AN EXTENSION OF A FINE-CYCLIC ADDITIVITY THEOREM FOR A FUNCTIONAL ${ }^{1}$

BY
Russell Remage, Jr. ${ }^{2}$

1. Introduction

E. J. Mickle and T. Rado in [2], and C. J. Neugebauer in [5], have given cyclic and fine-cyclic additivity theorems for a class of functionals defined for continuous mappings from a Peano space to a metric space, generalizing wellknown cyclic and fine-cyclic additivity theorems for Lebesgue area. Using the results of the above papers, we obtain an extension of Neugebauer's result by replacing the requirement that the middle space be of finite degree of multicoherence by the requirement that each proper cyclic element be approximatable by a sequence of irreducible K-chains, as defined in $\S 3$, in a manner analogous to the cyclic chain approximation method used in [2].

2. Summary of analytic definitions and known results

The basic definitions of [5] are as follows:
Let P be a Peano space, and let P^{*} be a metric space. If $X \subset P$, denote by (T, X) a continuous mapping from X into P^{*}, and let $\mathfrak{I}(X)$ be the collection of all such mappings. Let \mathfrak{H} denote the set of all open sets of P and let \mathfrak{I}^{*} be the collection $\{\mathfrak{T}(A): A \in \mathfrak{A}\}$, and let $\mathfrak{T}=\mathfrak{I}(P)$. An unrestricted factorization of a mapping $(T, A) \in \mathfrak{T}^{*}$ consists of a middle space M, and two continuous mappings s, f, where $f: A \rightarrow M$ and $s: M \rightarrow P^{*}$, so that $(T, A)=s f$. Two mappings $\left(T_{1}, A_{1}\right),\left(T_{2}, A_{2}\right)$ constitute a partition of a mapping $(T, P) \in \mathfrak{I}$ provided there are a finite set of points F in P^{*} and a pair of nonempty closed sets E_{1}, E_{2} of P such that, for $i=1,2$,
(1) $P=E_{1} \cup E_{2}, \quad E_{i} \subset A_{i}$.
(2) $T_{i}(x)=T(x)$ for $x \in E_{i}, \quad T_{i}$ maps $A_{i}-E_{i}$ into F.
(3) $T\left(E_{1} \cap E_{2}\right) \subset F$.

Let Φ be a nonnegative functional defined on \mathfrak{T}^{*} (possibly with infinite values), satisfying
(a) Φ is lower semicontinuous on \mathfrak{I}, in the sense that if $\left\{\left(T_{n}, P\right)\right\}$ is a sequence of mappings in \mathfrak{I} converging on P uniformly to a mapping (T, P), then $\Phi(T, P) \leqq \lim \inf \Phi\left(T_{n}, P\right)$.
(b) If $\left(T_{1}, A_{1}\right),\left(T_{2}, A_{2}\right)$ form a partition of (T, P), then $\Phi(T, P)=$ $\Phi\left(T_{1}, P_{1}\right)+\Phi\left(T_{2}, P_{2}\right)$.
(c) If $(T, A) \in \mathfrak{T}^{*}$ admits of an unrestricted factorization $(T, A)=s f$,

[^0]where M is a dendrite, then $\Phi(T, A)=0$. We agree that for the empty set $\emptyset, \Phi(T, \emptyset)=0$.

Let us call a 0 -nodal decomposition, of a Peano space M, a decomposition of M into two closed connected sets B_{1} and B_{2} such that $M=B_{1} \cup B_{2}$, and $B_{1} \cap B_{2}=Z$, a finite set, with $B_{1} \neq Z \neq B_{2}$, and denote such a decomposition by $\left(B_{1}, Z, B_{2}\right) . \quad B_{1}$ and B_{2} will be called 0 -nodal sets, and we agree that M is a 0 -nodal set.

In [3] and [4], a B-set of M is defined to be a nondegenerate continuum of M such that $B=M$ or each component of $M-B$ has finite frontier, a fine-cyclic element is a B-set which cannot be separated by any finite set, and a local A-set B is a nondegenerate closed subset of M such that $B=M$, or there is a connected open subset G of M containing B such that if $\{O\}$ is the collection of components of $G-B$, then, for $O \in\{O\}, G \cap \mathfrak{F}(O)$ is a single point, and if $O^{\prime}, O^{\prime \prime}$ are two elements of the frontier $\mathfrak{F}\{O\}$ such that

$$
G \cap \mathfrak{F}\left(O^{\prime}\right) \cap \mathfrak{F}\left(O^{\prime \prime}\right)=\emptyset,
$$

then $\bar{O}^{\prime} \cap \bar{O}^{\prime \prime}=\emptyset . \quad B$ is then called a (G, A)-set of M.
A retraction t from M onto a local A-set B of M is a continuous mapping such that
(1) there exists a connected open set G containing B such that B is a (G, A)-set of M;
(2) $t \mid G$ is the identity on B and sends every component of $G-B$ into its frontier relative to G;
(3) $t(M-G)$ is a subset of a dendrite $D \subset B$.

