ON THE PROJECTIVE PLANE OF AN H-SPACE ${ }^{1}$

BY
William Browder and Emery Thomas

1. Introduction

Let G be a topological group. Milnor [8] defines a sequence of principal G-bundles $\left(E_{n}, B_{n}, G\right)(1 \leqq n<\infty)$ such that

$$
S G=B_{1} \subset B_{2} \subset \cdots \subset B_{\infty}=B_{G}
$$

where $S G$ denotes the suspension of G and B_{G} is a classifying space for G. The work of Borel [3], [4] gives relations between the cohomology of G and that of B_{G}, whereas Rothenberg [10] investigates the cohomology of the spaces B_{n}.

Suppose now that X is an H-space, that is, X has a continuous multiplication with unit. One then may not be able to define a classifying space B_{X}, but Stasheff [11] has defined the projective plane of $X, P_{2} X$, which has the homotopy type of the space B_{2} in case X is actually a group. The purpose of this paper is to discuss the relationship between the cohomology of X and that of $P_{2} X$.

Consider commutative, associative, and graded algebras A over a field k such that A_{0} is isomorphic to k. We denote the ideal of positive-dimensional elements by \bar{A} and set

$$
D^{1} A=\bar{A}, \quad D^{n} A=D^{n-1} A \cdot \bar{A} \quad(n \geqq 2) .
$$

We call $D^{2} A$ the ideal of decomposable elements. If A and B are two algebras, we define their tensor product $A \otimes B$ in the usual way with grading

$$
(A \otimes B)_{k}=\sum_{i+j=k} A_{i} \otimes B_{j} \quad(k \geqq 0)
$$

Let X be an H-space. For the rest of the paper we shall assume that X is arcwise connected and that the integral singular homology groups of X are finitely generated in each dimension. Now take singular cohomology with coefficients in a fixed field k. Recall that an element $u \epsilon H^{*}(X)$ is called primitive if

$$
m^{*} u=\pi_{1}^{*} u+\pi_{2}^{*} u
$$

where $m^{*}, \pi_{i}^{*}(i=1,2)$ are the homomorphisms induced by the maps from $X \times X$ to X given respectively by the multiplication and the projection on the $i^{\text {th }}$ factor. In $\S 3$ we define a (group) homomorphism

$$
\begin{equation*}
\iota: H^{q+1}\left(P_{2} X\right) \rightarrow H^{q}(X) \tag{q>0}
\end{equation*}
$$

[^0]such that
Image $\iota=P\left(H^{*}(X)\right)$, the subspace of primitive classes in $H^{*}(X)$.
Let P^{-}and P^{+}denote respectively the subspaces of odd- and even-dimensional primitive classes of $\bar{H}^{*}(X)$, where $\bar{H}^{*}(X)$ denotes the positive-dimensional cohomology of X. Let $\left\{u_{i}\right\},\left\{v_{j}\right\}$ be bases for P^{-}, P^{+}respectively, and choose classes $\left\{y_{i}\right\},\left\{z_{j}\right\}$ in $\bar{H}^{*}\left(P_{2} X\right)$ so that
$$
\iota y_{i}=u_{i}, \quad \iota z_{j}=v_{j}
$$

We shall prove
Theorem (1.1). Let X be an H-space such that the algebra $H^{*}(X)$ is primitively generated. Then there is an ideal S in $H^{*}\left(P_{2} X\right)$ such that

$$
\iota S=0, \quad S \cdot \bar{H}^{*}\left(P_{2} X\right)=0
$$

and one has the following k-algebra splitting:

$$
H^{*}\left(P_{2} X\right)=\left(A / D^{3} A\right) \oplus S
$$

where

$$
\begin{array}{ll}
A=\otimes_{i} k\left[y_{i}\right] \otimes_{j} \Lambda\left(z_{j}\right) & \text { if characteristic } k \neq 2 \\
A=\otimes_{i} k\left[y_{i}\right] \otimes_{j} k\left[z_{j}\right] & \text { if characteristic } k=2
\end{array}
$$

