A DECOMPOSITION THEOREM FOR E^4

BY

Mary-Elizabeth Hamstrom¹

In [3, Theorem 8], it was shown that if G is an upper semicontinuous decomposition of E^3 into continua each lying in a horizontal plane but not separating that plane, then the decomposition space associated with G is E^3 . The proof of this result depended on the theorem in that paper to the effect that if f is a regular mapping (see definition below) of a complete metric space X onto a finite-dimensional, locally compact, separable and contractible metric space Y and each inverse under f is homeomorphic to a 2-sphere, M, then X is homeomorphic to $M \times Y$, f corresponding to the projection map of $M \times Y$ onto Y. This result on regular mappings has been extended to the case where M is a 3-sphere [5]. It is now possible to prove

THEOREM 1. If π is a fixed hyperplane of E^4 , and G is an upper semicontinuous decomposition of E^4 into continua such that

- (1) each element of G lies in a hyperplane parallel to π ,
- (2) if the element g of G lies in the hyperplane π' parallel to π , then $\pi' g$ is homeomorphic to the complement in π' of a point, and
- (3) for each hyperplane π' parallel to π , the decomposition space associated with the subcollection of G consisting of those elements that lie in π' is E^3 , then the decomposition space associated with G is E^4 .

Remarks. Condition (3) is required because there is no theorem for E^3 analogous to Moore's theorem for E^2 [8] to the effect that the decomposition space associated with an upper semicontinuous decomposition G of E^2 is E^2 provided that each of the elements of G is a continuum that does not separate E^2 . That no such theorem exists for E^3 follows from an example of Bing [2] modified by Fort [4] to obtain a decomposition of E^3 into points and polygonal arcs whose decomposition space is not even a manifold. However, Bing [1] and McAuley [7] have established some conditions on the elements that imply that the decomposition space is E^3 . For instance, the space is E^3 if each element of the decomposition is a point or a convex body (Bing) or if each element is a point or a straight line interval and there exists a countable collection Z of straight line intervals such that each interval in the decomposition is parallel to some element of Z (McAuley).

That condition (2) is required is demonstrated by the example to be found following the proof of Theorem 1.

Received March 14, 1962.

¹ Presented to the American Mathematical Society January 22, 1962. Supported in part by the National Science Foundation.

Proof of Theorem 1. Let Y be the decomposition space associated with G and q the associated mapping of E^4 onto Y, i.e., g is an element of G if and only if there is an element y of Y such that $q^{-1}(y) = g$. Let C_1 and C_2 be concentric 3-spheres in E^4 , K the set of points between C_1 and C_2 , and L the common part of K and a ray terminating at the common center of C_1 and C_2 . For each point y of L, denote by S_y the sphere concentric with C_1 that contains y. There is a homeomorphism t of E^4 onto K-L that carries each hyperplane parallel to π onto some set S_y-y . The collection H such that h belongs to it if and only if either h=t(g) for some element g of G or h is a point of L is an upper semicontinuous decomposition of K. Let K be the decomposition space associated with K and K the associated proper mapping of K into K (inverses of compact sets are compact). Let K denote the mapping of K onto K such that K0 is a 3-sphere. It will be proved that K1 is homeomorphic to K2 is hypothesis, each inverse under K3 by first proving that K3 is hypothesis.

DEFINITION. The proper mapping f of a metric space X onto a metric space Y is said to be homotopy n-regular (h-n-regular) provided that if $\varepsilon > 0$, $y \in Y$, and $x \in f^{-1}(y)$, then there exists a $\delta > 0$ such that each mapping of a k-sphere, $k \leq n$, into $f^{-1}(y') \cap S(x, \delta)$, $y' \in Y$, is homotopic to 0 in $f^{-1}(y') \cap S(x, \varepsilon)$, where $S(x, \varepsilon)$ denotes, as usual, the open ε -neighborhood of x.