Neugebauer gives in [5] the following result basic to this paper.
(2.1) If sf is an unrestricted factorization of $(T, P) \in \mathfrak{I}$, with middle space M, and (B_{1}, Z, B_{2}) is a 0-nodal decomposition of M, then there are retractions t_{i} from M onto $B_{i}, i=1,2$, such that

$$
\Phi(T, P)=\Phi\left(s t_{1} f, P\right)+\Phi\left(s t_{2} f, P\right)
$$

Under the above conditions, and indeed somewhat less stringent conditions, Mickle and Rado in [2] proved the following theorem, extended in [5], and to be extended herein:
(2.2) For each true cyclic element C of M, there is a unique monotone retraction r_{c} from M onto C, such that $\Phi(T, P)=\sum \Phi\left(s r_{c} f, P\right)$ where the summation is extended over all proper cyclic elements C of M.

3. K-sets and irreducible K-chains

We will henceforth assume that M is a Peano space. A D_{0}-chain is the nonempty intersection of 0 -nodal sets. (If a D_{0}-chain D is the intersection of 0 -nodal sets each of whose boundaries consist of not more than n points, D will sometimes be called a D_{n}-chain.) A D_{0}-chain D is said to be prime
if it satisfies the following condition: For each 0-nodal decomposition $\left(B_{1}, Z, B_{2}\right)$, either $D \subset B_{1}$ or $D \subset B_{2}$. If X is not empty, $D_{0}(X)$ is the intersection of all 0 -nodal sets containing X. A D_{0}-chain D is called true if $D=D_{0}(X)$ where X is connected and nondegenerate, or where X is a single point which is not an essential member of a finite set separating M. The properties of D_{0}-chains are discussed in [7]; in particular true D_{0}-chains of a continuum are continua.

A true D_{0}-chain is called a K-set if it is the intersection of a finite number of 0 -nodal sets. It is clear that K is a K-set if and only if $K \cap(\overline{M-K})$ is finite or empty. It is shown in [7] that a true prime D_{0}-chain which is a K-set is a fine-cyclic element, and conversely, if K is a fine-cyclic element in a Peano space, and also a K-set, it is immediate that it is a true prime D_{0}-chain, for if no finite set of points separates K, no finite set can separate K in M. Thus whenever M is such that each true prime D_{0}-chain is a K-set, we may use interchangeably the terms "true prime D_{0}-chain" and "fine-cyclic element". Neugebauer showed in [3] that if M is cyclic and of finite degree of multicoherence, a fine-cyclic element is a K-set.

The following theorem is proved, in a more general setting, in [7].
(3.1) If $\left(B_{1}, Z, B_{2}\right)$ and $\left(B_{1}^{\prime}, Z^{\prime}, B_{2}^{\prime}\right)$ are 0 -nodal decompositions of M such that $B_{1}^{\prime} \cap\left(B_{1}-Z\right) \neq \emptyset \neq B_{2} \cap B_{2}^{\prime}$, then for each nondegenerate component Q of $B_{1} \cap B_{1}^{\prime}$, there is a 0-nodal decomposition ($B_{1}^{\prime \prime}, Z^{\prime \prime}, B_{2}^{\prime \prime}$) such that $Z^{\prime \prime} \subset Q=B_{1}^{\prime \prime}$.

It is also noted that the finite set of 0 -nodal decompositions $\left\{\left(B_{1 i}, Z_{i}, B_{2 i}\right)\right\}$ such that $\cup Z_{i} \subset K=\cap B_{1 i}$ may be chosen so that for each $i \neq j$, $B_{2 i} \cap B_{2 j}=\emptyset$, so that the intersection of each subcollection of the sets $\left\{B_{1 i}\right\}$ is a K-set.
(3.2) If K is a K-set, there is only a finite number of components of $M-K$ with nondegenerate frontier.

Proof. Otherwise, if U is the union of K with a set of pairwise disjoint neighborhoods of the finite set $\mathfrak{F}(M-K)$, there would be a limit point in $M-U$ of a sequence of points chosen one from each of the components of $M-K$ which meet $M-U$. This contradicts the fact that each component of $M-K$ is open.

Neugebauer in [4] has shown that B-sets which satisfy the property in (3.2) are local A-sets, so that K-sets are local A-sets.
(3.3) If every true prime D_{0}-chain of M is a D_{n}-chain, $n>0$, then for each $\varepsilon>0$, there is only a finite number of true prime D_{0}-chains with diameter greater than ε.

Proof. If the theorem is false, there is a sequence of distinct true prime D_{0}-chains $\left\{Q_{k}\right\}$ each of which has diameter not less than ε, and which converges to a limit continuum Q. We may assume that, for each $k, Q \cap Q_{k}$ is finite.

