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1. Introduction

E. J. Mickle and T. Rado in [2], and C. J. Neugebauer in [5], have given
cyclic and fine-cyclic additivity theorems for a class of functionals defined for
continuous mappings from a Peano space to a metric space, generalizing well-
known cyclic and fine-cyclic additivity theorems for Lebesgue area. Using
the results of the above papers, we obtain an extension of Neugebauer’s result
by replacing the requirement that the middle space be of finite degree of
multicoherence by the requirement that each proper cyclic element be
proximatable by a sequence of irreducible K-chains, as defined in 3, in
manner analogous to the cyclic chain approximation method used in [2].

2. Summary of analytic definitions and known results
The basic definitions of [5] are as follows:
Let P be a Peano space, and let P* be a metric space. If X c P, denote

by (T, X) a continuous mapping from X into P*, and let (X) be the
collection of all uch mappings. Let gf denote the set of all open sets of P
and let 5* be the collection [(A) A 9.I}, and let 5(P). An un-
restricted factorization of a mapping (T, A) e 5* consists of a middle space M,
and two continuous mappings s, f, where f A --+ M and s M -+ P*, so that
(T, A) sf. Two mappings (T1, A1), (T., A2) constitute a partition of
mapping (T, P) e provided there are a finite set of points F in P* and
pair of nonempty closed sets El, Es of P such that, for i 1, 2,

(1) P EuE., EicAi.
(2) T(x) T(x) for x e E TCmapsA--EiintoF.
(3) T(E n Es) F.
Let be a nonnegative functional defined on 5* (possibly with infinite

values), satisfying
(a) is lower semicontinuous on :, in the sense that if [(Tn, P)} is

sequence of mappings in converging on P uniformly to a mapping (T, P),
then (T, P) =<. lim inf I,(Tn, P).

(b) If (T1, A1), (Ts, As) form a partition of (T, P), then (T, P)
I,(T,, P1) -k (Ts, P=).

(c) If (T, A) e g* admits of an unrestricted factorization (T, A) sf,

Received February 23, 1962.
1presented to the American Mthematicl Society January 22, 1962.
"This resesrch wss supported by the University of Delsware Research Foundation.

548



FINE-CYCLIC ADDITIVITY THEOREM FOR A FUNCTIONAL 549

where M is a dendrite, then (T, A) 0. We agree that for the empty
set 0, (T, 0) 0.

Let us call a 0-nodal decomposition, of a Peano space M, a decomposition
of M into two closed connected sets B1 and B. such that M B1 u B., and
B1 n B2 Z, a finite set, with B Z B., and denote such a decomposition
by (B1, Z, B2). B and B. will be called 0-nodal sets, and we agree that M
is a 0-nodal set.

In [3] and [4], a B-set of M is defined to be a nondegenerate continuum of
M such that B M or each component of M B has finite frontier, a
fine-cyclic element is a B-set which cannot be separated by any finite set, and
a local A-set B is a nondegenerate closed subset of M such that B M, or
there is a connected open subset G of M containing B such that if {0} is the
collection of components of G B, then, for 0 e {0}, G n (0) is a single
point, and if 0’, 0" are two elements of the frontier /0} such that

G n (0’) n (0") 0,

then 0’ n 0" 0. B is then called a (G, A)-set of M.
A retraction from M onto a local A-set B of M is a continuous mapping

such that
(1) there exists a connected open set G containing B such that B is a

(G, A)-set of M;
(2) lG is the identity on B and sends every component of G B into

its frontier relative to G;
(3) t(M G) is a subset of a dendrite D c B.
Neugebauer gives in [5] the following result basic to this paper.

(2.1) /f sf is an unrestricted factorization of (T, P) e , with middle space
M, and (B, Z, B.) is a O-nodal decomposition of M, then there are retractions
t from M onto B, i 1, 2, such that

(T, P) (stf, P) + (stf, P).

Under the above conditions, and indeed somewhat less stringent conditions,
Mickle and Rado in [2] proved the following theorem, extended in [5], and to
be extended herein:

(2.2) For each true cyclic element C of M, there is a unique monotone re-
traction rc from M onto C, such that ( T, P) (sro f, P) where the sum-
mation is extended over all proper cyclic elements C of M.

