A DECOMPOSITION THEOREM FOR E*

BY
MARY-EL1zABETH HAMSTROM!

In [3, Theorem 8], it was shown that if G is an upper semicontinuous de-
composition of E* into continua each lying in a horizontal plane but not sepa-
rating that plane, then the decomposition space associated with G is E°. The
proof of this result depended on the theorem in that paper to the effect that
if f is a regular mapping (see definition below) of a complete metric space X
onto a finite-dimensional, locally compact, separable and contractible metric
space Y and each inverse under f is homeomorphic to a 2-sphere, M, then X is
homeomorphic to M/ X Y, f corresponding to the projection map of M X YV
onto Y. This result on regular mappings has been extended to the case where
M is a 3-sphere [5]. It is now possible to prove

THEOREM 1. If = is a fized hyperplane of E*, and G is an upper semicon-
tinuous decomposition of E* into continua such that
(1) each element of G lies in a hyperplane parallel to ,
(2) if the element g of G lies in the hyperplane =’ parallel to w, then ' — ¢
18 homeomorphic to the complement in 7’ of a point, and
(8) for each hyperplane «' parallel to w, the decomposition space associated
with the subcollection of G consisting of those elements that lie in = is E°,
then the decomposition space associated with G is E*.

Remarks. Condition (3) is required because there is no theorem for E®
analogous to Moore’s theorem for E* [8] to the effect that the decomposition
space associated with an upper semicontinuous decomposition G of E* is E*
provided that each of the elements of @ is a continuum that does not separate
E’. That no such theorem exists for E® follows from an example of Bing [2]
modified by Fort [4] to obtain a decomposition of E* into points and polygonal
arcs whose decomposition space is not even a manifold. However, Bing [1]
and McAuley [7] have established some conditions on the elements that imply
that the decomposition space is E’. For instance, the space is E® if each
element of the decomposition is a point or a convex body (Bing) or if each
element is a point or a straight line interval and there exists a countable
collection Z of straight line intervals such that each interval in the decom-
position is parallel to some element of Z (McAuley).

That condition (2) is required is demonstrated by the example to be found
following the proof of Theorem 1.
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Proof of Theorem 1. Let Y be the decomposition space associated with G
and ¢ the associated mapping of E* onto Y, i.e., ¢is an element of G if and only
if there is an element i of ¥ such that ¢ '(y) = g. Let C; and C» be concentric
3-spheres in E*, K the set of points between C; and C: , and L the common
part of K and a ray terminating at the common center of C; and C,. For
each point y of L, denote by S, the sphere concentric with C; that contains y.
There is a homeomorphism ¢ of E* onto K — L that carries each hyperplane
parallel to wonto some set S, — y. The collection H such that k belongs to it
if and only if either A = ¢(g) for some element g of G or h is a point of L is
an upper semicontinuous decomposition of K. Let X be the decomposition
space associated with H and f the associated proper mapping of K into X
(inverses of compact sets are compact). Let g denote the mapping of X
onto L such that gf(S,) = y for each point y of L. Note that, by hypothesis,
each inverse under ¢ is a 3-sphere. It will be proved that X is homeomorphic
to L X S8’ by first proving that ¢ is h-2-regular.

DerintTioN. The proper mapping f of a metric space X onto a metric
space Y is said to be homotopy n-regular (h-n-regular) provided that if ¢ > 0,
yeY, and z e f(y), then there exists a & > 0 such that each mapping
of a k-sphere, k = n, into f'(3) n S(z, 6), ¥’ ¢ Y, is homotopic to 0 in
f(y')n S (x,¢), where S(z, ¢) denotes, as usual, the open e-neighborhood
of x.

It is proved first that ¢ is O-regular. Let ¢ denote a positive number
and let p denote a point of g '(y), for some point y of L, where p = f(h)
for some h of H. There is a positive number d, such that if x is in the
d-neighborhood, V4, of 7 (p) in K, then p(p, f(z)) < e. (The letter p will
be used consistently to denote the metric in X.) But f~'(p) is connected;
hence Vi n S, is arcwise connected. (V;is a union of open, spherical 4-cells
of radius d, each intersecting f'(p) and meeting S, in an open 3-cell.) Thus
there is a positive number ¢ < d such that if a, b are in S, n V., where zx is
any point of L, then there is an arc from a to bin S, n V. There is a positive
number & such that if p(p, ¢) < 8, then f'(¢) ¢ V.. Thus, if ¢ and ¢ are
points of X in f(S,) such that p(p, ¢) < 8§ and p(p, ¢’) < 9, then there is an
arc ab in S, n V, from a point a of f™(¢) to a point b of f*(¢’), where
aubC V,. Itfollows from the definition of d that f(ab) is in the common
part of f(8,) = ¢ '(z) and the e-neighborhood of p in X. Since f is con-
tinuous, f(ab) contains an arc with endpoints ¢ and ¢’ (= f(a) and f(b) re-
spectively). Thus g is h-O-regular.