If $D_{0}(Q)$ is not prime, there is a 0 -nodal decomposition $\left(B_{1}, Z, B_{2}\right)$ such that Q meets $B_{1}-Z$ and $B_{2}-Z$, so that for large k, Q_{k} would also meet $B_{1}-Z$ and $B_{2}-Z$, contrary to the definition of Q_{k}, so that $D_{0}(Q)$ is prime. By assumption, there is an integer k such that $D_{0}(Q)=D_{k}(Q)$. Let $\delta=\varepsilon / 3 k$, and let $\eta>0$ be such that each pair of points whose distance is less than η lie in a connected set of diameter less than δ. If $V_{\eta}(X)$ denotes an η-neighborhood of X, let k be an integer such that $Q_{k} \subset V_{\eta}(Q)$. There is an n-nodal decomposition (B_{1}, Z, B_{2}) such that $Q_{k} \subset B_{1}, Q \subset B_{2}$, and

$$
Z=\left\{z_{1}, z_{2}, \cdots, z_{m}\right\}, \quad m \leqq n
$$

There is a point $p \in Q_{k}-\bigcup_{i=1}^{m} V_{\delta}\left(z_{i}\right)$. Since

$$
V_{\eta}(p) \cap Q \neq \emptyset \quad \text { but } \quad V_{\varepsilon}(p) \cap Z=\emptyset,
$$

we have a contradiction of the uniform local connectedness of S. This completes the proof.

We remark that each K-set is a D_{n}-chain, for some integer n, so that (3.3) holds under the assumption that the true prime D_{0}-chains are K-sets.

An irreducible chain in M between points a and b of M is a true D_{0}-chain which properly contains no true D_{0}-chain which contains a and b. It is shown in [7] that
(3.4) If I is an arc from a to b, such that for each true prime D_{0}-chain Q in $D_{0}(I), Q \cap I$ is a nondegenerate continuum, and if, when Q_{1}, Q_{2} are two true prime D_{0}-chains of $D_{0}(I)$ with nonempty intersection, then $Q_{1} \cap Q_{2} \cap I \neq \emptyset$; then $D_{0}(I)$ is irreducible.
(3.5) If I is a continuum irreducible from a to b such that for each tru ${ }^{e}$ prime D_{0}-chain $Q \subset D_{0}(I), Q$ is a K-set, and $Q \cap I$ is an arc, then I is an arc.

For the remainder of the paper we will assume that each true prime D_{0}-chain is a K-set.
(3.6) Let I^{\prime} be an arc from a to b. Then $D_{0}\left(I^{\prime}\right)$ contains an arc I from a to b such that $D_{0}(I)$ is an irreducible chain.

Proof. By (3.3), we may enumerate the true prime D_{0}-chains of $D_{0}\left(I^{\prime}\right)$ in the order of nonincreasing diameter. Let $\left\{Q_{n}^{\prime}\right\}$ be this sequence. If there are no members of this set, then by $[7,(6.3)], D_{0}\left(I^{\prime}\right)=I^{\prime}$, and is clearly irreducible. For each $n, Q_{n}^{\prime} \cap I^{\prime}$ is nondegenerate, since otherwise, by (3.1) we can arrive at a 0-nodal decomposition (B_{1}, Z, B_{2}) such that $Q_{n}^{\prime} \subset B_{1}$, $I^{\prime} \subset B_{2}$. If I^{\prime} has its natural order from a to b, there is a first point a_{1} and a last point b_{1} of I^{\prime} in Q_{1}^{\prime}. Since Q_{1}^{\prime} is arcwise connected, there is an arc I_{1}^{\prime} from a_{1} to b_{1} in Q_{1}^{\prime}. Let I_{1} be the arc consisting of the part I^{\prime} from a to a_{1}, and the part of I^{\prime} from b_{1} to b. If n_{2} is the first integer such that $Q_{n_{2}}^{\prime} \subset D_{0}\left(I_{1}\right)$, we may repeat the process, obtaining an arc I_{2} such that $I_{2} \cap Q_{n_{2}}^{\prime}$ is an arc, and $I_{2} \subset D_{0}\left(I_{1}\right)$. Continuing inductively, we obtain a continuum
$I^{\prime \prime}=\lim I_{n}$ such that $I^{\prime \prime} \subset D_{0}\left(I_{n}\right)$ for every n, and such that if $Q^{\prime} \subset D_{0}\left(I^{\prime \prime}\right)$, $Q^{\prime} \cap I^{\prime \prime}$ is an arc. From (3.5), it follows that $I^{\prime \prime}$ is an arc from a to b.

