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In [3, Theorem 8], it was shown that if G is an upper semicontinuous de-
composition of E into continua each lying in a horizontal plane but not sepa-
rating that plane, then the decomposition space associated with G is E. The
proof of this result depended on the theorem in that paper to the effect that
if f is a regular mapping (see definition below) of a complete metric space X
onto a finite-dimensional, locally compact, separable and contractible metric
space Y and each inverse under f is homeomorphic to a 2-sphere, M, then X is
homeomorphic to M X Y, f corresponding to the projection map of M X Y
onto Y. This result on regular mappings has been extended to the case where
M is a 3-sphere [5]. It is now possible to prove

THEOREM 1. If r is a fixed hyperplane of E4, and G is an upper semicon-
tinuous decomposition of E into continua such that

(1) each element of G lies in a hyperplane parallel to 7,

(2) if the element g of G lies in the hyperplane r parallel to 7, then r’ g
is homeomorphic to the complement in r of a point, and

(3) for each hyperplane r’ parallel to r, the decomposition space associated
with the subcollection of G consisting of those elements that lie in 7’ is E,

then the decomposition space associated with G is E.
Remarks. Condition (3) is required because there is no theorem for E

analogous to Moore’s theorem for E [8] to the effect that the decomposition
space associated with an upper semicontinuous decomposition G of E is E
provided that each of the elements of G is a continuum that does not separate
E. That no such theorem exists for E follows from an example of Bing [2]
modified by Fort [4] to obtain a decomposition of E into points and polygonal
arcs whoe decomposition space is not even a manifold. However, Bing [1]
and McAuley [7] have established some conditions on the elements that imply
that the decomposition space is E. For instance, the space is E if each
element of the decomposition is a point or a convex body (Bing) or if each
element is a point or a straight line interval and there exists a countable
collection Z of straight line intervals such that each interval in the decom-
position is parallel to some element of Z (McAuley).
That condition (2) is required is demonstrated by the example to be found

following the proof of Theorem 1.
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Proof of Theorem 1. Let Y be the decomposition space associated with G
and q the associated mapping of E onto Y, i.e., g is an element of G if and only
if there is an element y of Y such that q-(y) g. Let C and C be concentric
3-spheres in E, K the set of points between C and C., and L the common
part of K and a ray terminating at the common center of C and C. For
each point y of L, denote by S the sphere concentric with C that contains y.
There is homeomorphism of E onto K L that carries each hyperplane
parallel to onto some set S y. The collection H such that h belongs to it
if and only if either h t(g) for some element g of G or h is a point of L is
an upper semicontinuous decomposition of K. Let X be the decomposition
spce associated with H and f the ssocited proper mupping of K into X
(inverses of compact sets are compact). Let g denote the mpping of X
onto L such that gf(S) y for each point y of L. Note that, by hypothesis,
each inverse under g is u 3-sphere. It will be proved that X is homeomorphic
to L X S by first proving that g is h-2-regular.

DEFINITION. The proper mapping f of metric spuce X onto a metric
spce Y is said to be homotopy n-regular (h-n-regular) provided that if > 0,
y e Y, nd x e f-(y), then there exists a ti > 0 such that each mapping
of a It-sphere, /c _-< n, into f-(y’) S(x, i), y’ Y, is homotopic to 0 in

f-(y’) S (x, ), where S(x, v) denotes, as usuul, the open -neighborhood
of x.

It is proed first that g is 0-regular. Let denote positive number
and let p denote point of g-(y), for some point y of L, where p f(h)
for some h of H. There is positive number d, such that if x is in the
d-neighborhood, V, of f-(p) in K, then p(p, f(x)) < . (The letter p will
be used consistently to denote the metric ia X.) But f-(p) is connected;
hence V S is arcwise connected. (V is a union of open, spherical 4-cells
of radius d, each intersectingf-(p) and meeting S in an open 3-cell.) Thus
there is a positive number e d such that if a, b are in S V, where x is
any point of L, then there is an arc from a to b in S V. There is a positive
number ti such that if p(p, q) < , then f-(q) e V. Thus, if q and q’ are
points of X in f(S) such that p(p, q) <: und p(p, q’) < , then there is un
arc ab in S a V from a point a of f-(q) to a point b of f-(q’), where
a b V. It follows from the definition of d thut f(ab) is in the common
purr of f(S) g-i(x) and the -neighborhood of p in X. Since f is con-
tinuous, f(ab) contains an arc with eudpoints q and q’ f(a) and f(b) re-
spectively). Thus g is h-0-regular.
To see thut g is h-l-regulur, let p, h, and e be s above, and consider a

