\right]$, or $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]$ contains $\left[\eta_{m}^{\prime}, \eta_{m}^{\prime \prime}\right]$ properly, or $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]$ is contained in $\left[\eta_{m}^{\prime}, \eta_{m}^{\prime \prime}\right]$ properly $(m>n>1)$. Consequently, by extracting a subsequence if necessary, we may assume that either all the intervals $\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]$ are nested or the intervals are all mutually disjoint. In the latter case, we may suppose, again extracting a subsequence if necessary, that

$$
\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]<\left[\eta_{n+1}^{\prime}, \eta_{n+1}^{\prime \prime}\right] \quad \text { or } \quad\left[\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right]>\left[\eta_{n+1}^{\prime}, \eta_{n+1}^{\prime \prime}\right] \quad \text { for all } n .
$$

Let us now apply a Carathéodory transformation C to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. That is, C maps $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ homeomorphically into the interior of the unit circle so that the transform of any cross-cut of $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ is a cross-cut of the unit circle and that the end-points of such transforms of cross-cuts of $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ are dense on the circumference. (See [7, Chapter VI] for a discussion of Carathéodory transformations.) The problem now reduces to showing that $\lim \sup _{n \rightarrow \infty} C\left(b_{n}^{(i)}\right)$ is degenerate. Since $b_{n}^{(i)} \subset A(\gamma, \alpha)$ and $\lim _{n \rightarrow \infty} b_{n}^{(i)}=\gamma$, we have that $\lim \sup _{n \rightarrow \infty} C\left(b_{n}^{(i)}\right)$ is contained in the circumference of the
unit circle. Suppose $\lim \sup _{n \rightarrow \infty} C\left(b_{n}^{(i)}\right)$ is nondegenerate. Then there exists an end-cut b of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$ such that $C(b)$ has its end-point in lim $\sup _{n \rightarrow \infty} C\left(b_{n}^{(i)}\right)$ and $C(b) \cap C\left(b_{n}^{(i)}\right) \neq \emptyset$ for an infinite number of n. Hence $b \cap b_{n}^{(i)} \neq \emptyset$ for an infinite number of n. This implies that the accessible point determined by b is in γ. Clearly, b is not contained in $A(\gamma, \alpha)$. Therefore, the accessible point determined by b is either w_{1} or w_{2}, say w_{1}. Consider $\gamma^{\prime} \cap m_{i-1}$. $\quad S_{n}^{(i-1)}(n=1,2, \cdots)$ partition $\gamma^{\prime} \cap m_{i-1}$ into disjoint classes which converge to w_{1}. Consequently, the components of $\gamma^{\prime} \cap A(\gamma, \alpha)$ which meet m_{i-1} are partitioned into disjoint classes γ_{n}^{\prime}. There is a spherical neighborhood U of w_{1} such that $\lim \sup _{n \rightarrow \infty} \gamma_{n}^{\prime}$ is not contained in U. Otherwise, there would be an end-cut b^{\prime} of γ with respect to $A(\gamma, \alpha)$ which has w_{1} as an accessible point and $b^{\prime} \subset A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$; and this is impossible. Now there is a subinterval b_{0} of b such that w_{1} is an end-point and $b_{0} \subset U$. Let n_{1} and n_{2} be such that $b_{n_{1}}^{(i)} \cap b_{0} \neq \emptyset \neq b_{n_{2}}^{(i)} \cap b_{0}$ and $H_{n_{2} n_{1}}^{(i)}$ contains a $\gamma_{n_{3}}^{\prime}$ with $\gamma_{n_{3}}^{\prime} \nsubseteq U$. Since $l_{n_{1}}^{(i)}$ and $l_{n_{2}}^{(i)}$ are contained in α, there exists an arc $C \subset \alpha$ such that $l_{n_{1}}^{(i)} \cup l_{n_{2}}^{(i)} \cup C$ is connected. Now $\left(b_{0} \cup b_{n_{1}}^{(i)} \mathbf{u} b_{n_{2}}^{(i)} \cup C\right)-\left\{w_{1}\right\}$ separates the plane, and there exists a simple closed curve P in $\left(b_{0} \mathbf{u} b_{n_{1}}^{(i)} \mathbf{u} b_{n_{2}}^{(i)} \cup C\right)-\left\{w_{1}\right\}$ which separates $\gamma_{n_{3}}^{\prime}$ and γ, and $P \cap \gamma^{\prime}=\emptyset$. This cannot be since $\gamma^{\prime} \supset \gamma \cup \boldsymbol{\gamma}_{n_{3}}^{\prime}$ and γ^{\prime} is connected. Hence $\lim \sup _{n \rightarrow \infty} C\left(b_{n}^{(i)}\right)$ is degenerate. This completes the proof of Lemma (iv).