Moreover if $k=Z_{p}$ (p a prime), there is a group splitting

$$
H^{*}\left(P_{2} X\right)=\left(\tilde{A} / D^{3} \tilde{A}\right) \oplus \widetilde{\mathbb{S}}
$$

where $\widetilde{A}=\otimes_{i} k\left[y_{i}\right]$ and \widetilde{S} is an $\hat{\mathbb{Q}}_{p}$-module. Therefore $\widetilde{A} / D^{3} \widetilde{A}$ can be given the structure of an Q_{p}-algebra.

Here \mathbb{Q}_{p} denotes the mod p Steenrod algebra, and $\hat{\mathscr{Q}}_{p}$ the subalgebra of \mathbb{Q}_{p} generated by the operations $\mathscr{\rho}^{i}(i \geqq 0)$. (Recall that $\odot^{i}=\mathrm{Sq}^{2 i}$, if $p=2$).

If X is a group and if $H^{*}(X)$ is an exterior algebra, then (1.1) is a special case of the results obtained in [10].

The theorem (for the case $k=Z_{2}$) has the following applications. In [13] the group splitting given at the end of (1.1) is used to study the behaviour of the Steenrod squares in the mod 2 cohomology of an H-space satisfying the hypotheses of (1.1). In particular it is shown that the primitive classes whose dimensions are one less than a power of two form a set of generators for $H^{*}(X)$ as an \mathbb{Q}_{2}-algebra. In [14] this result is combined with (1.1) to show that if an H-space (satisfying the hypotheses of (1.1)) has no 2 -torsion, then its lowest positive-dimensional rational cohomology occurs in dimension 1,3 , or 7 .

The remainder of the paper is devoted to the proof of (1.1).

2. The space $E_{1} X$

Let X be an H-space with multiplication m. Denote by $C X$ the (reduced) cone on X, which we think of as the space obtained from $[0,1] \times X$ by identify-
ing $\{0\} \times X$ and $[0,1] \times\{e\}$ with a point $*(e$ denotes the unit of $X)$. Following Stasheff [11] we define $E_{1} X$ to be the space obtained from the disjoint union of $X \times C X$ and X by identifying $(x,(1, y))$ with $m(x, y)$: that is,

$$
E_{1} X=(X \times C X) \mathbf{u}_{m} X
$$

Let $S X$ denote the (reduced) suspension of X, obtained from $C X$ by identifying $\{1\} \times X$ with a basepoint $*$. We define

$$
p: E_{1} X \rightarrow S X
$$

by $p(x,(t, y))=(t, y)$.
Now $E_{1} X$ may be regarded as the total space of a proper triad [6] ($E_{1} X, M_{1}, M_{m}$), where M_{1} and M_{m} denote respectively the mapping cylinders of π_{1} and of m. That is,

$$
\begin{aligned}
M_{1} & =\left\{(x,(t, y)) \in E_{1} X, 0 \leqq t \leqq \frac{1}{2}\right\} \\
M_{m} & =\left\{(x,(t, y)) \in E_{1} X, \frac{1}{2} \leqq t \leqq 1\right\}
\end{aligned}
$$

so that

$$
M_{1} \cup M_{m}=E_{1} X, \quad M_{1} \cap M_{m}=X \times X
$$

Take cohomology in the field k, and denote by Δ the Mayer-Vietoris coboundary [6, Chapter I, §15] from $H^{q}(X \times X)$ to $H^{q+1}\left(E_{1} X\right)(q>0)$. From the exactness of the Mayer-Vietoris sequence it follows that the kernel of Δ is the subspace of $H^{*}(X \times X)$ spanned by $m^{*} \bar{H}^{*}(X)$ and $\pi_{1}^{*} \bar{H}^{*}(X)$. Since k is a field and X has homology of finite type, $H^{*}(X \times X) \approx H^{*}(X) \otimes H^{*}(X)$; and a simple argument shows that Δ restricted to $\bar{H}^{*}(X) \otimes \bar{H}^{*}(X)$ is an isomorphism:

$$
\begin{equation*}
\Delta: \bar{H}^{*}(X) \otimes \bar{H}^{*}(X) \approx \bar{H}^{*}\left(E_{1} X\right) \tag{2.1}
\end{equation*}
$$