For the second stage of the construction, let $\left\{Q_{n}^{\prime \prime}\right\}$ be the subsequence of $\left\{Q_{n}^{\prime}\right\}$ such that $Q_{n}^{\prime \prime} \subset D_{0}\left(I^{\prime \prime}\right)$ for each n. Since $Q_{n}^{\prime \prime} \cap I^{\prime \prime}$ is a continuum, we may say that $Q_{n}^{\prime \prime}$ lies to the left of $Q_{m}^{\prime \prime}$ if $Q_{n}^{\prime \prime} \cap I^{\prime \prime}$ precedes $Q_{m}^{\prime \prime} \cap I^{\prime \prime}$ in the natural order of $I^{\prime \prime}$ from a to b. If there is a least integer n such that $Q_{n} \cap Q_{1} \neq \emptyset$, if $Q_{n}^{\prime \prime}$ lies to the left of $Q_{1}^{\prime \prime}$, let us replace the part of $I^{\prime \prime}$ from the first point of $I^{\prime \prime}$ in $Q_{n}^{\prime \prime}$ to the last point of $I^{\prime \prime}$ in $Q_{1}^{\prime \prime}$ by an arc in $Q_{n}^{\prime \prime}$ บ $Q_{1}^{\prime \prime}$ whose parts in $Q_{n}^{\prime \prime}$ and in $Q_{1}^{\prime \prime}$ are arcs, and similarly if $Q_{n}^{\prime \prime}$ lies to the right of $Q_{1}^{\prime \prime}$. If the new arc is denoted by I_{1}, let us repeat the process if there is an integer $m>n$ such that

$$
Q_{m}^{\prime \prime} \cap Q_{1}^{\prime \prime} \neq \emptyset, \quad \text { but } \quad Q_{m}^{\prime \prime} \cap Q_{1}^{\prime \prime} \cap I_{1}^{\prime}=\emptyset,
$$

obtaining an arc I_{12} from a to b. On account of the fact that the diameters of $Q_{m}^{\prime \prime}$ tend to zero, there can be at most a finite number of integers n such that $Q_{n}^{\prime \prime} \cap Q_{1}^{\prime \prime} \neq \emptyset$. To see this we need only observe that if $Q_{n}^{\prime \prime}$ meets $Q_{1}^{\prime \prime}$ on the left, the arc of I_{11} from a to $Q_{n}^{\prime \prime}$ is at positive distance from $Q_{1}^{\prime \prime}$, and hence only a finite number of the sequence $\left\{Q_{n}^{\prime \prime}\right\}$ can meet this are and $Q_{1}^{\prime \prime}$ as well, and similarly, only a finite number of the sequence can meet the part of I_{11} to the right of $Q^{\prime \prime}$. Thus after a finite number of steps, we arrive at an arc $I_{1}^{\prime \prime}$ such that if $Q_{n}^{\prime} \subset D_{0}\left(I_{1}^{\prime \prime}\right), Q_{n}^{\prime \prime} \cap I_{1}^{\prime \prime}$ is an are, and such that there are at most two integers n such that $Q_{n}^{\prime \prime} \cap Q_{1}^{\prime \prime} \neq \emptyset$, in which case $Q_{n}^{\prime \prime} \cap Q_{1}^{\prime} \cap I_{1}^{\prime \prime} \neq \emptyset$. If we apply this process inductively we obtain a continuum I which has the properties:
(1) If $Q \subset D_{0}(I), Q \cap I$ is an arc.
(2) If $Q_{1}, Q_{2} \subset D_{0}(I)$, and $Q_{1} \cap Q_{2} \neq \emptyset, Q_{1} \cap Q_{2} \cap I \neq \emptyset$.
(3) If $Q \subset D_{0}(I)$, there are at most two true prime D_{0}-chains Q_{1}, Q_{2} such that $Q_{i} \cap Q \neq \emptyset$.

From (3.5) it follows that I is an arc. From (3.4), $D_{0}(I)$ is an irreducible chain. This completes the proof.

It is well known (see [6] or [8]) that a nondegenerate Peano space P has a cyclic chain approximation, in that there is a sequence $\left\{C_{n}\right\}$ of cyclic chains such that $C_{n+1} \cap\left(\mathrm{U}_{i=1}^{n} C_{j}\right)$ is a single point, and $\left(\overline{\mathrm{U}_{j=1}^{\infty} C_{j}}\right)=P$. In [7], it is shown that separable metric continua possess, in a sense, approximations by irreducible chains, but in general even a Peano space may not have a readily usable approximation. Let us call an irreducible chain $D_{0}(I)$, where I is an arc and $D_{0}(I)$ is a K-set, an irreducible K-chain, or, simply, a K-chain, and restrict ourselves to Peano spaces for which each true prime D_{0}-chain is a K-set. Such a space M is said to have a K-chain approximation if in each K-set in M, and each pair of points in the boundary of K, there is a K-chain joining these points. The term is justified by the next result, where $\delta(X)$ denotes the diameter of x.
(3.7) If a Peano space M has a K-chain approximation, there is a sequence $\left\{K_{n}\right\}$ of K-chains such that if $H_{n}=\bigcup_{k=1}^{n} K_{k}$, then
(1) H_{n} is a K-set, for each n.
(2) $\overline{U H}_{n}=M$.
(3) For each n, there is a finite set of 0-nodal decompositions

