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1. Introduction

The purpose of this note is to indicate how the moment-problem technique,
prticulrly s presented in the book of Shoht nd Tmrkin [4], gives
integral representations for linear functionls on linear spces of continuous
functions, even in cses where the functions re unbounded.
Although Dniell’s procedure is not confined to bounded functions, still,

boundedness is usually ssumed when the procedure is pplied to continuous-
function spces, in order to help establish Dniell’s limit condition [3, 16A,
p. 43].

In our theorem (2.1 below), we do not ssume compactness for the spce
on which the functions re defined, nor boundedness of the functions. The
min ppliction (3..3 below) is to give shorter proof of known generaliza-
tion of Jensen’s formula.

2. The main theorem

Let X be ny topological space. Let (X, R) be the spce of continuous
real-valued functions on X. Forf, g (X, R) we sayf is little o of g (f o(g)
if for every > 0 there is a compact set K in X such that If(x) < vg(x)
for all x outside K. If P is ny subset of a(X, R), we denote by o(P) the
union of all o(g), g P. It is not hard to see that o(P) is a vector lattice
[3, p. 29] whenever P is linear subspace.

2.1 THEOnEM. Let X be a topological space, and let P be a linear subspace of
(X, R) such that for each Xo in X there is a nonnegative p in P such
that p(xo) 1. Let L be a nonnegative linear functional on P. Then there
exists a regular Baire measure m on X such that m >- 0 and

L(f) f. f(x)2.2 m(dx)

for every f in P o(P). Every function in P is measurable by m.

Proof. Let Q P- o(P). Then Q is a linear subspace of (X, R).
We wish to extend L linearly nd nonnegatively from P to Q. Suppose L
is a nonnegative linear extension of L to some subspace Q, P Q Q.
Let f Q, and define

L,(f) sup,_<,, L(g), L*(f) inf=<, L(h).
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Then Ll,(f) <-_ L*(f). There is a compact set K and a p e P such that
]fl < P outside K. Another nonnegative q in P can be found such that
Ill <P-qonX. From this we see that

Ll*(f) <= L(p)zr L(q) < , and L,(f)= --L*(-f) > .
It is not hard to see that if we choose }, such that

L,(f) <- X <- L*(f)

and define L.(f + g)= ),-t-L(g), we obtain an extension of L to a
larger subspace. Thus the extension LQ to Q is possible. It is unique (ob-
viously) if and only if

2.3 L,(f) L*(f) (= inf =<.1,P L(h))

for every f in Q.
We form the restriction L0 of LQ to o(P). Now o(P) is a vector lattice.

Let us show thatfn O Lo(fn) 0 [3, p. 29, (4)]. Letfeo(g),geP.
We may assume that g_>_ 0. Let e0 be given. Let e e0/(l-2L0(g)).
Find a compact set K such that, f(x) < eg(x) for all x K. Find a non-
negativepePsuchthatp->_ lonK. Letti eo/(l+2Lo(p)). There is
an N such that n >= N fn(X) < p(x) for all x K. Then for n _-> N we
havef(x) < p(x) -- eg(x) forallx. Hence L(fn) <= L(p) z7 eL(g) < Co.

Obviously, the condition of Stone [3, 13B, p. 34] is also satisfied. The
only one of Loomis’s conditions that we cannot meet is that the functions of
the vector lattice [3, 12A] be bounded. (Indeed, the functions in o(P) need
not be bounded.) Danicll himself imposed no such condition, nor is it used
in [3] prior to [3, p. 43], nd our references are at most to [3, p. 36]. Neverthe-
less we refer to [3] rather than to Daniell because Loomis discusses the impor-
rant consequences of Stone’s condition. (The very object of the present
paper is to see what happens when unbounded functions actually are allowed
in the domain of the functional I of [3, 16A, p. 44].) We may therefore apply
the theorems of [3, p. 35], with our o(P) as his L, and our L0 as his [, and
conclude that there is a regular Baire measure m on X such that for each
nonnegative f in the monotonic closure of o(P), we have

Lo(y) f j’(x)2.4 m(dx).

In particular, 2.4 holds for every f in o(P). If in addition f e P, then
Lo(f) L(f). Thus 2.1 is proved.
The formula of Herglotz is one consequence of 2.1. It involves the Poisson

kernel

P(u) 1 r (u= J = rJ)
1-- 2rcos(0-- t) -t- r
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2.5 THEOREM (Herglotz). Let h be harmonic and nonnegative on the disc
z < 1}. Then there is a regular Borel measure m on z 1} such that

h() f P(u) m(du) (l’l<l).

Proof. Let E be the linear hull of the P, regarded as functions on the
unit circle (not the disc) X. Then E c o(E). Define L linearly on E by
setting

2.5.1 L(E h P) }, h().

The only chore is to show that this is nonnegative if h P > 0. One
does this by observing that

2 h(r) Pr/ h(re) dO

for 1 < r < 1. The reader will be able to fill in the details, and complete
the argument.

Henceforth we shall usually abbreviate

2.5.2 f.f(x) m(dx) by re(f).

We did not do so in 2.5 for fear of giving the classical formula a strange
appearance.
Another consequence, for algebras of functions, is the following (cf. [1, 4.4]).

2.6 THEOREM. Let X be a locally compact space, and A, a subalgebra of
o(X, R) (the continuous functions that vanish at o ). Suppose each element
of A is the difference of nonnegative elements. Let L be a nonnegative linear

functional on A. Then there exists a regular Baire measure m on X such that
for every pair f, g in A

2.6.1 m(fg) L(fg)

and for f >>- O,f in A,

m(f) sup0 <=4 <=l.uA L(uf).