3. Definition of generalized length

We first define generalized length for Jordan regions as given by R. E. Fullerton [15]. Let (T, J) be a continuous mapping from a Jordan region $J \subset E_{2}$ into E_{n}, and let α be any set open in J. Then $\alpha=U \alpha_{k}$, where α_{k} are the components of α and the union is taken over all such components α_{k}. With each α_{k} we have associated the collection $\left\{\gamma_{k}\right\}_{\alpha_{k}}$ of nondegenerate components γ_{k} of $B\left[\alpha_{k}: J\right]$. And, with each γ_{k}, we have either a finite collection $\left\{\sigma_{i}^{(k)}\right\}_{\gamma_{k}, \alpha_{k}}$ of admissible arcs $\sigma_{i}^{(k)}$ or an admissible cycle $\zeta^{(k)}$. Let $\sigma_{i}^{(k)}=\left[\eta^{\prime}, \eta^{\prime \prime}\right]$, and let $P_{i}^{(k)}=\left[\eta_{1}, \eta_{2}, \cdots, \eta_{\tau}\right]$ be a partition of $\sigma_{i}^{(k)}$; that is, $\eta^{\prime}=\eta_{1}<\eta_{2}<\cdots<\eta_{\tau}=\eta^{\prime \prime}$. Let

$$
S\left(P_{i}^{(k)} ; J\right)=\sum_{j=1}^{r-1}\left|T\left(w_{\eta_{j+1}}\right)-T\left(w_{\eta_{j}}\right)\right|,
$$

where $w_{\eta_{j}}$ is the accessible point of γ_{k} from $A\left(\gamma_{k}, \alpha_{k}\right)$ determined by the end η_{j} and the absolute value sign denotes the Euclidean distance. Finally, let

$$
\lambda\left(\sigma_{i}^{(k)} ; J\right)=\sup S\left(P_{i}^{(k)} ; J\right)
$$

where the supremum is taken over all partitions $P_{i}^{(k)}$ of $\sigma_{i}^{(k)}$. In a similar way we define a number $\lambda\left(\zeta^{(k)} ; J\right)$. Hence for each $\gamma_{k} \epsilon\left\{\gamma_{k}\right\}_{\alpha_{k}}$ we have a number $\lambda\left(\gamma_{k} ; J\right)$ equal to $\lambda\left(\zeta^{(k)} ; J\right)$ or $\sum \lambda\left(\sigma_{i}^{(k)} ; J\right)$, where the sum \sum ranges over $\left\{\sigma_{i}^{(k)}\right\}_{\gamma_{k}, \alpha_{k}}$. If $B\left[\alpha_{k}: J\right]$ has no nondegenerate component, then $\lambda\left(\gamma_{k} ; J\right)$ will be defined to be zero. The number

$$
l(\alpha ; T, J)=\sum_{\alpha_{k}} \sum_{\gamma_{k}} \lambda\left(\gamma_{k} ; J\right)
$$

is called the generalized length of $(T, B[\alpha: J])[15]$.