Let $X \# X$ denote the collapsed product of X, which is obtained from the Cartesian product $X \times X$ by identifying the axes $X \vee X$ to a point. Let

$$
\eta^{*}: H^{*}(X \# X) \rightarrow H^{*}(X \times X)
$$

denote the homomorphism induced by the projection $X \times X \rightarrow X \# X$. By the Künneth formula, η^{*} is a monomorphism, and its image is a direct summand of $H^{*}(X \times X)$:

$$
\eta^{*} H^{q}(X \# X)=\sum_{i+j=q} \bar{H}^{i}(X) \otimes \bar{H}^{j}(X) \quad(q>0)
$$

Thus

$$
\bar{H}^{*}(X \# X) \approx \bar{H}^{*}(X) \otimes \bar{H}^{*}(X)
$$

and therefore from (2.1) we obtain ${ }^{2}$

$$
\begin{equation*}
\Delta \circ \eta^{*}: \bar{H}^{*}(X \# X) \approx \bar{H}^{*}\left(E_{1} X\right) \tag{2.2}
\end{equation*}
$$

[^1]We define a homomorphism

$$
\begin{equation*}
\phi: \bar{H}^{*}(X) \rightarrow \bar{H}^{*}(X \# X) \tag{2.3}
\end{equation*}
$$

by requiring that $\eta^{*} \circ \phi=m^{*}-\pi_{1}^{*}-\pi_{2}^{*}$. Since

$$
\text { Image }\left(m^{*}-\pi_{1}^{*}-\pi_{2}^{*}\right) \subset \text { Image } \eta^{*}
$$

and since η^{*} is a monomorphism, ϕ is well defined.
We also can regard the suspension $S X$ as the total space of a proper triad ($S X, C_{0}, C_{1}$), where C_{0} and C_{1} denote respectively the upper and lower cones of $S X$. Thus,

$$
C_{0} \cup C_{1}=S X, \quad C_{0} \cap C_{1}=X
$$

We can take the map p to be a triad map $\left(E_{1} X, X, M_{1}, M_{m}\right) \rightarrow\left(S X, C_{0}, C_{1}\right)$, and then

$$
p \mid X \times X=\pi_{2}: X \times X \rightarrow X
$$

Therefore we obtain the following commutative cohomology diagram, where σ denotes the suspension isomorphism and p^{*} is induced by p.

Since $\eta^{*} \circ \phi=m^{*}-\pi_{1}^{*}-\pi_{2}^{*}$, and since $\Delta \circ\left(m^{*}-\pi_{1}^{*}\right)=0$, we have

$$
\begin{equation*}
-\Delta \circ \eta^{*} \circ \phi=p^{*} \circ \sigma \tag{2.5}
\end{equation*}
$$

3. The projective plane

Let X be an H-space. Following Stasheff [11] we define the projective plane of X as

$$
P_{2} X=C\left(E_{1} X\right) \mathbf{u}_{p} S X
$$

That is, $P_{2} X$ is the cone on $E_{1} X$ attached to $S X$ by p. Thus $S X$ is a subspace of $P_{2} X$, and by Adem [2, §3] we have an exact sequence ($q>0$)

$$
\begin{aligned}
\cdots \rightarrow H^{q}(S X) \xrightarrow{p^{*}} H^{q}\left(E_{1} X\right) \xrightarrow{\mu} & H^{q+1}\left(P_{2} X\right) \\
& \xrightarrow{i^{*}} H^{q+1}(S X) \rightarrow \cdots,
\end{aligned}
$$

where μ is a Mayer-Vietoris coboundary and i^{*} is the injection. We set

$$
\begin{aligned}
\lambda & =\mu \circ \Delta \circ \eta^{*}: H^{q}(X \# X) \rightarrow H^{q+2}\left(P_{2} X\right) \\
\iota & =\sigma^{-1} \circ i^{*}: H^{q+1}\left(P_{2} X\right) \rightarrow H^{q}(X)
\end{aligned}
$$