3. K-sets and irreducible K-chains

We will henceforth assume that M is a Peano space. A D0-chain is the
nonempty intersection of 0-nodal sets. (If a D0-chain D is the intersection
of 0-nodal sets each of whose boundaries consist of not more than n points,
D will sometimes be called a D,-chain.) A D0-chain D is said to be prime
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if it satisfies the following condition: For each 0-nodal decomposition
(B1, Z, B2), either D c Bi or D c B2. If X is not empty, Do(X) is the
intersection of all 0-nodal sets containing X. A D0-chain D is called true if
D Do(X) where X is connected and nondegenerate, or where X is a single
point which is not an essential member of a finite set separating M. The
properties of D0-chains are discussed in [7]; in particular true D0-chains of a
continuum are continua.
A true D0-chain is called a K-set if it is the intersection of a finite number of

0-nodal sets. It is clear that K is a K-set if and only if K n (M K) is
finite or empty. It is shown in [7] that a true prime D0-chain which is a K-set
is a fine-cyclic element, and conversely, if K is a fine-cyclic element in a
Peano space, and also a K-set, it is immediate that it is a true prime D0-chain,
for if no finite set of points separates K, no finite set can separate K in M.
Thus whenever M is such that each true prime D0-chain is a K-set, we may
use interchangeably the terms "true prime D0-chain" and "fine-cyclic ele-
ment". Neugebauer showed in [3] that if M is cyclic and of finite degree of
multicoherence, a fine-cyclic element is a K-set.
The following theorem is proved, in a more general setting, in [7].

(3.1) If (BI, Z, B2) and (B, Zp, B) are O-nodal decompositions of M
such that Brl (B1 Z) B n B, then for each nondegenerate com-
ponent Q of B BP, there is a O-nodal decomposition (B, Zpt, B) such that
Z"Q=B’.

It is lso noted that the finite set of 0-nodal decompositions (B, Z, B)
such that U Z K gl B my be chosen so that for each i j,
B n B. 0, so that the intersection of each subcollection of the sets {BI}
is a K-set.

(3.2) If K is a K-set, there is only a finite number of components of M K
with nondegenerate frontier.

Proof. Otherwise, if U is the union of K with set of pairwise disioint
neighborhoods of the finite set (M K), there would be a limit point in
M U of sequence of points chosen one from ech of the components of
M K which meet M U. This contradicts the fact that each component
of M K is open.
Neugebauer in [4] has shown that B-sets which satisfy the property in

(3.2) are local A-sets, so that K-sets are local A-sets.

(3.3) If every true prime Do-chain of M is a D,-chain, n > O, then for each
O, there is only a finite number of true prime Do-chains with diameter greater

than .
Proof. If the theorem is false, there is a sequence of distinct true prime

D0-chains {Qk} each of which has diameter not less than , and which converges
to a limit continuum Q. We may assume that, for each k, Q Qk is finite.
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If Do(Q) is not prime, there is a 0-nodal decomposition (B1, Z, B) such that
Q meets B1 Z and B Z, so that for large k, Qk would also meet B -Z
and B Z, contrary to the definition of Qk, so that Do(Q) is prime. By
assumption, there is an integer k such that Do(Q) D(Q). Let i s/3k,
and let > 0 be such that each pair of points whose distance is less than
lie in a connected set of diameter less than ti. If V,(X) denotes an -neighbor-
hood of X, let/ be an integer such that QI c V,(Q). There is an n-nodal
decomposition (B, Z, B) such that Q c B1, Q B, and

Z--- /Zl, z2, "’*,Zm}, m n.

There is a point p e Q tJn= V(zi). Since

V,(p) nQ O but V(p) nZ 0,

we have a contradiction of the uniform local connectedness of S. This com-
pletes the proof.
We remark that each K-set is a D-chain, for some integer n, so that (3.3)

holds under the assumption that the true prime D0-chains are K-sets.
An irreducible chain in M between points a and b of M is a true D0-chain

which properly contains no true D0-chain which contains a and b. It is
shown in [7] that

(3.4) If I is an arc from a to b, such that for each true prime Do-chain Q
in Do(l), Q I is a nondegenerate continuum, and if, when Q1, Q are two
true prime Do-chains of Do(I) with nonempty intersection, then QI n Q I 9;
then Do(I) is irreducible.

(3.5) If I is a continuum irreducible from a to b such that for each true

prime Do-chain Q Do(I), Q is a K-set, and Q I is an arc, then I is an arc"

For the remainder of the paper we will assume that each true prime D0-chain
is a K-set.

(3.6) Let I’ be an arc from a to b. Then Do(I’) contains an arc I from a
to b such that Do(I) is an irreducible chain.