If $J_{\nu}(\nu=1,2, \cdots, m)$ is a finite collection of disjoint Jordan regions, ($T, \bigcup_{\nu=1}^{m} J_{\nu}$) is a continuous mapping, and α is open in $\mathrm{U}_{\nu=1}^{m} J_{\nu}$, then we define

$$
l\left(\alpha ; T, \cup_{\nu=1}^{m} J_{\nu}\right)=\sum_{\nu=1}^{m} l\left(\alpha \cap J_{\nu} ; T, J_{\nu}\right)
$$

(i) Theorem. Let $J^{\prime}, J_{1}, J_{2}, \cdots, J_{m}$ be Jordan regions such that $J^{\prime} \supset \cup_{\nu=1}^{m} J_{\nu}$ and $J_{\nu} \cap J_{\mu}=\emptyset$ for $\nu \neq \mu$. Let $\left(T, J^{\prime}\right)$ be a continuous mapping into E_{n}, and let α^{\prime} be a set open in J^{\prime}. Then

$$
l\left(\alpha^{\prime} ; T, J^{\prime}\right) \geqq l\left(\alpha^{\prime} \cap \cup_{\nu=1}^{m} J_{\nu} ; T, \cup_{\nu=1}^{m} J_{\nu}\right) .
$$

Proof. We prove the theorem for the case $m=1$. The case where $m>1$ follows in a similar manner. Also, it is enough to prove the inequality for the case where α^{\prime} is connected.

Let $J_{1}=J$. By 2, Lemma (i), an admissible cycle ζ of γ with respect to $A(\gamma, \alpha)$, where α is a component of $J \cap \alpha^{\prime}$ and γ is a nondegenerate component of $B[\alpha: J]$, is also an admissible cycle for the larger Jordan region J^{\prime}. Hence $\lambda(\zeta ; J)=\lambda\left(\zeta ; J^{\prime}\right)$ for each admissible cycle ζ of J.

Let σ_{i} be an admissible arc of γ with respect to $A(\gamma, \alpha)$, and let $\tilde{\sigma}_{i}$ be the maximal subarc of σ_{i} which is contained in an admissible arc σ^{\prime} or cycle ζ^{\prime} of γ^{\prime} with respect to $A^{\prime}\left(\gamma^{\prime}, \alpha^{\prime}\right)$. If Λ_{i} is defined as in Section 2, then by 2 , Lemma (iv), $\Lambda_{i} \subset E_{\omega}$ for some prime-end ω of σ^{\prime} or ζ^{\prime}. If T is not constant on Λ_{i}, then, by $\left[7,20.2\right.$, (iii)], $\lambda\left(\sigma^{\prime} ; J\right)=+\infty$ or $\lambda\left(\zeta^{\prime} ; J\right)=+\infty$. If T is constant on Λ_{i}, then $\lambda\left(\sigma_{i} ; J\right)=\lambda\left(\tilde{\sigma}_{i} ; J\right)$. Hence, by 2, Remark (iii), we have in any case that

$$
\lambda\left(\sigma^{\prime} ; J^{\prime}\right) \geqq \sum \lambda\left(\sigma_{i} ; J\right) \quad \text { or } \quad \lambda\left(\zeta^{\prime} ; J^{\prime}\right) \geqq \sum \lambda\left(\sigma_{i} ; J\right),
$$

where the sums on the right-hand sides are extended over all admissible arcs σ_{i} of J which have a subarc $\tilde{\sigma}_{i}$ contained in σ^{\prime} or ζ^{\prime} respectively.

Therefore, we have from the definition of generalized length that

$$
l\left(\alpha^{\prime} ; T, J^{\prime}\right) \geqq l\left(\alpha^{\prime} \cap J ; T, J\right)
$$

This concludes the proof of Theorem (i).
We now define generalized length for mappings from admissible sets. Let us recall the definition of admissible set [7]. A set $A \subset E_{2}$ is called admissible if
(a) A is an open set in E_{2};
(b) A is the union of a finite number of disjoint Jordan regions;
(c) A is a set open in the type (b) above.

Let A be an admissible set, and $B_{\nu}(\nu=1,2, \cdots)$ a sequence of sets with the following properties:
(1) B_{ν} is the union of a finite number of disjoint Jordan regions ($\nu=1,2, \cdots)$;
(2) $B_{\nu} \subset I\left[B_{\nu+1}: A\right] \subset B_{\nu+1} \subset A \quad(\nu=1,2, \cdots) ;$
(3) $\cup_{\nu=1}^{\infty} B_{\nu}=A$.

