
PROOF OF A CONJECTURE OF G. POLYA CONCERNING
GAP SERIES

BY

W. H. J. FIJCHS

1. Statement and proof of Theorem

Let A {X0, X, X, ...} be an increasing sequence of nonnegaive in-
tegers satisfying the gap condition

(1) Xn/n

Let

(2) .(z) 2 c z (x )

be an entire function of finite order; put

M(r, f) sup0 If(re)l, L(r, f) inf0 lf(re)l (0 real).

In a famous paper [3] G. Pdlya coniectured that under the above conditions
on A and f(z)

log L(r, f) 1lim
log M(r, f)

I shall prove in this note that the coniecture is correct"

THEOREM 1. /f the entire function (2) is. of finite order, and if ihe sequence
of exponenis X satisfies (1), then, given > 0

logL(r,f) > (1 e) logM(r,f)

holds outside a set of logarithmic density 0.

The proof is based on the following result of T. K6vari which improves
previous theorems by G. Pdlya [3], P. Turn [4], and others.

TIEOnEM A [2, Theorem 1, p. 326]. Let

M (r, y, ti, f) sup<__0<=+ f(re)l

If f (z) is an entire function of finite order given by (2), and if the exponents
X satisfy (1), then, given > 0, and v > 0,

(3) log M (r, ,, i, f) > (1 n) log M (r, f)

holds, uniformly in ., outside a set of r of logarithmic density 0.

Another tool in the proof of Theorem 1 is the following lemma which is an
adaptation of Lemma 1 of [1].
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LEMMA 1. Let h (z) be a meromorphic function of finite order p. Let T (r, h)
be the Nevanlinna characteristic function of h (z). Given > 0 and 8, 0 < 1/2,
there is a constant K (p, ) such that for all r in a set of lower logarithmic density
> 1 and for every interval J of length

((4) r h(re;g dO < K(p, V) a log T(r, h).

The proof of Lemma 1 is given in 2.
Proof of Theorem 1. Choose v, 1/2e > v > 0, and > 0.

1/2 > > 0, so that (with the notation of Lemma 1)
Determine

(5) K(o, f)6 log(l/6) < 1/2e.

By Theorem A and Lemma 1, (3) and (4) hold simultaneously for all r in
a set E of lower logarithmic density > 1 ’. Let r e E. Then, given ,
there is a real such that Ib 1 < t and

log If(rei)[ > (1 ) log M(r, f).
Now

d reie

f’(re)>= (1 n) logM(r,f) r IdOI,
since

d d dlog]f(rJ)] Rlogy(re) log(re) =r

Hence, by (4)

og y(re’) > (1 )og M(r, f) K(o, )( og (1/))T(r, ).

But
1 +

T(r,f) log f(re) dO log M(r,f),

so ha, by (),
logf(re") > (1 n K (o, r) log (1/) logM(r,f)

> ( e) og (r, f),
i.e.,

logL(r,f) > (1 e) logM(r,f)

for all r in a se of lower logarithmic density > 1 f.
arbitrarily small, heorem 1 is proved.

2. Proof of Lemma
LEMMA 2.

(6)

f’(rei)
f(reO)

If T (u) is a positive, increasing, unbounded function such that

li--- log T (u)/log u p < m (u-- m ),

Since " can be chosen
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and if
b > 2p,

then

(7) ebT (u/e) >= T (u)

for all u outside a set G of upper logarithmic density

D <__ 2p/b.
Proof. Put

(x) log T(e’).

Then(x) >_- 0forx => x0,say. Let E be the set of x in x0 =< x_-< log U
for which

b + (x 1) < (x).

Let g be the largest integer such that it is possible to place g nonoverlapping
intervals of length 1 on the interval x0 =< x =< log U so that their right-hand
endpoints are in E. Then

(log U) >-_ gb.
Hence

g -< (log U)/b log T (U)/b.

Let I. a < x =< a. + 1 (j 1, 2, ..., g) be a maximal set of intervals
of the kind lust described. Then no point of E can lie outside the union of
the intervals

Xo <= X < Xo-- l, aj < x <= aj- 2 (j-- 1,2, ...,g),

and therefore the measure of E satisfies

(8) mE -< 2g + 1 =< 2(log T(U)/b) + 1.

Given > 0 we have for U > U0(s)

mE < (2(p+ s) /b log U,

by (6) and (8). Under the mapping u e the set E is mapped into the
set C of u, ex < u < U for which (7) is not satisfied. And

(9) mE= Is dx= fc < 2(P+b ) log U

for U > Uo(e).
letting e -- 0.

LEMMA 3. Let h (z) be meromorphic in <= R, and let cl c2

the set of all zeros and all poles of h (z) in tl -< R. Then for r < R

h’ (reio) < 4Rr T(R, h) - 2R(10) r .h(eO (R r) = Ireio c I"

The conclusion of the lemma now follows from (9) on

Cm be
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This lemma is an immediate consequence of the differentiated Poisson-
Jensen formula (see [1, 3]).