It is proved first that g is 0-regular. Let ε denote a positive number and let p denote a point of $g^{-1}(y)$, for some point y of L, where p = f(h)for some h of H. There is a positive number d, such that if x is in the d-neighborhood, V_d , of $f^{-1}(p)$ in K, then $\rho(p, f(x)) < \varepsilon$. (The letter ρ will be used consistently to denote the metric in X.) But $f^{-1}(p)$ is connected; hence $V_d \cap S_y$ is arcwise connected. (V_d is a union of open, spherical 4-cells of radius d, each intersecting $f^{-1}(p)$ and meeting S_y in an open 3-cell.) Thus there is a positive number e < d such that if a, b are in $S_x \cap V_e$, where x is any point of L, then there is an arc from a to b in $S_x \cap V_d$. There is a positive number δ such that if $\rho(p, q) < \delta$, then $f^{-1}(q) \in V_e$. Thus, if q and q' are points of X in $f(S_x)$ such that $\rho(p,q) < \delta$ and $\rho(p,q') < \delta$, then there is an arc ab in S_x of V_d from a point a of $f^{-1}(q)$ to a point b of $f^{-1}(q')$, where $a \cup b \subset V_e$. It follows from the definition of d that f(ab) is in the common part of $f(S_x) = g^{-1}(x)$ and the ε -neighborhood of p in X. Since f is continuous, f(ab) contains an arc with endpoints q and q' (= f(a) and f(b) respectively). Thus g is h-0-regular.

To see that g is h-1-regular, let p, h, and ε be as above, and consider a 4-cell Z in K such that h (= $f^{-1}(p)$) is a subset of the interior of Z, Z meets each S_y in a 3-cell or not at all, and $\rho(f(x), p) < \varepsilon$ for each x in Z. The existence of Z is a consequence of condition (2) in the statement of the theorem. There is a positive number δ such that if $p' \in X$ and $\rho(p, p') < \delta$,

then $f^{-1}(p') \in \mathbb{Z}$. Suppose that ϕ is a mapping of the 1-sphere S^1 (bounding the disc R^2 into $g^{-1}(y')$ $\cap S(p, \delta)$ (the $S(p, \delta)$ being a δ -neighborhood in X). For each x in S^1 , let T_x be an open spherical neighborhood of $\phi(x)$ in $g^{-1}(y') \cap f(Z)$. A finite subcollection, T_{x_1} , T_{x_2} , \cdots , T_{x_n} covers $\phi(S^1)$. Since ϕ is ε -homotopic to a piecewise linear homeomorphism for each ε , it may be assumed that ϕ is a piecewise linear homeomorphism. Furthermore, it may be assumed that x_1 , x_2 , \cdots , x_n lie in that order on S^1 , and that there are points c_1 , c_2 , \cdots , c_n on S^1 such that for each i, $T_{x_i} \cap \phi(S^1)$ is connected, c_i lies between x_i and x_{i+1} (addition of subscripts being taken mod n), $\phi(c_i) \in T_{x_i} \cap T_{x_{i+1}}$, and $T(x_i) \cap T(x_{i+1})$ is connected. The set $f^{-1}(T_{x_i})$ is open and connected. Thus there are points a_1 , a_2 , \cdots , a_n of $S_{v'}$ such that for each i, $a_i \in f^{-1}(T_{x_i}) \cap f^{-1}(T_{x_{i+1}})$ and there is an arc $a_{i-1} a_i$ in $f^{-1}(T_{x_i}) \cap S_{y'}$. Let b_1 , b_2 , \cdots , b_n denote points in that order on S^1 and let α denote a mapping of S^1 into $f^{-1}(\bigcup T_{x_i})$ carrying each arc b_{i-1} b_i homeomorphically onto $a_{i-1} a_i$. The mapping α can, since $f^{-1}(\bigcup T_{x_i}) \subset Z \cap S_{y'}$, be extended to a mapping α^* of the 2-cell R^2 into $Z \cap S_{y'}$. Then $f\alpha^*$ is a mapping of R^2 into $g^{-1}(y')$ in f(Z). Consider $f_{\alpha}(b_{i-1})$, $f_{\alpha}(b_i)$, $\phi(c_{i-1})$, and $\phi(c_i)$. For each i, there is an arc t_{i-1} in $T_{x_{i-1}} \cap T_{x_i}$ with endpoints $f_{\alpha}(b_{i-1})$ and $\phi(c_{i-1})$. The set $t_{i-1} \cup t_i \cup f_{\alpha}(b_{i-1} b_i) \cup \phi(c_{i-1} c_i)$ is a closed curve that is contractible in T_{x_i} . If these n contractions are fitted to $f\alpha^*$, an extension of ϕ to a mapping of R^2 into $g^{-1}(y')$ $\cap f(Z)$, which lies in $S(p, \varepsilon)$, is obtained. Thus g is h-1-regular. If ϕ maps S^2 , the 2-sphere, into $g^{-1}(y') \cap S(p, \delta)$ and is not homotopic to 0 in $g^{-1}(y')$ $\cap S(p, \varepsilon)$, then the Sphere Theorem (Papakyriakopoulous [9] and Whitehead [10]) is used to obtain a nonsingular 2-sphere in $g^{-1}(y') \cap S(p, \delta)$ that is not contractible in $g^{-1}(y') \cap S(p, \varepsilon)$. An argument similar to that above could now be used to prove that g is h-2-regular. However, it follows from [5] and [6, Theorem 6.1] that since g is h-1-regular, it is h-2-regular.