Since $\Delta \circ \eta^{*}$ and σ are each isomorphisms, using (2.5) we obtain ${ }^{3}$ the following exact sequence

$$
\begin{align*}
\cdots \rightarrow H^{q}(X) \xrightarrow{\phi} H^{q}(X \# X) \xrightarrow{\lambda} H^{q+2}\left(P_{2} X\right) \tag{3.1}\\
\xrightarrow{\iota} H^{q+1}(X) \rightarrow \cdots .
\end{align*}
$$

Notice that
(i) ϕ is an algebra homomorphism (and an \mathbb{Q}_{p}-map when $k=Z_{p}$);
(ii) λ and ι are k-module homorphisms (and \mathbb{Q}_{p}-maps);
(iii) $\iota(D)=0$,
where $D=D^{2} H^{*}\left(P_{2} X\right)$, since cup-prodcuts of positive-dimensional elements vanish in the cohomology of a suspension.

For cohomology classes $x_{1}, x_{2} \epsilon \bar{H}^{*}(X)$ we denote by $x_{1} \otimes x_{2}$ both the element in $\bar{H}^{*}(X) \otimes \bar{H}^{*}(X)$ and its counterimage under η^{*} in $\bar{H}^{*}(X \# X)$. Suppose now that x_{1} and x_{2} are primitive classes. Then

$$
m^{*} x_{i}=\pi_{1}^{*} x_{i}+\pi_{2}^{*} x_{i} \quad(i=1,2)
$$

and so

$$
\phi\left(x_{1}\right)=\phi\left(x_{2}\right)=0
$$

Therefore by the exactness of (3.1) there are classes $y_{1}, y_{2} \in \bar{H}^{*}\left(P_{2} X\right)$ such that $\iota y_{i}=x_{i}(i=1,2)$. In [12, (2.4)] it is shown that

$$
\begin{equation*}
\lambda\left(x_{1} \otimes x_{2}\right)=(-1)^{r+1} y_{1} y_{2} \tag{3.3}
\end{equation*}
$$

where $r=\operatorname{dim} x_{1}$, and where the product on the right is the cup-product in $H^{*}\left(P_{2} X\right)$.

For $u \epsilon H^{*}(X)$ and $c \in H_{*}(X)$ we denote by $\langle u, c\rangle \epsilon k$ the Kronecker index of u and c, which gives us a dual pairing [7], $H^{*}(X) \otimes H_{*}(X) \rightarrow k$. If $u_{1}, u_{2} \in \bar{H}^{*}(X)$ and $c_{1}, c_{2} \in \bar{H}_{*}(X)$, then

$$
\begin{equation*}
\left\langle u_{1} \otimes u_{2}, c_{1} \otimes c_{2}\right\rangle=\left\langle u_{1}, c_{1}\right\rangle\left\langle u_{2}, c_{2}\right\rangle \tag{3.4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\langle\phi(u), c_{1} \otimes c_{2}\right\rangle=\left\langle u, c_{1} \cdot c_{2}\right\rangle \tag{3.5}
\end{equation*}
$$

where $c_{1} \cdot c_{2}$ denotes the Pontrjagin product of the homology classes c_{1} and c_{2}.
We now use these various facts to obtain the proof of our theorem. As in $\S 1$ take cohomology with coefficients in the field k. Again denote by P^{-}and P^{+}the respective subspaces of $\bar{H}^{*}(X)$ spanned by the odd- and even-dimensional primitive classes. Let \tilde{D} denote the subspace of $\bar{H}^{*}(X)$ spanned by P^{+}and the decomposable elements. Assume now that the algebra $H^{*}(X)$ is primitively generated. Then,