Let α be a set open in A. Then $\alpha \cap B_{\nu}$ is open in B_{v}, and $l\left(\alpha \cap B_{v} ; T, B_{v}\right)$ is defined. By 3, Theorem (i), we have

$$
l\left(\alpha \cap B_{\nu+1} ; T, B_{v+1}\right) \geqq l\left(\alpha \cap B_{v} ; T, B_{v}\right) \quad(\nu=1,2, \cdots) .
$$

Hence, $l(\alpha ; T, A)=\lim _{\nu \rightarrow \infty} l\left(\alpha \cap B_{v} ; T, B_{v}\right)$ exists and is called the generalized length of ($T, B[\alpha: A]$). Since $B_{\nu} \subset I\left[B_{\nu+1}: A\right](\nu=1,2, \cdots)$, it is clear that the limit is independent of the sequence $B_{v}(\nu=1,2, \cdots)$. Also, since $\mathrm{U}_{\nu=1}^{\infty} B_{\nu}=\mathrm{U}_{\nu=1}^{\infty} I\left[B_{v}: A\right]=A$, if A is compact, then $B_{\nu}=A$ for all ν sufficiently large. Hence this new definition is clearly an extension of generalized length for Jordan regions given earlier.

4. The Cesari-Cavalieri inequality

Let (T, A) be a continuous mapping from an admissible set $A \subset E_{2}$ into E_{n}, and let f be a continuous real-valued function defined on E_{n}. Then $f T$ is a continuous real-valued function on A. Let t be a real number, and let

$$
\begin{gathered}
D^{+}(t ; f)=\{w \in A: f T(w)>t\}, \quad D^{-}(t ; f)=\{w \in A: f T(w)<t\}, \\
C(t ; f)=\{w \in A: f T(w)=t\} .
\end{gathered}
$$

Since $D^{-}(t ; f)=D^{+}(-t ;-f)$, we need only consider $D^{-}(t)=D^{-}(t ; f)$. $D^{-}(t)$ is open in A. Hence $l\left(D^{-}(t) ; T, A\right)$ is defined (Section 3). Let

$$
l(t ; T, A, f)=l\left(D^{-}(t) ; T, A\right)
$$

(i) Lemma. $l(t ; T, A, f)$ is a measurable function of t.

Proof. Let $\cup_{\nu=1}^{n} J_{\nu}$ be any finite union of disjoint Jordan regions contained in A. Then by [15], $l\left(\mathrm{U}_{\nu=1}^{m} J_{\nu} \cap D^{-}(t) ; T, \mathrm{U}_{\nu=1}^{m} J_{\nu}\right)$ is a measurable function of t. Since $l(t ; T, A, f)$ is a limit of such measurable functions, it is also a measurable function of t.
(ii) Lemma. $\lim \inf _{\tau \rightarrow t-0} l(\tau ; T, A, f) \geqq l(t ; T, A, f)$.

Proof. Let $\bigcup_{\nu=1}^{m} J_{\nu}$ be as in the proof of Lemma (i) above. Then by [15], we have

$$
\begin{aligned}
l\left(\bigcup_{\nu=1}^{m} J \cap D^{-}(t) ; T, \bigcup_{\nu=1}^{m} J_{\nu}\right) & \leqq \lim \inf _{\tau \rightarrow t-0} l\left(\bigcup_{\nu=1}^{m} J_{\nu} \cap D^{-}(t) ; T, \bigcup_{\nu=1}^{m} J_{\nu}\right) \\
& \leqq \lim \inf _{\tau \rightarrow t-0} l(\tau ; T, A, f)
\end{aligned}
$$

Since $\bigcup_{\nu=1}^{n} J_{v}$ is arbitrary,

$$
l(t ; T, A, f) \leqq \lim \inf _{\tau \rightarrow t-0} l(\tau ; T, A, f)
$$

and Lemma (ii) is proved.
It should be noted that, by [$7,20.3$, Lemma (iv)], Lemma (ii) above also implies the measurability of $l(t ; T, A, f)$.