It now follows from the remarks in the opening paragraph that X is homeomorphic to $L \times S^3$ and thus, from the construction, that Y is homeomorphic to K - L and, consequently, to E^4 .

Example. Let T^* be a torus bounding the solid torus V^* and let g^* be a core of V^* (i.e., g^* is a simple closed curve in int V^* and V^* is a union of two 3-cells meeting in two disjoint discs such that each disc meets g^* in a point and each 3-cell meets g^* in an unknotted arc). Let h_1^* be a latitudinal simple closed curve on T^* that together with g^* bounds an annulus A^* in V^* that meets T^* only in h_1^* . Let h_2^* be a meridian simple closed curve on T^* bounding a disc D^* in V^* that meets g^* in a point, T^* in h_2^* , A^* in an arc, and h_1^* in a point. Each of these sets should be polyhedral with respect to some triangulation of V^* . Denote h_1^* u h_2^* by h^* . There is a homeomorphism ϕ of $T^* \times [0,1)$ (note the half-open interval) onto $V^* - g^*$ such that $\phi(x,0) = x$, $\phi(h_1^*$, $t) \subset A^*$, $\phi(h_2^*$, $t) \subset D^*$, and that can be extended to a mapping ϕ^* of $T^* \times [0,1]$ onto V^* such that $\phi^*(T^*,1) = g^*$, $\phi^* \mid h_1^* \times 1$ is a homeomorphism,

and $\phi^*(h_2^*, 1)$ is a point. In particular, considering T^* as $h_1^* \times h_2^*$, ϕ^* carries each $h_1^* \times x \times 1$ homeomorphically onto g^* and each $y \times h_2^* \times 1$ onto a point. Let H^* be the decomposition of V^* whose elements are g^* , each $\phi(h^*, t)$ for $0 \le t < 1$, and the remaining points of V^* . Then H^* is an upper semicontinuous decomposition of V^* and the associated decomposition space is a 3-cell. (Note that the decomposition of T^* whose elements are T^* and the points of T^* has a 2-sphere as its associated decomposition space.)

Let V^{**} be a copy of V^{*} bounded by T^{**} and H^{**} the decomposition of V^{**} corresponding to H^{*} . Sew V^{*} and V^{**} together along their boundaries, sewing h_{1}^{*} to h_{2}^{**} and h_{1}^{**} to h_{2}^{*} . In this way a 3-sphere, S', is obtained with a decomposition H' whose decomposition space is also a 3-sphere (the two 3-cells, H^{*} and H^{**} , are sewed together along their boundaries to yield H'). If a degenerate element of H' is removed from S', a decomposition H of E^{3} is obtained whose decomposition space is E^{3} but each of whose nondegenerate elements has a complement in E^{3} that is not simply connected.

elements has a complement in E^3 that is not simply connected.²

Now consider E^4 as $E^3 \times E^1$ and let G be a decomposition of E^4 whose elements are the points of $E^4 - (E^3 \times 0)$ and the continua $h \times 0$ for h in H. Suppose that the decomposition space associated with G is E^4 . It will be proved that this assumption leads to a contradiction. Let f be the mapping of E^4 onto E^4 associated with G, i.e., the point inverses under f are the elements of G. The subset K of E^4 consisting of those points whose inverses under f are nondegenerate is an arc.