$$
\bar{H}^{*}(X)=P^{-} \oplus \tilde{D}
$$

[^2]as a vector space over k. Choose a complementary subspace, \hat{D}, to P^{+}in \tilde{D}. Thus, $\bar{H}^{*}(X)=P \oplus \hat{D}$, where $P=P\left(H^{*}(X)\right)=P^{-} \oplus P^{+}$. Define
$$
\hat{S}=\hat{D} \otimes \hat{D} \oplus \hat{D} \otimes P \oplus P \otimes \hat{D}
$$
in $\bar{H}^{*}(X \# X)$, and set
$$
S=\lambda(\hat{S}) \quad \text { in } \quad \bar{H}^{*}\left(P_{2} X\right)
$$

Let $\left\{u_{i}\right\},\left\{v_{j}\right\}$ be respective bases for P^{-}, P^{+}, and choose classes $\left\{y_{i}\right\},\left\{z_{j}\right\}$ in $H^{*}\left(P_{2} X\right)$ such that

$$
\iota y_{i}=u_{i}, \quad \iota z_{j}=v_{j}
$$

Each z_{j} is odd-dimensional, and consequently,

$$
z_{r} \cdot z_{s}+z_{s} \cdot z_{r}=0 \quad(\text { all } r, s)
$$

In particular, if characteristic $k \neq 2, z_{j}^{2}=0$.
Denote by N the subalgebra of $H^{*}\left(P_{2} X\right)$ spanned by the classes $\left\{y_{i}\right\}$ and $\left\{z_{j}\right\}$. Since $P_{2} X$ has category three (it is formed from the suspension by attaching a cone), the classes

$$
\begin{equation*}
\left\{y_{i}\right\}, \quad\left\{z_{j}\right\}, \quad\left\{y_{i} z_{j}\right\}, \quad\left\{y_{p} y_{q}\right\} \quad(p \leqq q), \quad\left\{z_{r} z_{s}\right\} \quad(r \leqq s) \tag{3.6}
\end{equation*}
$$

span N, as a k-module. We show
Lemma (3.7). Suppose that the algebra $H^{*}(X)$ is primitively generated. Set

$$
\begin{aligned}
& x=\sum_{i} a_{i} y_{i}+\sum_{j} b_{j} z_{j}+\sum_{i} \sum_{j} c_{i j} y_{i} z_{j} \\
&+\sum_{p \leqq q} d_{p q} y_{p} y_{q}+\sum_{r \leqq s} e_{r s} z_{r} z_{s}
\end{aligned}
$$

where $a_{i}, \cdots, e_{r s} \in k$, and where each $e_{s s}=0$ if characteristic $k \neq 2$. If $x \in S$, then all the coefficients $a_{i}, \cdots, e_{r s}$ are zero.

By definition, if $x \in S$, then $x=\lambda(\hat{s})$, for some $\hat{s} \in \hat{S}$, and therefore $\iota(x)=0$, by the exactness of (3.1). Now

$$
\iota\left(y_{i} z_{j}\right)=\iota\left(y_{p} y_{q}\right)=\iota\left(z_{r} z_{s}\right)=0
$$

by (3.2)(iii), and by hypothesis

$$
\iota y_{i}=u_{i}, \quad \iota z_{j}=v_{j}
$$

Thus, assuming $x \in S$ we have

$$
0=\iota(x)=\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j}
$$

and hence each a_{i}, b_{j} is zero since $\left\{u_{i}\right\}$ and $\left\{v_{j}\right\}$ are respective bases for P^{-}, P^{+}and $P^{-} \cap P^{+}=0$.