4-cell Z in K such that h f-(p) is subset of the interior of Z, Z meets
euch S in 3-cell or not t all, and p(f(x), p) < for each x in Z. The
existence of Z is a consequence of condition (2) in the statement of the
theorem. There is a positive number such that if p e X and p(p, p) ,
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then f-l(p,) e Z. Suppose that is a mapping of the 1-sphere S (bounding
the disc R2) into g-l(y,) n S(p, ) (the S(p, ) being a t-neighborhood in X).
For each x in S1, let T be an open spherical neighborhood of (x) in
g-l(y,) n f(Z). A finite subcollection, TI, T ,..., T covers ($1).
Since is s-homotopic to a piecewise linear homeomorphism for each , it may
be assumed that is a piecewise linear homeomorphism. Furthermore, it
may be assumed that xl, x2, x lie in that order on S, and that there
are points cl, c2, c on t. such that for each i, T n (S) is connected,
c lies between x and x+ (addition of subscripts being taken mod n),
)(ci) e T n T+I, and T(x) n T(x+) is connected. The set f-l(T) is
open and connected. Thus there are points a, a, a. of S, such that
for each i, aief- T nf-l(T+1 and there is an arc a_ ai in f- T n S,
Let bl, b., b denote points in that order on S and let a denote a
mapping of S into f-([2 T carrying each arc b_ b homeomorphically onto
a_ a. The mapping a can, since f-(iJ T) Z n S’, be extended to a

* R2mapping a of the 2-cell into Z n S,. Then fa* is a mapping of R into
-1 y,g f(Z). Consider fa(b_), fa(b), 4(c-) and (c). For each i,
there is au arc t_ in T_I T with endpointsfa(b_l) and (c_). The set
t_ u t ,J fa(b_ b) t (ci-1 c) is a closed curve that is contractible in T
If these n contractions re fitted to fa*, an extension of to a mapping of R
into g-(y’) f(Z), which lies in S(p, ), is obtained. Thus g is h-l-regular.

If maps Se, the 2-sphere, into g-i(y,) fl S(p, ) and is not homotopic
to 0 in g-l(y,) , S(p, ), then the Sphere Theorem (Papakyriakopoulous [9]
and Whitehead [10]) is used to obtain a nonsingular 2-sphere in
g-(y’) S(p, ) that is not contractible in g-(y’) S(p, ). An argument
similar to that above could now be used to prove that g is h-2-regular. How-
ever, it follows from [5] and [6, Theorem 6.1] that since g is h-l-regular, it is
h-2-regular.

It now follows from the remarks in the opening paragraph that X is homeo-
morphic to L X S and thus, from the construction, that Y is homeomorphic
to K L and, consequently, to E.

Example. Let T* be a tutus bounding the solid tutus V* and let g* be a
core of V* (i.e., g* is a simple closed curve in int V* and V* is a union of two
3-cells meeting in two disjoint discs such that each disc meets g in a point and
each 3-cell meets g m an unknotted arc). Let h be a latitudinal simple
closed curve on T* that together with g* bounds an annulus A* in V* that
meets T* only in h Let h’ be a meridian simple closed curve on T* bound-
ing a disc D* in V* that meets g* in a point, T* in h, A* in an arc, and h in
a point. Each of these sets should be polyhedral with respect to some tri-
angulation of V*. Denote h h’ by h*. There is a homeomorphism of
T* X [0, 1) (note the half-open interval) onto V* g* such that (x, 0) x,
4)(h[, t) A*, (h t) D*, and that can be extended to a mapping * of
T* X [0, 1] onto V* such that* T*, 1) g*, * h X I is a homeomorphism,