Let U_1 be a regular neighborhood in E^4 of a figure-eight element g of G such that U_1 contains neither of the simple closed curve elements of G but contains each element of G that it intersects. (I.e., g is a strong deformation retract of U_1 .) The set U_1 may be considered as the union of two sets each of which is the topological product of a circle and an open 3-cell and whose intersection is an open 4-cell. Then $U_1^* = f(U_1)$ is an open neighborhood of f(g) in E^4 . Let V be a neighborhood of g such that $\bar{V} \subset U_1$, $f^{-1}(f(V)) = V$, f(V) is an open 4-cell, and $f(\bar{V})$ is a 4-cell. Let U_2 be a regular neighborhood of g, as above, such that $f^{-1}(f(U_2)) = U_2$ and $U_2 \subset V$.

There is a simple closed curve C in $f(U_2) - (K \cap f(U_2))$ that fails to bound (homologically mod the integers) in $f(U_1) - (f(U_1) \cap K)$. (The curve $f^{-1}(C)$ may be constructed by looping around the common part of U_2 and some $E^3 \times t$, $t \neq 0$, which is possible by the construction of U_2 .) However, f(V) is a 4-cell and K is an arc, so it follows from the Alexander duality theorem that C does bound in $f(V) - (K \cap f(V))$. This contradiction implies that the decomposition space associated with G is not E^4 , and thus that condition (2) may not be completely removed from the hypotheses of Theorem 1.

In fact, going back to the 3-dimensional case of Theorem 1, we can state the following.

² This example has also been described by Bing. See page 6 of *Topology of 3-mani-folds*, M. K. Fort, Jr., editor, Englewood Cliffs, N. J., Prentice-Hall, 1962.

Theorem 2. If G is an upper semicontinuous decomposition of E^3 into continua each of which lies in a horizontal plane, then in order that the decomposition space associated with G be E^3 it is necessary that no element of G separate the horizontal plane in which it lies.

Proof. Suppose that the decomposition space is E^3 and denote by f the mapping of E^3 onto itself whose point inverses are the elements of G. If an element g of G separates the horizontal plane π , it follows from the theorem of G. L. Moore [8] on decompositions of the plane that either (1) $f(\pi)$ is the union of an open disc and certain 2-spheres no one of which intersects the disc in more than one point, or (2) $f(\pi)$ contains an arc each noncut-point of which is an interior point of the arc relative to $f(\pi)$. If (2) holds, then an arc locally separates E^3 ; if (1) holds, then $f(\pi)$ separates E^3 into more than two components. Each of these situations is an obvious contradiction. Thus g fails to separate π .

REFERENCES

- R. H. Bing, Upper semicontinuous decompositions of E³, Ann. of Math. (2), vol. 65 (1957), pp. 363-374.
- A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. of Math. (2), vol. 65 (1957), pp. 484-500.
- 3. E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math., vol. 45 (1957), pp. 103-118.
- M. K. Fort, Jr., A note concerning a decomposition space defined by Bing, Ann. of Math. (2), vol. 65 (1957), pp. 501-504.
- 5. Mary-Elizabeth Hamstrom, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc., no. 40 (42 pp.), 1961.
- 6. ——, Regular mappings whose inverses are 3-cells, Amer. J. Math., vol. 82 (1960), pp. 393-429.
- 7. Louis F. McAuley, Some upper semicontinuous decompositions of E³ into E³, Ann. of Math. (2), vol. 73 (1961), pp. 437-457.
- 8. R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., vol. 27 (1925), pp. 416-428.
- 9. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), vol. 66 (1957), pp. 1-26.
- 10. J. H. C. WHITEHEAD, *On 2-spheres in 3-manifolds*, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 161–166.

University of Illinois Urbana, Illinois