Set

$$
\left\{w_{m}\right\}=\left\{u_{i}\right\} \cup\left\{v_{j}\right\}
$$

Thus $\left\{w_{m}\right\}$ is a basis for $P\left(=P^{-} \oplus P^{+}\right)$, and the classes $\left\{w_{m} \otimes w_{n}\right\}$ form a k-basis for $P \otimes P$. Let $\left\{\bar{w}_{m}\right\}$ denote a set of dual homology classes to $\left\{w_{m}\right\}$. That is,

$$
\left\langle w_{m}, \bar{w}_{n}\right\rangle=\delta_{m n}, \text { the Kronecker delta. }
$$

Since $\bar{H}^{*}(X)=P \oplus \widehat{D}$, and since $H^{q}(X)$ is finite-dimensional ($q \geqq 0$), we may choose the classes $\left\{\bar{w}_{m}\right\}$ so that for all m,

$$
\left\langle\hat{D}, \bar{w}_{m}\right\rangle=0 .
$$

Thus by (3.4) and the definition of $\hat{\mathcal{S}}$,

$$
\begin{equation*}
\left\langle\hat{S}, \bar{w}_{m} \otimes \bar{w}_{n}\right\rangle=0 \quad(\text { all } m, n) \tag{3.8}
\end{equation*}
$$

We define

$$
A=\sum_{i} \sum_{j} c_{i j} u_{i} \otimes v_{j}+\sum_{p \leqq q} d_{p q} u_{p} \otimes u_{q}-\sum_{r \leqq s} e_{r s} v_{r} \otimes v_{s}
$$

in $\bar{H}^{*}(X \# X)$ and obtain by (3.3) that

$$
\lambda(A)=\sum_{i} \sum_{j} c_{i j} y_{i} z_{j}+\sum_{p \leqq q} d_{p q} y_{p} y_{q}+\sum_{r \leqq s} e_{r s} z_{r} z_{s}=x
$$

Consequently $\lambda(A-\hat{s})=0$, and hence by exactness there is an element $f \in \bar{H}^{*}(X)$ such that

$$
\phi(f)=A-\hat{s}
$$

To show that each coefficient $c_{i j}$ is zero, we observe that

$$
\left\langle A, \bar{u}_{i} \otimes \bar{v}_{j}\right\rangle=c_{i j}, \quad\left\langle A, \bar{v}_{j} \otimes \bar{u}_{i}\right\rangle=0
$$

by the choice of the dual classes \bar{u}_{i} and \bar{v}_{j}. Therefore if we define

$$
\bar{g}=\bar{u}_{i} \cdot \bar{v}_{j}-\bar{v}_{j} \cdot \bar{u}_{i}
$$

we obtain, by (3.5) and (3.8), that

$$
\begin{aligned}
\langle f, \bar{g}\rangle & =\left\langle\phi(f), \bar{u}_{i} \otimes \bar{v}_{j}-\bar{v}_{j} \otimes \bar{u}_{i}\right\rangle \\
& =\left\langle A-\hat{s}, \bar{u}_{i} \otimes \bar{v}_{j}-\bar{v}_{j} \otimes \bar{u}_{i}\right\rangle=c_{i j}
\end{aligned}
$$

Hence if $\bar{g}=0$, then $c_{i j}=0$. Now $H^{*}(X)$ is a primitively generated Hopf algebra, and therefore its dual algebra, $H_{*}(X)$, is commutative by (4.8) and (4.9) of [9]. Consequently since \bar{g} is the commutator of \bar{u}_{i} and \bar{v}_{j}, it must vanish, and hence so must $c_{i j}$. An entirely similar argument shows that the coefficients $d_{p q}$ and $e_{r s}$ are zero, when $p<q$ and $r<s$.