To see that g is h-1-regular, let p, h, and & be as above, and consider a
4-cell Z in K such that h (= f'(p)) is a subset of the interior of Z, Z meets
each S, in a 3-cell or not at all, and p(f(z), p) < ¢ for each z in Z. The
existence of Z is a consequence of condition (2) in the statement of the
theorem. There is a positive number § such that if p’ ¢ X and p(p, p’) < 3,
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then f'(p’) ¢ Z. Suppose that ¢ is a mapping of the 1-sphere S' (bounding
the disc R*) into ¢~'(y’) n S(p, 8) (the S(p, ) being a 6-neighborhood in X).
For each z in 8%, let T, be an open spherical neighborhood of ¢(z) in
g ‘(') n f(Z). A finite subcollection, Ty, , Tay, -+, Ta covers ¢(S%).
Since ¢ is e-homotopic to a piecewise linear homeomorphism for each ¢, it may
be assumed that ¢ is a piecewise linear homeomorphism. Furthermore, it
may be assumed that 21, s, - - - , @, lie in that order on S, and that there
are points ¢; , ¢z, -+ - , ¢, on S such that for each ¢, T,, n ¢(S") is connected,
¢; lies between x; and x;y; (addition of subscripts being taken mod n),
¢(ci) eTo; n 1oy, , and T(z;) n T(xi4q) is connected. The set I UT,,) is

open and connected. Thus there are points a;, a2, -+, a, of S, such that
foreachd, a; e/~ (Ta;) nf '(Ts,,,) and there isanarc a;; a; in T (T)n Sy .
Let by, by, -+, b, denote points in that order on S' and let o denote a

mapping of S*into (U T,,) carrying each arc b;_; b; homeomorphically onto
@iy a;. The mapping a can, since f (U T,,) € Z n S,’, be extended to a
mapping o™ of the 2-cell R? into Z n S,» . Then fo™ is a mapping of R’ into
g (y') n f(Z). Consider fa(bi), fo(bs), ¢(cis), and ¢(c;). For each <,
there is an are ¢;—; in 7', _, n T, with endpoints fa (b;—1) and ¢(c,—1). The set
i U 1, U fo(biy b;) U ¢(cigci) is a closed curve that is contractible in T, .
If these n contractions are fitted to fa*, an extension of ¢ to a mapping of R’
into g '(y’) n f(Z), which lies in S(p, ¢), is obtained. Thus g is h-1-regular.

If ¢ maps S, the 2-sphere, into ¢ *(y’) n S(p, 6) and is not homotopic
to 0in ¢ '(y’) n S(p, ¢), then the Sphere Theorem (Papakyriakopoulous [9]
and Whitehead [10]) is used to obtain a nonsingular 2-sphere in
g '(y') n S(p, 8) that is not contractible in ¢ *(y’) n S(p, £€). An argument
similar to that above could now be used to prove that ¢ is h-2-regular. How-
ever, it follows from [5] and [6, Theorem 6.1] that since ¢ is h-1-regular, it is
h-2-regular.

It now follows from the remarks in the opening paragraph that X is homeo-
morphic to L X 8° and thus, from the construction, that ¥ is homeomorphic
to K — L and, consequently, to E*.