LEMMA 4 (Special case of Cartan’s Lemma). Let K > O. Let cl ..., Cn

be m complex numbers. If r < R lies outside an exceptional set F of intervals

of total length
mF <-_ KR,

then there are at most (j 1) of the numbers ck at a distance < jR/2m from
r (j= 1,2,3, ...,m).

We suppose now that r lies outside the exceptional set F F (R) of Lemma
4 and estimate

h’ (rei)S r
h(reiO

dO,

where J is any interval of length t. By (10)

(11) S < 4Rr T R h) + 2R dO
(R r) = Ire- ck i"

We divide the c’s into two classes"

(i)
(ii)

those c for which ]r -lcl[ < 1/2r,
the others.

It is easy to see that

dO

attains its largest possible value for given r and c, if J has its midpoint at
0 arg c. Then

.o
H sup r 2rIre0 c o reO c II

If c (II), i.e., ]r [c]l => 1/2fir, we use the estimate

Irei- Icl > ]r- [el I;

(12) H <= r/I r- cl] (c (II)).

If c e (I), let y r ]c I[/r < 1/2t. Then

f/2 dOH 2r + 2r. re c It

< 23,r f[/2 dO
r c II / 2r

Ira(re c
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dOdO
<2+

r sin 0 0

1/2r (c ())(13) -< 2 + rlog Ir-- tell
Since r is outside F, we deduce from Lemm 4 that the class (I) cnnot

contain more thn M elements, where M is the lrgest integer such that

(14) 1/2r MR/2m, i.e., M rm/R Mo.
A second ppliction of Lemm 4 now shows that

r/2 logaog
=i11 = Rjce() r

(15)
Mo -o MologM < logdx < logdx Mo.

=1 2 -1 x x

AgMn by Lemm 4, there re t most [Mo] c’s in class (II) with
r c Mo R/2m r. Thereretmost[Mo]+ lc’sinclss (II)
within- cll (Mo + 1)/2, ... H

V r r
)r c] < [Mo] +

=o+ (Rj/2m)

rm 1< Mo + o+
:f dx 1< Mo + Mo
o+ x [Mo] + 1)

(1 n 1 )
m< Mo + Mo logo + 1.(16)

Using (13) nd (15), (12) nd (16) in (11) we find that for r < R, r F.

S < 4Rr 6T(R,h) q 4RMo 2’RMo
(R r) r r

+2RM0q_ 2RM01og m + 2R

or, substituting from (14) or Mo,

4Rr + + + +(17) S < (R r) - r

In order to deduce Lemma 1 from (17) we must now describe in more
detail the choice of r and R. Let
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a eTM, b (2p + 1)/,

and consider the intervals

An" a " r an+l (n 0, 1, 2, ...).

The characteristic function T (u, h) satisfies all conditions imposed on
T (u) in Lemma 2. We shall call an interval An unsuitable, if the whole
interval

n-}-3 R an+4a <_ <_ ea

is contained in the exceptional set G of Lemma 2 (for our choice of b and
T (u)). If Am is suitable (i.e., not unsuitable), then we can find an R’,

n+3 R n+4a =< =<a
such that

eT (R’/e, h) > T (R’, h),

nd fortiori, since R’/e <=a <= r, nd T (u, h) is increasing,

(18) e(’+)/T (r, h) eT (r, h) > T (R’, h) > T (a+, h) T (R, h),

where we hve chosen
R an+2.

By well-known rgument using Nevnlinn’s first fundamental theorem

m n(R, h) %- n(R, l/h) < 1 f’ n(u, h) + n(u, l/h) du
log(R’/R) u

<= (1/log a)(N(R’, h) -+- N(R’, l/h))
__< 4(T(R’, h) -t-- T(R’, l/h))

(19) <=_ ST(R’, h) -+-0(1).

Using (18) nd (19) in (17) gives

f h’(re)
(20)

r
h(reO

dO < {A(, 0)6 -+- A(, p)6 log(1/6)}T(r, h) -+- A(, p)

< A4(, 0)6 log(1/)T(r, h) (r > ro ro(, p, 6, h))

for all r in a suitable interval An except those which lie inside an exceptional
set Fn of measure < R an+2. The logarithmic length of F, is at most
an+2. (1/an) a, so that the total logarithmic length L1 of the excep-
tional sets Fn (0 <= n <= N) satisfies

L1 < az(N+ 1).

An interval A, (logarithmic length log a) is unsuitable only if the in-
terval A,+3 is contained in the exceptional set G of Lemma 2. The total
logarithmic length L2 of the unsuitable intervals An (n <- N) is therefore
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less than the logarithmic length of the portion of G in r =< a+4, so that by
Lemma 2

L2 < ((2p - 1)/b). (N + 4) log a (N > No).

With our value for b
L2 < K(N - 4) loga.

Hence (20) holds in r0 -<_ r =< a1v+1 outside a set of total logarithmic length
less than

L1 + L2 < K(a + log a)N - a: -t- 4 log a.

The upper logarithmic density of the exceptional set in which (20) is not
valid is therefore

D __< lim_ (1/log (aIv) ( (a + log a)N + a -t- 4K log a)

D __< (a - log a)//log a.

Lemma 2 follows, if we determine from the equation

" (a + log a)//log a.
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