To show that the remaining coefficients $d_{q q}$ and $e_{s s}$ are all zero, we use the fact that

$$
\begin{equation*}
\left\langle\phi(f), \bar{u}_{q} \otimes \bar{u}_{q}\right\rangle=d_{q q}, \quad\left\langle\phi(f), \bar{v}_{s} \otimes \bar{v}_{s}\right\rangle=e_{s s} . \tag{3.9}
\end{equation*}
$$

Suppose that characteristic $k=2$. Then by (4.9) of [9], since $H^{*}(X)$ is primitively generated, we have $x^{2}=0$ for all classes $x \in \bar{H}_{*}(X)$. Thus,

$$
\bar{u}_{q}^{2}=0, \quad \bar{v}_{s}^{2}=0
$$

and hence by (3.5), $d_{q q}=e_{s s}=0$. On the other hand, if characteristic $k \neq 2$, then by hypothesis, $e_{s s}=0$ (all s). But since \bar{u}_{q} is odd-dimensional and $H_{*}(X)$ is commutative, we must have $\bar{u}_{q}^{2}=0$, which shows by (3.9) that $d_{q q}=0$, completing the proof of (3.7).

4. Proof of (1.1)

It follows from (3.7), by taking $x=0$, that the classes given in (3.6) form a k-basis for the subalgebra N, and thus $N=\left(\bar{A} / D^{3} A\right)$, as given in (1.1). Moreover, $N \cap S=0$, again by (3.7), and since $S=\lambda(\hat{S})$, it follows from (3.1) that $\iota S=0$. We show in an appendix (§6) that $S \cdot \bar{H}^{*}\left(P_{2} X\right)=0$. Thus S is an ideal, and we complete the proof of the splitting given in (1.1) by showing that

$$
\bar{H}^{*}\left(P_{2} X\right)=N+S
$$

Let $x \in \bar{H}^{*}\left(P_{2} X\right)$. Since $\iota(x)$ is primitive, we may write

$$
\iota x=\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j} .
$$

where $a_{i}, b_{j} \in k$. Set

$$
y=\sum_{i} a_{i} y_{i}+\sum_{j} b_{j} z_{j} \in N
$$

Then $\iota(x-y)=0$, and therefore by the exactness of (3.1) there is a class $w \in \bar{H}^{*}(X \# X)$ such that $\lambda(w)=x-y$. However,

$$
\bar{H}^{*}(X \# X)=\hat{S} \oplus(P \otimes P)
$$

and since $\lambda(\hat{S})=S$ and $\lambda(P \otimes P) \subset N$ (by (3.3)), we have $x \in N+S$, completing the proof of the splitting.

Assume now that $k=Z_{p}, p$ a prime. As above let N denote the subalgebra of $\bar{H}^{*}\left(P_{2} X\right)$ generated by the classes given in (3.6), and define \widetilde{N} to be the subalgebra of N generated by the classes $\left\{y_{i}\right\}$. Let I denote the ideal of N generated by $\left\{z_{j}\right\}$. Then

$$
N=\tilde{N} \oplus I
$$

as a k-module. Define $\widetilde{S}=I \oplus S$, which is an ideal in $\bar{H}^{*}\left(P_{2} X\right)$. Then by the splitting obtained above we have

$$
\bar{H}^{*}\left(P_{2} X\right)=\tilde{N} \oplus \widetilde{S}
$$

as a group. In $\S 3$ we defined \tilde{D} to be the subspace of $\bar{H}^{*}(X)$ spanned by P^{+}and the decomposable elements. Define

$$
\bar{S}_{1}=\tilde{D} \otimes \tilde{D} \oplus \tilde{D} \otimes P^{-} \oplus P^{-} \otimes \tilde{D}
$$

in $\bar{H}^{*}(X \# X)$, and set

$$
L=\text { the linear subspace of } H^{*}\left(P_{2} X\right) \text { spanned by }\left\{z_{j}\right\}
$$