$$
\left\{\left(A_{n i}, Z_{n i}, B_{n i}\right): i=1,2, \cdots, k_{n}\right\}
$$

such that

$$
\bigcup_{i=1}^{k_{n}} Z_{n i} \subset H_{n}=\bigcap_{i=1}^{k_{n}} B_{n i}
$$

and such that if $d_{n}=\max _{i=1,2, \cdots, k_{n}} \delta\left(A_{n i}\right)$, then $\lim d_{n}=0$.
Proof. Let $\left\{p_{n}\right\}$ be a sequence of non- 0 -endpoints, dense in M, where a 0 -endpoint is a point p such that $D_{0}(p)=p$, but there is no 0 -nodal decomposition (A, Z, B) such that $p \in Z$. We may assume that there is at least one 0 -nodal decomposition of M. It is clear that the sequence $\left\{p_{n}\right\}$ exists, for if $\left\{p_{n}^{\prime}\right\}$ is any dense denumerable sequence, for each $p_{n}^{\prime} \in\left\{p_{n}^{\prime}\right\}$ which is a 0 -endpoint, there is a sequence of non-0-endpoints which converges to p_{n}^{\prime}, so that each 0 -endpoint may be replaced by non-0-endpoints. By (3.6), there is a K-chain K_{1} joining p_{1} and p_{2}, and if n_{1} is the least index such that $p_{n_{1}} \notin K_{1}$, there is a K-chain K_{2} joining a point of K_{1} to $p_{n_{1}}$, with $K_{1} \cap K_{2}$ a finite nonempty set, since there is a 0 -nodal decomposition (A, Z, B) such that $p_{n_{1}} \in A-Z$, and $Z \subset K_{1} \subset B$. Let us add K-chains $K_{2}, K_{3}, \cdots, K_{k}$, so that $H_{j}=K_{1} \cup \cdots$ u $K_{j}, 2 \leqq j \leqq k$ is a K-set, and so that $Z \subset H_{k}$.

By induction, the sequences $\left\{K_{n}\right\}$ and $\left\{H_{n}\right\}$ are defined, so that H_{n} satisfies (1), for each positive integer n. It is clear from (3.6) that (2) is also satisfied; each non- 0 -endpoint is an element of H_{n}, for some positive integer n.

Suppose p is a 0 -endpoint not in $\cup_{n=1}^{\infty} H_{n}$, let V be any open set containing p. By definition of 0 -endpoint and (3.1), there is an 0 -nodal decomposition (A, Z, B) such that the compact set $M-V$ is contained in $B-Z$, so that $A \subset V$, with $p \in A-Z$. Further, there are a 0 -nodal decomposition $\left(A^{\prime}, Z^{\prime}, B^{\prime}\right)$ such that $p \in A^{\prime}-Z^{\prime}$ and $A^{\prime} \subset A-Z$ and an integer n such that $Z^{\prime} \subset H_{n}$. If $\left\{\left(A_{n i}, Z_{n i}, B_{n i}\right)\right\}$ are 0 -nodal decompositions such that

$$
\bigcup_{i} Z_{n i} \subset H_{n}=\bigcap_{i} B_{n i}
$$

then if $A_{n i}$ is the nodal set containing $p, A_{n i} \subset A \subset V$. This completes the proof.

4. Finitely generalized retractions

In the attack on the main problem, we need a trivial modification of (2.1). Let us denote by "finitely generalized dendrite" a continuum H of finite degree of multicoherence which is the union of a finite number of dendrites, and by "finitely generalized retraction" from M onto B a retraction t, in which condition (3) for retractions (see §2) is replaced by
$\left(3^{\prime}\right) \quad t(M-G)$ is a subset of a finitely generalized dendrite $H \subset B$.
(4.1) If sf is an unrestricted factorization of $(T, P) \in \mathfrak{I}$ with middle space M, if $\left(B_{1}, Z, B_{2}\right)$ is a 0-nodal decomposition of M, and if $D_{i}, i=1,2$, are
finitely generalized dendrites with $Z_{i} \subset D_{i} \subset B_{i}$, then there are finitely generalized retractions t_{i} from M onto B_{i}, such that $t_{i}\left(M-B_{i}\right) \subset D_{i}$, and such that

$$
\Phi(T, P)=\Phi\left(s t_{1} f, P\right)+\Phi\left(s t_{2} f, P\right)
$$

Proof. We appeal to the development in [5]. If $i=1$ or 2 , there is a connected open set G_{i} containing B_{i}, such that B_{i} is a (G_{i}, A)-set of M, and there is, in the same manner as in [5], a finitely generalized retraction t_{i} such that $t_{i}\left(G_{i}-B_{i}\right) \subset Z, t_{i}\left(M-B_{i}\right) \subset D_{i}$. If we let D_{i}^{\prime} be a dendrite such that $Z \subset D_{i}^{\prime} \subset D_{i}$, and $A_{i}=f^{-1}\left(G_{i}\right)$, which we may assume nonempty, it follows at once that $\left(s t_{1} f, A_{1}\right)$ and $\left(s t_{2} f, A_{2}\right)$ constitute a partition of (T, P), so that, if Φ satisfies (c) of $\S 2$, then

$$
\Phi(T, P)=\Phi\left(s t_{1} f, A_{1}\right)+\Phi\left(s t_{2} f, A_{2}\right)
$$

