PROOF OF A CONJECTURE OF G. POLYA CONCERNING
GAP SERIES!

BY
W. H. J. Fucsas

1. Statement and proof of Theorem 1

Let A = {X, A1, A2, ---} be an increasing sequence of nonnegative in-
tegers satisfying the gap condition

1) A/ — .
Let
(2) f@) = 2o (A eA)

be an entire function of finite order; put
M(r, f) = supe|f(re”)|,  L(r, f) = info|f(re”)| (6 real).

In a famous paper [3] G. Pélya conjectured that under the above conditions
on A and f(z)

T 1Og L(Ta f) _
i o 3G 1)

I shall prove in this note that the conjecture is correct:

TaroreM 1. If the entire function (2) is of finite order, and if the sequence
of exponents \ satisfies (1), then, given € > 0

log L(r,f) > (1 — &) log M(r, f)
holds outside a set of logarithmic density 0.

The proof is based on the following result of T. Kévari which improves
previous theorems by G. Pélya [3], P. Turan [4], and others.

TaroreMm A [2, Theorem 1, p. 326]. Let
M(r, 7, 8,/) = supyzosyss | f(re”)] -

If f(2) is an entire function of finite order gien by (2), and if the exponents
\ satisfy (1), then, gwen 8§ > 0, and n > 0,

3) log M (r,v,8,f) > (1 — n) log M (r,f)
holds, uniformly in v, outside a set of r of logarithmic density 0.

Another tool in the proof of Theorem 1 is the following lemma which is an
adaptation of Lemma 1 of [1].
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LemMa 1. Let h(2) be a meromorphic function of finite order p. Let T (r, h)
be the Nevanlinna characteristic function of h(z). Given{ > 0and §,0 < 6 < 1,
there is a constant K (p, ¢) such that for all r in a set of lower logarithmic density
> 1 — ¢ and for every interval J of length 6

B (re)
(4) " fJ h(re®)
The proof of Lemma 1 is given in §2.
Proof of Theorem 1. Choose 7, 2¢ > 5 > 0, and ¢ > 0. Determine 4,
1> 6 > 0, so that (with the notation of Lemma 1)
5) K (p, §)8 log(1/8) < je.

By Theorem A and Lemma 1, (3) and (4) hold simultaneously for all 7 in
a set E of lower logarithmic density > 1 — ¢. Let r ¢ E. Then, given ¢,
there is a real ¢ such that |¢ — ¢ | < & and

log [f@re™)| > (1 — ) log M(r, ).

do < K(p, ¢) <6 log ) T(r, h).

Now

. ” * d "
log | f(re™) | = log | f(re™) | + fw aélog | f(re) | do

¢ | o 0
| 2 (L= m)log M) = 7|20 o)
smcee
Lrog | 0") 1| = | B 1og s(re) | 5 | S10g 1070 | = r| L1

Hence, by 4)
log |f@re®)| > (1 — n) log M(r, ) — K(p, {) (6 log (1/8))T (r, f).
But
1 2r 4 0
T(r,f) = o [ log | f(re®) | do < log M(r, 1),
2w 0
so that, by (5),
log | f(re™®)] > (1 — n — K (p, £)8 log(1/8)) log M (r, f)
> (1 —¢) log M, f),
ie.,
log L(r, f) > (1 — &) log M (r, f)
for all » in a set of lower logarithmic density > 1 — ¢. Since ¢ can be chosen
arbitrarily small, Theorem 1 is proved.
2. Proof of Lemma 1
Lemma 2. If T (u) 7s a positive, increasing, unbounded function such that
(6) lim log T'(w)/logu = p < © (w— o),
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and if
b > 2p,
then
() ¢'T (u/e) = T (u)
Jor all u outside o set G of upper logarithmic density
= 2p/b.
Proof. Put

¢ (z) = log T'(¢").
Then ¢(z) = 0 for & = xo, say. Let F be theset of xinay < z < log U
for which
b+ol—1) <o).
Let g be the largest integer such that it is possible to place ¢ nonoverlapping

intervals of length 1 on the interval 2o £ « £ log U so that their right-hand
endpoints are in E. Then

¢(log U) = gb
Hence
g = ¢(log U)/b = log T'(U)/b.

TetI;:a;<z=a;+1(@G=12, -+, ¢g) beamaximal set of intervals
of the kind just described. Then no point of F can lie outside the union of
the intervals

x0§x<x0+1; aj<x——<—af+2 (j=1727"'7g)7

and therefore the measure of F satisfies
8) mE £ 29+ 1= 20ogT(U)/b) + 1.
Given ¢ > 0 we have for U > Uj(¢)

mE < 2@ + ¢€)/b) log U,

by (6) and (8). Under the mapping v = ¢” the set £ is mapped into the
set C of u, €™ < u < U for which (7) is not satisfied. And

9 mll — fd 2“’—;)@2 U

for U > U, (g). The conclusion of the lemma now follows from (9) on
letting ¢ — 0.

LemMa 3. Let h(z) be meromorphic in |t| = R, and let ¢, ¢a, -+, Cm be
the set of all zeros and all poles of h(z) in || = R. Then forr < R
B (re”) 4Ry 2R
< v
(10) h(re®) | = (R — r)? T(R, h) + Z 1lre?® — ¢ |’
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This lemma is an immediate consequence of the differentiated Poisson-
Jensen formula (see [1, §3]).