Proof. By (3.3), we may enumerate the true prime D0-chains of Do(I’) in
the order of nonincreasing diameter. Let {Qr} be this sequence. If there
are no members of this set, then by [7, (6.3)], Do(I’) I’, and is clearly

Iirreducible For each n, Q’ is nondegenerate, since otherwise, by (3 1)
we can arrive at a 0-nodal decomposition (B, Z, B:) such that Q’ B1,
I’ B. If I’ has its natural order from a to b, there is a first point al and
a last point b of I’ in Q. Since Q’ is arcwise connected, there is an arc I’
from a to b in Q’I. Let I be the arc consisting of the part I from a to a,
and the part of I’ from b to b. If nis the first integer such that Q’ c Do(I),
we may repeat the process, obtaining an arc Is such that I. Q’n is an
arc, and I. Do(I). Continuing inductively, we obtain a continuum
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I" lim I such that I’ D0(I) for every n, and such that if Q’ c Do(I"),
Q’ n I" is an arc. From (3.5), it follows that I" is an arc from a to b.
For the second stage of the construction, let {Q} be the subsequence of

{Q’} such that Q D0(I") for each n. Since Q I"n is a continuum, we
may say that Q lies to the left of Q if Q I" Qprecedes in the nat-
ural order of I" from a to b. If there is a least integer n such that
Q a Q1 0, if Q lies to the left of Q’, let us replace the part of I" from the
first point of I" in Q’n’ to the last point of I" in Q’ by an arc in Q: u
whose parts in Q: and in Q’ are arcs, and similarly if Q lies to the right of
Q[’. If the new arc is denoted by I1, let us repeat the process if there is an
integer m > n such that

Q: Q’ Q Q’n 0, but n nil =0,
obtaining an are I1. from a to b. On account of the fact that the diameters
of Q tend to zero, there can be at most a finite number of integers n such
that Q. Of Qn 0 To see this we need only observe that if meets on
the left, the arc of Ill from a to Q is at positive distance from Q’, and hence
only a finite number of the sequence {Q} can meet this arc and Q[’ as well,
and similarly, only a finite number of the sequence can meet the part of In to
the right of Q’. Thus after a finite number of steps, we arrive at an arc I[
such that if Q’ c Do(I1 ), Q" n I1 is an arc, and such that there are at most
two integers n such that Q Q[’ Q "n 0, inwhichcase nQ[nI 0. If
we apply this process inductively we obtain a continuum I which has the
properties"

(1) If Q Do(I), Q n I is an are.
(2) If Q1, Q. Do(I), and Q1 n Q 0, Q1 n Q n I 1.
(3) If Q D0(I), there are at most two true prime D0-ehains Q1, Q such

thatQnQ 0.
From (3.5) it follows that I is an are. From (3.4), Do(I) is an irreducible

chain. This completes the proof.
It is well known (see [6] or [8]) that a nondegenerate Peano space P has a

eyelie chain approximation, in that there is a sequence {C} of cyclic chains
such that C+1 n (U ;1C.) is a single point, and (U?=I Ci) P. In [7], it is
shown that separable metric continua possess, in a sense, approximations by
irreducible chains, but in general even a Peano space may not have a readily
usable approximation. Let us call an irreducible chain Do(I), where I is an
are and Do(I) is a K-set, an irreducible K-chain, or, simply, a K-chain, and
restrict ourselves to Peano spaces for which each true prime D0-ehain is a
K-set. Such a space M is said to have a K-chain approximation if in each
K-set in M, and each pair of points in the boundary of K, there is a K-chain
joining these points. The term is iustified by the next result, where (X)
denotes the diameter of x.

(3.7) If a Peano space M has a K-chain approximation, there is a sequence
{K,I of K-chains such that if H U =1 K then
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(1)
()
(3)

Hn is a K-set, for each n.
O-- M.
For each n, there is a finite set of O-nodal decompositions

such that
(Ani, Zni, Bni): i 1, 2, ...,

U = Z,. C H, f’l k,il Bni

and such that if d max=l,,...,k (Ai), then lim dn 0.

Proof. Let /P} be a sequence of non-0-endpoints, dense in M, where a
0-endpoint is a point p such that Do(p) p, but there is no 0-nodal decompo-
sition (A, Z, B) such that p e Z. We may assume that there is at least one
0-nodal decomposition of M. It is clear that the sequence {p} exists, for if
{p’} is any dense denumerable sequence, for each p’ {p’} which is a 0-end-
point, there is a sequence of non-0-endpoints which converges to P’n, SO that
each 0-endpoint may be replaced by non-0-endpoints. By (3.6), there is a
K-chain K1 joining p and p, and if n is the least index such that Pnl KI,
there is a K-chain Ks joining a point of K1 to PI, with K1 n K2 a finite
nonempty set, since there is a 0-nodal decomposition (A, Z, B) such that
pl e A Z, and Z c K c B. Let us add K-chainsK2, K3, .., K, so that
H Ku uK.,2 _-<j-_< /cisaK-set, andsothatZcH.
By induction, the sequences/K} and {H} are defined, so that H satisfies

(1), for each positive integer n. It is clear from (3.6) that (2) is also satis-
fied; each non-0-endpoint is an element of Hn, for some positive integer n.