If we consider the maps $t^{\prime}=t_{1} t_{2}$ on B_{1}, t_{1} on B_{2}, then it is easily seen that $\left(s t_{1} f, A_{1}\right)$ and ($s t^{\prime} f, A_{2}$) form a partition of ($s t_{1} f, P$), and also that ($s t^{\prime} f, A_{1}$) and ($s t^{\prime} f, A_{2}$) form a partition of $\left(s t^{\prime} f, P\right)$. It follows from [5, §4, (ii)], since $D_{1} \cup D_{2}$ is of finite degree of multicoherence, that $\Phi\left(s t^{\prime} f, P\right)=0$. Thus if Φ satisfies the conditions listed in $\S 2, \Phi\left(s t^{\prime} f, A_{2}\right)=\Phi\left(s t^{\prime} f, A_{1}\right)=0$, and since $\Phi\left(s t_{1} f, P\right)=\Phi\left(s t_{1} f, A_{1}\right)+\Phi\left(s t^{\prime} f, A_{2}\right)$, we have

$$
\Phi\left(s t_{1} f, P\right)=\Phi\left(s t_{1} f, A_{2}\right)
$$

Similarly

$$
\Phi\left(s t_{2} f, P\right)=\Phi\left(s t_{2} f, A_{2}\right)
$$

Accordingly,

$$
\Phi(T, P)=\Phi\left(s t_{1} f, P\right)+\Phi\left(s t_{2} f, P\right)
$$

For the remainder of the paper, we will designate "finitely generalized retractions from M onto B " more simply as "retractions from M onto B ".

If K is a K-set, there is, by the remark following (3.1), a finite number k of 0-nodal decompositions $\left\{\left(B_{1 i}, Z_{i}, B_{2 i}\right)\right\}$ such that if $i \neq j, B_{1 i} \cap B_{1 j}=\emptyset$; for $1 \leqq j \leqq k, \bigcap_{i=1}^{j} B_{1 i}$ is a K-set, and $\bigcup_{i=1}^{k} Z_{i} \subset K=\bigcap_{i=1}^{k} B_{2 i}$. It is a simple exercise in induction, using (4.1) to conclude that
(4.2) There are retractions $t_{1}, t_{2}, \cdots, t_{k}$ from M onto $B_{11}, B_{12}, \cdots, B_{1 k}$ respectively, and t_{k+1} from M onto K such that, if D_{j} is any finitely generalized dendrite with $Z_{j} \subset D_{j} \subset B_{i j}$, and D_{k+1} is any finitely generalized dendrite with $\cup_{j=1}^{k} Z_{j} \subset D_{k+1} \subset K$, then, for $1 \leqq j \leqq k$,

$$
\begin{align*}
& \text { (1) } t_{j}\left(M-B_{1 j}\right) \subset D_{j}, \quad t_{k+1}(M-K) \subset D_{k+1} \tag{1}\\
& \text { (2) } \Phi(T, P)=\sum_{j=1}^{k+1} \Phi\left(s t_{j} f, P\right)
\end{align*}
$$

(4.3) If M has an approximation by a sequence $\left\{K_{n}\right\}$ of K-chains, as in (3.7), then there is a sequence $\left\{r_{n}\right\}$ of retractions such that r_{n} is from M onto H_{n} and $\left\{r_{n}\right\}$ converges uniformly to the identity.

Proof. Let n be a positive integer. By (3) of (3.7) there is a finite set $\left\{\left(A_{n i}, Z_{n i}, B_{n i}\right)\right\}$ of 0 -nodal decompositions such that

$$
\bigcup_{i} Z_{n i} \subset H_{n}=\bigcap_{i} B_{n i}
$$

Moreover, if $m>n$, and $H_{m} \cap\left(A_{n i}-Z_{n i}\right) \neq \emptyset$, then, by assumption, if $A_{m j} \subset A_{n i}$ properly, there is a dendrite $F_{n i}$, contained in $\overline{A_{n i}-A_{m j}}$, which can be extended to a finitely generalized dendrite $F_{n i}^{\prime}$ containing also all points of each $Z_{m j}$ for which $A_{m j} \subset A_{n i}$ properly. By (4.2), there is a retraction r_{m} from M onto H_{n}, with $r_{m}\left(M-H_{m}\right)$ a subset of $\bigcup_{i=1}^{k^{\prime}(n)} F_{n i}$, which is clearly a generalized dendrite, contained in a finite sum of ordinary dendrites. Since $\max \delta\left(A_{n i}\right)$ tends to zero as n tends to infinity, the proof is complete.
(4.4) If M has an approximation by a sequence $\left\{K_{n}\right\}$ of K-chains, as in (3.7), and r_{n} is the retraction from M onto H_{n}, then if Φ satisfies the conditions of $\S 2, \Phi(T, P)=\lim _{n \rightarrow \infty} \Phi\left(s r_{n} f, P\right)$.