506 MARY-ELIZABETH HAMSTROM

and *(h, 1) is a point. In particular, considering T* as h’ h*., * carries
each h X x X 1 homeomorphically onto g* and each y X h’ X 1 onto a
point. Let H* be the decomposition of V* whose elements are g*, each
(h*, t) for 0 -<_ , 1, and the remaining points of V*. Then H* is an upper
semicontinuous decomposition of V* and the associated decomposition space
is a 3-cell. (Note that the decomposition of T* whose elements are h* and
the points of T* h* has a 2-sphere as its associated decomposition space.)

Let V** be a copy of V* bounded by T** and H** the decomposition of
V** corresponding to H*. Sew V* and V** together along their boundaries,
sewing h to h* and h* to h* In this way a 3-sphere, S’, is obtained with a
decomposition H’ whose decomposition space is also a 3-sphere (the two
3-cells, H* and H**, are sewed together along their boundaries to yield H’).
If a degenerate element of H’ is removed from S’, a decomposition H of E
is obtained whose decomposition space is E but each of whose nondegenerate
elements has a complement in E that is not simply connected.
Now consider E as E X E and let G be a decomposition of E whose

elements are the points of E (E X 0) and the continua h X 0 for h in H.
Suppose that the decomposition space associated with G is E. It will be
proved that this assumption leads to a contradiction. Let f be the mapping
of E onto E associated with G, i.e., the point inverses underf are the elements
of G. The subset K of E consisting of those points whose inverses under f
are nondegenerate is an arc.

Let Ui be a regular neighborhood in E of a figure-eight element g of G such
that U1 contains neither of the simple closed curve elements of G but contains
each element of G that it intersects. (I.e., g is a strong deformation retract of
U1 .) The set Ui may be considered as the union of two sets each of which is
the topological product of a circle and an open 3-cell and whose intersection
is an open 4-cell. Then U f(U1) is an open neighborhood of f(g) in E.
Let V be a neighborhood of g such that ? c U1, f-l(f(V) V, f(V) is an
open 4-cell, and f(I) is a 4-cell. Let U2 be a regular neighborhood of g, as
above, such that f-(f(U) U and U c V.

There is a simple closed curve C in f(U:) (K n f(U:)) that fails to
bound (homologically rood the integers) in f(U) (f(U) n K). (The
curvef-(C) may be constructed by looping around the common part of U. and
some E X t, 0, which is possible by the construction of U2 .) However,
f(V) is a 4-cell and K is an arc, so it follows from the Alexander duality
theorem that C does bound inf(V) (K f(V) ). This contradiction implies
that the decomposition space associated with G is not E, and thus that con-
dition (2) may not be completely removed from the hypotheses of Theorem 1.

In fact, going back to the 3-dimensional case of Theorem 1, we can state the
following.

This example has also been described by Bing. See page 6 of Topology of 3-mani-
folds, M. K. Fort, Jr., editor, Englewood Cliffs, N. J., Prentice-Hall, 1962.
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THEOREM 2. If G is an upper semicontinuous decomposition of E into con-
tinua each of which lies in a horizontal plane, then in order that the decomposition
space associated with G be E it is necessary that no element of G separate the
horizontal plane in which it lies.

Proof. Suppose that the decomposition space is E and denote by f the
mapping of E onto itself whose point inverses are the elements of G. If an
element g of G separates the horizontal plane , it follows from the theorem of
R. L. Moore [8] on decompositions of the plane that either (1) f() is the
union of an open disc and certain 2-spheres no one of which intersects the disc
in more than one point, or (2) f() contains an arc each noncut-point of
which is an interior point of the arc relative to f(). If (2) holds, then an arc
locally separates Es; if (1) holds, then f() separates E into more than two
components. Each of these situations is an obvious contradiction. Thus g
fails to separate .
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