We are now able to establish the Cesari-Cavalieri inequality.
(iii) Theorem. Let (T, A) be a continuous mapping of an admissible set $A \subset E_{2}$ into E_{n}, and let f be a real-valued Lipschitzian function of Lipschitz constant $K>0$ defined on E_{n}. Then

$$
K L(T, A) \geqq \int_{-\infty}^{+\infty} l(t ; T, A, f) d t
$$

where $L(T, A)$ is the Lebesgue area of (T, A).
Proof. Let $B_{\nu}(\nu=1,2, \cdots)$ be a sequence of sets which satisfy conditions (1), (2), and (3) of Section 3. Then from [15] we have for each ν,

$$
K L\left(T, B_{\nu}\right) \geqq \int_{-\infty}^{+\infty} l\left(B_{\nu} \cap D^{-}(t) ; T, B_{\nu}\right) d t .
$$

Hence by $[7,5.14$, (iv)] and the theorem of Beppo Levi,

$$
\begin{aligned}
K L(T, A)= & \lim _{\nu \rightarrow \infty} K L\left(T, B_{\nu}\right) \geqq \lim _{\nu \rightarrow \infty} \int_{-\infty}^{+\infty} l\left(B_{\nu} \cap D^{-}(t) ; T, B_{\nu}\right) d t \\
& =\int_{-\infty}^{+\infty} \lim _{\nu \rightarrow \infty} l\left(B_{\nu} \cap D^{-}(t) ; T, B_{\nu}\right) d t=\int_{-\infty}^{+\infty} l(t ; T, A, f) d t
\end{aligned}
$$

Thereby, Theorem (iii) is proved.

Bibliography

1. J. Cecconi, La disuguaglianza di Cavalieri per la k-area secondo Lebesgue in un n spazio, Ann. Mat. Pura Appl. (4), vol. 42 (1956), pp. 189-204.
2. ———, Rettifica alla nota "La disuguaglianza di Cavalieri per la k-area secondo Lebesgue in un n-spazio", Ann. Mat. Pura Appl. (4), vol. 44 (1957), p. 171.
3. L. Cesari, Eilenberg's inequality for Lebesgue area, Bull. Amer. Math. Soc., vol. 57 (1951), p. 168.
4. - Contours of a Fréchet surface, Riv. Mat. Univ. Parma, vol. 4 (1953), pp. 173194.
5. -—, Properties of contours, Rend. Mat. e Appl. (5), vol. 15 (1956), pp. 341-365.
6. -- Fine-cylic elements of surfaces of the type ν, Riv. Mat. Univ. Parma, vol. 7 (1956), pp. 149-185.
7. -—, Surface area, Princeton, Princeton University Press, 1956.
8. L. Cesari and T. Nishiura, On some theorems concerning the equality of Lebesgue and Peano areas, Riv. Mat. Univ. Parma, vol. 9 (1958), pp. 29-44.
9. L. Cesari and R. E. Fullerton, Smoothing methods for contours, Illinois J. Math., vol. 1 (1957), pp. 395-405.
10. R. E. Fullerton, On the rectification of contours of a Fréchet surface, Riv. Mat. Univ. Parma, vol. 4 (1953), pp. 207-212.
11. - On the subdivision of surfaces into pieces with rectifiable boundaries, Riv. Mat. Univ. Parma, vol. 4 (1953), pp. 289-298.
12. -—, An extension of the Cesari-Cavalieri inequality, Acad. Serbe Sci. Publ. Inst. Math., vol. 13 (1959), pp. 123-128.
13. -_, The structure of contours of a Fréchet surface, Illinois J. Math., vol. 4 (1960), pp. 619-628.
14. -_, Prime ends for open subsets of two dimensional manifolds-I, Riv. Mat. Univ. Parma, vol. 10 (1959), pp. 85-98.
15. -, Generalized length and an inequality of Cesari for surfaces defined over twomanifolds, Riv. Mat. Univ. Parma, vol. 10 (1959), pp. 153-165.
16. B. v. Kerékjártó, Vorlesungen über Topologie I, Berlin, Springer, 1923.
17. M. H. A. Newman, Elements of the topology of plane sets of points, 2nd ed., Cambridge, University Press, 1951.

Wayne State University
Detroit, Michigan