Proof. By (4.2), if $n>m, \Phi(T, P) \geqq \Phi\left(s r_{n} f, P\right) \geqq \Phi\left(s r_{m} f, P\right)$, so that $\Phi(T, P) \geqq \lim \sup \Phi\left(s r_{n} f, P\right)$. By (4.3), $s r_{n} f$ converges uniformly to $T=s f$, so that $\Phi(T, P) \leqq \liminf \Phi\left(s r_{n} f, P\right)$. Accordingly $\Phi(T, P)=\lim \Phi\left(s r_{n} f, P\right)$. (If $\left\{K_{n}\right\}$ is finite, (4.2) alone will suffice.)

We observe that $s r_{n} f$ has middle space contained in H_{n}. Again by (4.2), if t_{j} is the composition of r_{n} followed by a retraction $t_{n j}^{\prime}$ from H_{n} onto $K_{j}, 1 \leqq j \leqq n, \Phi\left(s r_{n} f, P\right)=\sum_{j=1}^{n} \Phi\left(s t_{j} f, P\right)$, so that we have proved
(4.5) If M has an approximation by a sequence $\left\{K_{j}\right\}$ of K-chains, then there are retractions t_{j} from M onto K_{j} such that $\Phi(T, P)=\sum_{j=1}^{\infty} \Phi\left(s t_{j} f, P\right)$.
(4.6) If M is an irreducible chain $D_{0}(I)$, where I is an arc, then if $\left\{Q_{j}\right\}$ is the sequence of true prime D_{0}-chains of M, there are retractions \bar{t}_{j} from M onto Q_{j} such that if Φ satisfies the conditions of $\S 2, \Phi(T, P)=\sum_{j} \Phi\left(s \bar{t}_{j} f, P\right)$.

Proof. Let I be an arc such that $D_{0}(I)$ is an irreducible chain in M from a to b. It is clear that $D_{0}(I)$ can be written as the sum of a countable set of closed nondegenerate $\operatorname{arcs}\left\{I_{n}\right\}$, each of which is contained in a unique finecyclic element $P \subset D_{0}(I)$, a countable set of open $\operatorname{arcs}\left\{I_{n}^{\prime}\right\}$, each of which meets no $P \subset D_{0}(I)$ (and is maximal with respect to that property), and a set of points $\left\{C_{\alpha}\right\}$ which are not in any of the sets of $\left\{I_{n}\right\},\left\{I_{n}^{\prime}\right\}$. It follows at once that each such point C_{α} is the limit of a null sequence of arcs of the null sequence $\left\{I_{n}\right\}$, and that each point of $I-\left(\cup I_{n} \cup\{a, b\}\right)$ is a cutpoint of $D_{0}(I)$, by an argument similar to that in [7, (6.4)]. If $T \epsilon \mathfrak{I}$ is a mapping from P onto P^{*}, such that the middle space M is contained in $D_{0}(I)$, the theorem of Mickle and Rado, (2.2), allows us to consider a single cyclic element C of $D_{0}(I)$, which can contain as endpoints at most two of the cutpoints of $D_{0}(I)$, so that each point $I \cap C$ other than these two is contained
in at least one, and at most two, fine-cyclic elements of C. Further, if P_{1} and P_{2} are fine-cyclic elements of C such that $P_{1} \cap P_{2} \neq \emptyset$, there is a 0 -nodal decomposition of C into two irreducible chains C_{1} and C_{2} (which indeed can be extended to a 0 -nodal decomposition of M), so that (4.1) permits restriction of attention to a mapping $T_{1} \in \mathfrak{I}$ which has middle space C_{1}, possessing at most one cutpoint of $D_{0}(I)$.