Proof. Delete from X, if necessary, all common zeros of the functions
in A, and call the residue Y. Then Y, A, L satisfy the conditions of 2.1,
and we obtain our m. The concept o(A) is connected with Y, not X; but it
is clear that every product fg is the sum of four functions in o(A), so that
2.6.1 holds. In particular for f and u as in 2.6.2, we have L(uf) re(uf) <__
re(f), so that re(f) >= sup m(uf) sup L(uf). On the other hand, making
use of the boundedness of f one can easily prove (see [1, 4.7]) that re(f) <__
sup re(uf). This completes the proof of 2.6. Incidentally, it shows that
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(hypotheses as in 2.6)

2.6.3. there exists an m such that re(f) L(f) for every f in A if and only if
L(f sup0 <=, <=1 ,u L(uf

for every nonnegative f in A.

The "classical" moment problems deal with linear functionals L defined in
the algebra A of polynomials, regarded as functions on a closed, but by no
means bounded, subset X of R". The presence of unbounded functions such
as F x q- q- Xn in the domain of L is exploited as follows (cf. [4, p. 1]).

2.7 THEOREM. Let X be locally conpact. Let A be a subalgebra of e(X, R)
(all continuous real functions on X). Let A contain .1 and also at least one
unction F such that the sets

{IFl-<n}, n= 1,2,...,

are compact. Let L be a nonnegative linear functional on A.
regular Baire measure m on X such that

Then there is a

m(f) L(f)
for every f in A.

Proof. Let leA. Form g =f2q_F. It is not
g e o(1 q- g2). Hence L(g) m(g), which is to say,

hard to see that

L(f2+F) m(f:+F).
subtract, and we have L(f) m(f2). In particular
Combining these with L((1 - f)) m((1 -t- f)2) yields

Let f 0,
L(1) re(l).
L(f) re(f).

It would certainly be absurd to say that this is the essence of the classical
moment problem (see [4]). There, one is more concerned with the question
of whether the L is really nonnegative. Usually the L is defined only on some
basis for P or A, and the elegance of the solution in each case depends on how
easily one can tell whether such an assignment of "moments" leads to a non-
negative linear extension.

3. The value of m() for o(P).

Consider the example in which X (0, 1], P all polynomials, regarded
as functions on X, L(p) p(O). Then 2.2 provides an m, but it is 0. Hence
1 L(1) re(l) 0. The connection is re-established by observing that

re(l) supo(1),__<1 L(p).

A similar example is obtained by taking X as before, and P those poly-
nomials which vanish at 0, while L(p) p’(O). If x is the cartesian co-
ordinate, then 1 L(x) n(x) O, since m O.
The general situation is similar, as we now show.
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3.1 THEOREM. Let X be a topological space. Let E be a linear subspace
of (X, I.) containing at least one positive function u. Let e (X, R), and
suppose E o(). Let J be a nonnegative linear functional defined on E.
Then a regular Baire measure m exists on X such that m J on E, and (see
2.5.)

3.2 re(C) sup.s__< J(f).

Proof. Since u e o(), there is an N such that -t- Nu >-_ O. Let

j= sup{J(f) "f=<,feE},

and suppose that j < . Let Eo be the linear hull of and E. We can surely
define on Eo a Jo such that J0() j, such that Jo is a nonnegative linear
extension of J. Now let n -- / nu (T-- 1, 2, "*-), and let En be the
linear hull of Eo, 1, "", 4n. Let Jn be a nonnegative linear extension of
of J0 to En. Then

-NJ(u) <= supf <=n+l.feF,. inf,,+l__<z dn(f) j < .
Therefore e can extend Jn to & Jn_ on En+, with Jn+(dpn+) -j. Ulti-
mately, we have a nonnegative linear L defined on P, the direct sum of the
En,whereL[En J (n 1, 2, ...). To {X,P,L} we may apply 2.1
obtaining an m as therein described. Each f E is o(4) and P, so m J
on E. Moreover, 4 o() whence m() exists and =< j; and n " 4, whence
re(C) =< j. On the other hand, f =< (feE) implies re(f) <= re(C), and
re(f) J(f). Therefore j =< m(), and 3.1 is proved.

3.3 THEOREM (cf. [2, 7.1]). Let A be a commutative Banach algebra with
unit. Let S be the space of maximal ideals. Let B be the Shilov boundary.
Regard A as an algebra of functions on S. Let s be any point of S. Let ao be
a particular element of A. Then there exists a regular Baire probability-measure
m on B such that

3.4 m(a) a(s) (all a A)

and

3.5 m(log a I) log a(s) (all a A-l),
where A- is the set of invertible elements of A, and

3.6 m,(log a0 l) => log a0(s) I.
Proof. Let E be the linear hull of log lA- (the set of logarithms

of the moduli of elements of A-). For f log la I, a A-, define
J(f) log]a(s) I. J has nonnegtive linear extension to E [2, 5.1] which
we Mso denote by J.
Now let X be the subset of B on which =-log a01 . Then

E o(), nd M1 the hypotheses of 3.1 re fulfilled. The ensuing m is the
kadesired mesure. First of 11, 3.5 holds. By replacing a in 3.5 by e a A,
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we get 3.4, and m(1) 1. Now we consider 3.6. Suppose f e E and f <-
(on X). Then exp(-f)>-_ exp(-)= a01on B. Suppose f is of the

A-1.form log lai a e For such f we have a0]]al_-< 1 on B, so
[ao(s)a(s)[ -< 1, and f(s) <= (s), and by a limiting argument [2, 5.1] the
same is true for all f -< . Thus

whence (3.1)

This proves 3.3.

sup__<o J(f) <- (s) log a0(s) I,

m(-log ao l) -< log ao(s) [.
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