Example. Let T™ be a torus bounding the solid torus V* and let ¢* be a
core of V* (i.e., g* is a simple closed curve in int V* and V* is a union of two
3-cells meeting in two disjoint dises such that each dise meets ¢* in a point and
each 3-cell meets ¢* in an unknotted arc). Let hf be a latitudinal simple
closed curve on T™ that together with ¢* bounds an annulus A* in V* that
meets T only in k¥ . Let ki be a meridian simple closed curve on T™ bound-
ing a disc D* in V* that meets g* in a point, T in % , A™ in an are, and A} in
a point. Kach of these sets should be polyhedral with respect to some tri-
angulation of V*. Denote hi u h¥ by h*. There is a homeomorphism ¢ of
T* % [0, 1) (note the half-open interval) onto V* — ¢* such that ¢(z, 0) = =,
o(h¥ 1) < A%, ¢(h¥ ,t) < D* and that can be extended to a mapping ¢* of
T* % [0, 1] onto V* such that ¢* (T, 1) = ¢*,¢* | hf X 1is a homeomorphism,
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and ¢* (k3 , 1) is a point. In particular, considering T™ as ki X h¥ , ¢* carries
each hf X & X 1 homeomorphically onto g* and each y X ki X 1 onto a
point. Let H* be the decomposition of V* whose elements are g* each
é(h*, t) for 0 < ¢t < 1, and the remaining points of V*. Then H* is an upper
semicontinuous decomposition of V* and the associated decomposition space
is a 3-cell. (Note that the decomposition of T whose elements are h* and
the points of T — k™ has a 2-sphere as its associated decomposition space.)

Let V** be a copy of V* bounded by T** and H** the decomposition of
V** corresponding to H*. Sew V* and V** together along their boundaries,
sewing h¥ to k3 * and hi™* to hy . In this way a 3-sphere, §, is obtained with a
decomposition H’ whose decomposition space is also a 3-sphere (the two
3-cells, H* and H™* are sewed together along their boundaries to yield H’).
If a degenerate element of H’ is removed from §’, a decomposition H of E*
is obtained whose decomposition space is E® but each of whose nondegenerate
elements has a complement in E’ that is not simply connected.”

Now consider E* as E* X E' and let G be a decomposition of E* whose
elements are the points of E* — (E* X 0) and the continua & X 0 for h in H.
Suppose that the decomposition space associated with G is E*. It will be
proved that this assumption leads to a contradiction. Let f be the mapping
of E* onto E* associated with @, i.e., the point inverses under f are the elements
of G. The subset K of E* consisting of those points whose inverses under f
are nondegenerate is an arc.

Let Uy be a regular neighborhood in E* of a figure-eight element ¢ of @ such
that U; contains neither of the simple closed curve elements of G but contains
each element of @ that it intersects. (I.e., g is a strong deformation retract of
U;.) The set U; may be considered as the union of two sets each of which is
the topological product of a circle and an open 3-cell and whose intersection
is an open 4-cell. Then U = f(U,) is an open neighborhood of f(g) in E*
Let V be a neighborhood of g such that V < Uy, f(f(V)) = V, f(V) is an
open 4-cell, and f(V) is a 4-cell. Let U be a regular neighborhood of g, as
above, such that f(f(Uy)) = Usand U, C V.

There is a simple closed curve C in f(U;) — (K n f(U,)) that fails to
bound (homologically mod the integers) in f(U:) — (f(U:) n K). (The
curve f*(C) may be constructed by looping around the common part of U, and
some E* X t,t % 0, which is possible by the construction of U,.) However,
f(V) is a 4-cell and K is an are, so it follows from the Alexander duality
theorem that €' does bound in f(V) — (K nf(V)). Thiscontradiction implies
that the decomposition space associated with G is not E*, and thus that con-
dition (2) may not be completely removed from the hypotheses of Theorem 1.

In fact, going back to the 3-dimensional case of Theorem 1, we can state the
following.

2 This example has also been described by Bing. See page 6 of T'opology of 3-mani-
folds, M. K. Fort, Jr., editor, Englewood Cliffs, N. J., Prentice-Hall, 1962.
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THEOREM 2. If G is an upper semicontinuous decomposition of E® into con-
tinua each of which lies in a horizontal plane, then in order that the decomposition
space associated with G be B’ 4t is necessary that no element of G separate the
horizontal plane tn which it lies.

Proof. Suppose that the decomposition space is E* and denote by f the
mapping of E* onto itself whose point inverses are the elements of G. If an
element ¢ of G separates the horizontal plane =, it follows from the theorem of
R. L. Moore [8] on decompositions of the plane that either (1) f(«) is the
union of an open dise and certain 2-spheres no one of which intersects the disc
in more than one point, or (2) f(w) contains an arc each noncut-point of
which is an interior point of the arc relative to f(=). If (2) holds, then an arc
locally separates E*; if (1) holds, then f(r) separates E° into more than two
components. Kach of these situations is an obvious contradiction. Thus ¢
fails to separate .
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