If the number of fine-cyclic elements is finite, then by (4.2), T_{1} is finecyclically additive on C_{1}. If not, from the above, there is a null sequence $\left\{P_{n}^{\prime}\right\}$ of fine-cyclic elements of C_{1}, such that $P_{n}^{\prime} \cap P_{m}^{\prime} \neq \emptyset$ if and only if $|n-m|=1$, and such that $\lim P_{n}^{\prime}=c \in C_{1}$. By [4, §8], there is a retraction r_{n} from C_{1} onto $Q_{n}^{\prime}=\bigcup_{j=1}^{n} P_{j}^{\prime}$ such that $r\left(C_{1}-Q_{n}^{\prime}\right)$ is a subset of a dendrite in P_{n}^{\prime}. Since $\lim P_{n}^{\prime}=c$, it is clear that the sequence $\left\{r_{n}\right\}$ converges uniformly to the identity mapping. Suppose $T_{1}=s_{1} f_{1}$, and $f_{1}(P) \subset C_{1}$. Then the mapping $s_{1} r_{n} f_{1}$ has middle space contained in Q_{n}^{\prime}, so that, if t_{n}^{\prime} is the retraction from C_{1} onto P_{n}^{\prime}, we have by (4.2)

$$
\Phi\left(s_{1} r_{n} f, P\right)=\sum_{j=1}^{n} \Phi\left(s_{1} t_{j}^{\prime} r_{n} f, P\right)=\sum_{j=1}^{n} \Phi\left(s_{1} t_{j}^{\prime} r_{j} f_{1}, P\right)
$$

since $t_{j}^{\prime} r_{n}$ is a retraction from C_{1} onto P_{n}^{\prime} such that $t_{j}^{\prime} r_{n}\left(C_{1}-P_{n}^{\prime}\right)$ is a subset of a dendrite of P_{n}^{\prime}, so that on $Q_{j}^{\prime}, t_{j}^{\prime} r_{j}=t_{j}^{\prime} r_{n}$, for $j \leqq n$. Thus

$$
\Phi\left(T_{1}, P\right) \leqq \lim \inf \Phi\left(s_{1} r_{n} f, P\right)=\sum_{j=1}^{\infty} \Phi\left(s_{1} t_{j}^{\prime} r_{j} f_{1}, P\right)
$$

so that, since by (4.2), $\Phi\left(T_{1}, P\right) \geqq \Phi\left(s_{1} r_{n} f_{1}, P\right)$, we have

$$
\Phi\left(T_{1}, P\right)=\sum_{j=1}^{\infty} \Phi\left(s_{1} t_{j}^{\prime} r_{j} f_{1}, P\right)
$$

Finally,
(4.7) If each true cyclic element of M has an approximation by K-chains, then if $\left\{Q_{i}\right\}$ is the (possibly finite or empty) sequence of fine cyclic elements, then for each integer j, there is a retraction \bar{r}_{j} from M onto Q_{j}, such that, if Φ satisfies the conditions of §2, we have

$$
\Phi(T, P)=\sum_{j=1}^{\infty} \Phi\left(s \bar{r}_{j} f, P\right)
$$

Proof. By (2.2), if $\left\{C_{n}\right\}$ is the sequence of true cyclic elements of M, and r_{n} is the monotone retraction from M onto $C_{n}, \Phi(T, P)=\sum_{n} \Phi\left(s r_{n} f, P\right)$. By assumption, if $\left\{K_{n m}\right\}$ is a set of K-chains approximating $C_{n}, t_{n m}^{\prime}$ a retraction from C_{n} onto $K_{n m}$ as in (3.7), and $t_{n m}=t_{n m}^{\prime} r_{n}$, then, by (4.5), $\Phi\left(s r_{n} f, P\right)=\sum_{m} \Phi\left(s t_{n m} f, P\right)$. It now follows from (4.6) that there is, for each fine-cyclic element $Q_{n m i}$ of $K_{n m}$, a retraction $t_{n m i}$ from M onto $Q_{n m i}$ such that $\Phi\left(s t_{n m} f, P\right)=\sum_{i} \Phi\left(s t_{n m i} f, P\right)$. If we reindex the fine-cyclic elements of M so that we denote them as $\left\{Q_{j}\right\}$, and let $\bar{r}_{j}=t_{n m i}$, we have the result stated.

It is easy to construct examples showing the increase in generality of this result.

Bibliography

1. L. Cesari, Fine-cyclic elements of surfaces of the type ν, Riv. Mat. Univ. Parma, vol. 7 (1956), pp. 149-185.
2. E. J. Mickle and T. Rado, On cyclic additivity theorems, Trans. Amer. Math. Soc., vol. 66 (1949), pp. 347-365.
3. C. J. Neugebauer, B-sets and fine-cyclic elements, Trans. Amer. Math. Soc., vol. 88 (1958), pp. 121-136.
4. ——, Local A-sets, B-sets, and retractions, Illinois J. Math., vol. 2 (1958), pp. 386-395.
5. -—, A fine-cyclic additivity theorem for a functional, Illinois J. Math., vol. 2 (1958), pp. 396-401.
6. T. Radó, Length and area, Amer. Math. Soc. Colloquium Publications, vol. 30, 1948.
7. R. Remage, Jr., On cuttings of finite sets of points, to appear.
8. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942.

University of Delaware
Newark, Delaware

[^0]: Received February 23, 1962.
 ${ }^{1}$ Presented to the American Mathematical Society January 22, 1962.
 ${ }^{2}$ This research was supported by the University of Delaware Research Foundation.