Suppose p is a 0-endpoint not in U =1 H, let V be any open set containing
p. By definition of 0-endpoint and (3.1), there is an 0-nodal decomposition
(A, Z, B)such that the compact set M V is contained in B Z, so that
A V, with p e A Z. Further, there are a 0-nodal decomposition
(A’, Z’, B’) such that p e A Z’ and A’ A Z and an integer n such that
Z’ H,. If [(An, Z,i, Bn)} are 0-nodal decompositions such that

UZ, c H, NB,,,

then if A is the nodal set containing p, A A c:: V. This completes the
proof.

4. Finitely generalized retractions

In the attack on the main problem, we need a trivial modification of (2.1).
Let us denote by "finitely generalized dendrite" a continuum H of finite
degree of multicoherence which is the union of a finite number of dendrites,
and by "finitely generalized retraction" from M onto B a retraction t, in which
condition (3) for retractions (see 2) is replaced by

(3’) t(M G) is a subset of a finitely generalized dendrite H B.

(4.1) If sf is an unrestricted factorization of (T, P) with middle space
M, if (B Z, B) is a O-nodal decomposition of M, and if Di, i 1, 2, are
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finitely generalized dendrites with Z c D B then there are finitely gener-
alized retractions ti from M onto B, such that t(M B) D, and such
that

( T, P) 4(st f, P) + 4(st f, P).

Proof. We appeal to the development in [5]. If i 1 or 2, there is a
connected open set G containing B, such that B is a (G, A)-set of M,
and there is, in the same manner as in [5], a finitely generalized retraction t
such that t(G B) c Z, t(M B) Di. If we let D be a dendrite
such that Z D’ D, and A f-l(G), which we may assume nonempty,
it follows at once that (shf, A1) and (st2f, A.) constitute a partition of
(T, P), so that, if 4 satisfies (c) of 2, then

4(T, P) 4(stf, A) + 4(st.f, A).

If we consider the maps t’ t t on B, tl on B., then it is easily seen that
sh f, As) and (st’f, A form a partition of (stir, P and also that (st’f,
and (st’f, As) form a partition of (st’f, P). It follows from [5, 4, (ii)], since
D1 u D is of finite degree of multicoherence, that 4(st’f, P) O. Thus if
4 satisfies the conditions listed in 2, 4(st’f, A2) 4(st’f, As) O, and since
4(sh f, P) 4(stir, A1) -]- 4(stf, A), we have

Similarly

Accordingly,

(stf, P) (stf, A).

4 st f P) 4 st f A

4(T, P) 4(stir, P) + 4(st2f, P).

For the remainder of the paper, we will designate "finitely generalized
retractions from M onto B" more simply as "retractions from M onto B".

If K is a K-set, there is, by the remark following (3.1), a finite number/c
of 0-nodal decompositions/(B, Z, B)} such that if i j, B a B. 9;
for 1 < j < k, Bii is a K-set, and (J= Z K =B. Itisa
simple exercise in induction, using (4.1) to conclude that

(4.2) There are retractions t t ..., t from M onto B, BI, ", B
respectively, and t+ from M onto K such that, if D is any finitely generalized
dendrite with Z D B and D+ is any finitely generalized dendrite with

=1Z D+ K, then, for 1 <__ j <= 1,

(1)

(2)

t(M BI) D, t+(M K) D+I
4(T, P) _.,= 4(st f, P).

(4.3) If M has an approximation by a sequence {K,} of K-chains, as in
(3.7), then there is a sequence {r} of retractions such that r, is from M onto H,
and {r} converges uniformly to the identity.
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Proof. Let n be a positive integer. By (3) of (3.7) there is a finite set
{(Asi, Zs, Bs)} of 0-nodal decompositions such that

UCZs .H, )Bs.

Moreover, if m > n, and H n (Asi Zni) 0, then, by assumption, if
Aj c An properly, there is a dendrite Fs, contained in A.i Am., which
can be extended to a finitely generalized dendrite Frs containing also all
points of each Z for which A c As properly. By (4.2), there is a re-
traction rm from M onto Hs, with r,,(M H) a subset ofU k’(s=l )Fs, which
is clearly a generalized dendrite, contained in a finite sum of ordinary den-
drites. Since max ti(As) tends to zero as n tends to infinity, the proof is
complete.