Lemma 4 (Special case of Cartan’s Lemma). Let x > 0. Letci, ++*, Cn
be m complex numbers. If r < R lies outside an exceptional set F of intervals
of total length

mF = kR,

then there are at most (j — 1) of the numbers | ¢y | at a distance < jkR/2m from
r (\7’_— 172;3; "'7m)'

We suppose now that r lies outside the exceptional set F = F (R) of Lemma,
4 and estimate
B (re®)

5= | h(re®)

where J is any interval of length . By (10)
2R do

67'0 —_— C/c(

4Ry
(11) S<m6T(R,h)+kalr

We divide the ¢’s into two classes:

(I) those ¢ for which |7 — | ¢ || < %ér,
(ITI) the others.

It is easy to see that

r/ de
| re® — ¢

attains its largest possible value for given r and ¢, if J has its midpoint at
6 = arg ¢. Then

do f“ do
= —_22 T a1 e
H Sl}p?fjlre“’—cl "y | rei® — |c| |

If ¢ e (II), ie., |7 — |c|| = 36r, we use the estimate
lre” — el |z |r—lell;
12) HZorflr— el (c e (I1)).

Ifce (M),lety =|r —|c]||/r <3%5. Then

1% 8/2
H=21~f+2rf L —
0 v |re? — el

2vr 52 db
e
= el [Tm@re® — o) |
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5/2 5/2
<24 do

r sin 0 o

liA

2+ 2r [
Lor

Since r is outside F, we deduce from Lemma 4 that the class (I) cannot
contain more than M elements, where M is the largest integer such that

(14) o0 = M«R/2m, ie., M = drm/«R = M,.

A second application of Lemma 4 now shows that

6r/2 drm
log — < ) log
c;) g |r — = 2_; kRj

My
_Zlog——<2}f 1ogidx <f log]—w—dx—~Mg

Again by Lemma 4, there are at most [M,] ¢’s in class (II) with
lr —|c||= MokR/2m = %6r. There are at most [Mo] + 1 ¢’s in class (IT)
with |7 — ¢ || £ (Mo + 1)kR/2m, ---. Hence

(15)

m

267'
j= [MZo]+1 (KR]/Qm)
orm < 1

< M, + —
’ 1917 [Mo]+1 ]

Lor
ce(I1) l'r —_— |CH

< [Mo] +

1
< Mo+ Mo f[MoHl x M)+ 1f

< Mo -I— Mo (log—— + Mo)

m
(16) <M0+Mologm+1.

Using (13) and (15), (12) and (16) in (11) we find that forr < R, r ¢ F.

S < 4Rr ST(R, h)_+'4Rﬂfo+_27Rﬂfo
R — 2 r
2R 2R m 2R
+7M0+7‘M010gm+7,
or, substituting from (14) for M, ,
4Ry kR
(17 8 <W5T(R>h) +{(6+27T) + 2 log 67’} +——

In order to deduce Lemma 1 from (17) we must now describe in more
detail the choice of r and B. Let
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a=d" b= 2+ 1/,
and consider the intervals
Apyia* <r £ a™™ (n=012 ).

The characteristic function 7' (u, h) satisfies all conditions imposed on
T (w) in Lemma 2. We shall call an interval A, unsuitable, if the whole

interval
3 4
" <R £ a"™ = ed”

is contained in the exceptional set G of Lemma 2 (for our choice of b and
T(u)). If A, is suitable (i.e., not unsuitable), then we can find an R’,
a'n+3 é R[ é an+4’
such that
ST (R /e, h) > T (R', h),
and a fortiori, since R'/e <a" < r, and T (u, h) is increasing,
18) ™ T, h) = T, h) > TR, h) > T, h) = T(R, h),
where we have chosen
R — an+2‘
By a well-known argument using Nevanlinna’s first fundamental theorem

n(u, h) + n(u, 1/h) du
u

1 ©
m = n(R,h) -+ n(R, l/h) = log(R'/R)-/ze

IIA

(1/log a)(N(R', 1) + N(R', 1/h))
< 4(T(R',h) + T(R', 1/h))

(19) < 8T(R,h) + O(1).
Using (18) and (19) in (17) gives
B (re®)
(20) 7"[J e do < {Ai(x, p)d + As(x, p)8 log(1/8)}T(r, h) + As(x, p)

< As(x, p)8log(1/8)T(r, k) (r > 1o = 1o(k, p, 6, h))

for all r in a suitable interval 4, except those which lie inside an exceptional
set F, of measure < kR = ka"*>. The logarithmic length of F, is at most
ka"?- (1/a") = ka’, so that the total logarithmic length L, of the excep-
tional sets F,, (0 = n < N) satisfies

Ly < xa’ (N + 1).

An interval A, (logarithmic length = log a) is unsuitable only if the in-
terval A,4; is contained in the exceptional set G of Lemma 2. The total
logarithmic length L. of the unsuitable intervals A, (n < N) is therefore
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less than the logarithmic length of the portion of G in r < "™, so that by
Lemma 2

L, < (20 +1)/b)- (N + 4) log a (N > N,).
With our value for b
Ly < K(N + 4:) IOg a.

Hence (20) holds in 7, < 7 < """ outside a set of total logarithmic length
less than

Li + Ly < «(@® + log )N + «d’ + 4« log a.

The upper logarithmic density of the exceptional set in which (20) is not
valid is therefore

D £ limy.e, (1/l0g(@)) (x(@® + log )N + ka® + 4xloga);
D £ «(a® + log a)/log a.
Lemma, 2 follows, if we determine « from the equation
¢ = «(a® + log a)/log a.
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