(4.4) If M has an approximation by a sequence {Ks} of K-chains, as in
(3.7), and r, is the retraction from M onto Hs, then if 4 satisfies the conditions
of 2, 4(T, P) limn. 4(srf, P).

Proof. By (4.2), if n > m, 4(T, P) >- 4(srf, P) >- 4(sr,,j’, P), so that
4(T, P) _>- limsup 4(srnf, P). By (4.3), srnfconvergesuniformlyto T sf,
so that 4( T, P) __< lira inf 4(srn f, P). Accordingly 4( T, P) lira 4(Srs f, P).
(If Ks} is finite, (4.2) alone will suffice.)
We observe that srsf has middle space contained in Hs. Again by

(4.2), if t. is the composition of rs followed by a retraction t’ from H, onto
K 1 <= j <-_ n, 4(sr f, P) 4(st f, P so that we have proved

(4.5) If M has an approximation by a sequence {K} of K-chains, then there
are retractions t from M onto Kj such that 4( T, P) 4(st f, P).

(4.6) If M is an irreducible chain Do(I), where I is an arc, then if {Q.} is
the sequence of true prime Do-chains of M, there are retractions from M onto
Q such that if 4 satisfies the conditions of 2, 4( T, P) 4(sf, P).

Proof. Let/be an arc such that Do(I) is an irreducible chain in M from
a to b. It is clear that Do(l) can be written as the sum of a countable set of
closed nondegenerate arcs {Is}, each of which is contained in a unique fine-
cyclic element P Do(l), a countable set of open arcs {I’ }, each of which
meets no P D0(I) (and is maximal with respect to that property), and a
set of points {C,} which are not in anyof the sets of {Is}, {I’}. It follows at
once that each such point C, is the limit of a null sequence of arcs of the null
sequence {Is}, and that each point of I (0 Is {a, b} is a cutpoint of
Do(l), by an argument similar to that in [7, (6.4)]. If T e is a mapping
from P onto P*, such that the middle space M is contained in Do(l), the
theorem of Mickle and Rado, (2.2), allows us to consider a single cyclic
element C of Do(l), which can contain as endpoints at most two of the cut-
points of Do(l), so that each point I C other than these two is coutained
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in at least one, and at most two, fine-cyclic elements of C. Further, if P
and P. are fine-cyclic elements of C such that P P 0, there is a 0-nodal
decomposition of C into two irreducible chains C and C. (which indeed can
be extended to a 0-nodal decomposition of M), so that (4.1) permits re-
striction of attention to a mapping T e which has middle space C, pos-
sessing at most one cutpoint of D0(I).

If the number of fine-cyclic elements is finite, then by (4.2), T is fine-
cyclically additive on C. If not, from the above, there is a null sequence
{P’n} of fine-cyclic elements of C1 such that P’n n P 9 if and only
if n m 1, and such that lim P’ ceC. By[4, 8],thereisare-
traction r from C onto Q’ = P such that r(C Q’n) is a subset of a
dendrite in P Since lira Pn C, it is clear that the sequence{r} con-
verges uniformly to the identity mapping. Suppose T sf, and
f(P) C. Then the mapping s rf has middle space contained in Q,
so that, if tn is the retraction from C onto P’, we have by (4.2)

(s r f, P) =(s t rL P) = (si t rf, P)

since t r is a retraction from C onto P such that t r(C is a subset
of a dendrite of P’ for j < n. Thusn, SO that on Q., t r t r,

(Ti, P) lim i (s rL P) j=l (81 tj rf,
so that, since by (4.2), (T, P) (s rf, P), we have

(T, P) =(s t rf, P).
Finally,

(4.7) If each true cyclic element of M has an approximation by K-chains,
then if {Q} is the (possibly finite or empty) sequence offine cyclic elements, then
for each integer j, there is a retraction from M onto Q such that, if satisfies
the conditions of 2, we have

(T, P) (sL P).

Proof. By (2.2), if {C} is the sequence of true cyclic elements of M,
and rn is the monotone retraction from M onto C ( T, P) n(srL P).
By assumption, if {K} is a set of K-chains approximating C, t: a re-
traction from C onto K as in (3.7), and tnm mrn, then, by
(4.5), (sr f, P) (stf, P). It now follows from (4.6) that there
is, for each fine-cyclic element Qni of Kn, a retraction t from M onto Q
such that (stL P) (stL P). If we reindex the fine-cyclic
elements of M so that we denote them as {Q}, and let tn, we have the
result stated.

It is easy to construct examples showing the increase in generality of this
result.
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