Then by (3.3) and the definition of the subspace S (see §3), we have

$$
\widetilde{S}=I \oplus S=L \oplus \lambda\left(\hat{S}_{1}\right)
$$

Since the elements of $\hat{\mathscr{Q}}_{p}$ all have even degree, $\hat{\mathscr{Q}}_{p}\left(P^{+}\right) \subset P^{+}$and $\hat{\mathbb{Q}}_{p}\left(P^{-}\right) \subset P^{-}$. Moreover by the Cartan product formula, $\hat{\mathscr{Q}}_{p}\left(D^{2}\right) \subset D^{2}$, where $D^{2}=D^{2} H^{*}(X)$. Thus $\hat{\mathbb{Q}}_{p}(\tilde{D}) \subset \tilde{D}$, and therefore (again by the Cartan formula), $\hat{Q}_{p}\left(\hat{S}_{1}\right) \subset \hat{S}_{1}$. Thus, by (3.2)(ii), $\hat{Q}_{p}\left(\lambda \hat{S}_{1}\right) \subset \lambda \hat{S}_{1}$. Since the elements of \tilde{N} all have even degree and those of L have odd degree, $\hat{\mathbb{Q}}_{p}(L) \subset \widetilde{S}$, and therefore $\hat{\mathbb{Q}}_{p}(\widetilde{S}) \subset \widetilde{S}$, as required.

Since

$$
\widetilde{A} / D^{3} \widetilde{A} \approx H^{*}\left(P_{2} X\right) / \widetilde{S}
$$

we can regard $\tilde{A} / D^{3} \widetilde{A}$ as an \hat{Q}_{p}-algebra. Define $ब_{p}$ to be the ideal of \mathbb{Q}_{p} generated by the Bockstein operator β_{p}. Then $\mathscr{Q}_{p}=\bigotimes_{p} \oplus \hat{\mathfrak{Q}}_{p}$, as a Z_{p}-vector space. Since the elements of $\widetilde{A} / D^{3} \widetilde{A}$ all have even degree, we then can re$\operatorname{gard} \widetilde{A} / D^{3} \tilde{A}$ as an algebra over all of Q_{p} by setting $\oplus_{p}\left(\tilde{A} / D^{3} \widetilde{A}\right)=0$. This completes the proof of (1.1).

5. Remarks

The hypotheses of (1.1) can be altered in various ways. For example let k denote either the rational numbers Q or the field Z_{p}, p a prime; and suppose that the algebra $H^{*}(X)$ is not primitively generated. If, instead, one has that $H^{*}(X)$ is finite-dimensional (as a vector space), then the splitting given in (1.1) is still obtained, but one can no longer assert that \widetilde{S} is an \widetilde{Q}_{p}-module. Since $H^{*}(X)$ is not primitively generated, we can no longer use [9] to obtain the appropriate lemma analogous to (3.7). Instead one now applies the results of [5], especially (6.8).

Another change is to use the integers for coefficients, rather than a field k. If one assumes that X has no torsion, and that $H^{*}(X ; Z)$ is primitively generated and of finite rank, then a splitting analogous to that given in (1.1) is obtained. One uses the fact that $H^{*}(X ; Z)$ is an exterior algebra on odddimensional, primitive generators. Thus, only the polynomial part (generated by the classes $\left\{y_{i}\right\}$) is obtained in the algebra N.

6. Appendix

Let X and Y be spaces, and f a map $X \rightarrow Y$. Denote by C_{f} the cone on X attached to Y by means of f. Then we have a proper $\operatorname{triad}\left(C_{f}, C X, M_{f}\right)$, where $C X$ is the cone on X and M_{f} is the mapping cylinder of f (see $[2, \S \S 2,3]$ for details). Moreover,

$$
C X \cup M_{f}=C_{f}, \quad C X \cap M_{f}=X
$$

and hence one has a Mayer-Vietoris coboundary

$$
\mu: H^{q}(X) \rightarrow H^{q+1}\left(C_{f}\right)
$$

We prove
Lemma (6.1). Let $x \in \bar{H}^{*}(X)$ and $y \in \bar{H}^{*}\left(C_{f}\right)$. Then

$$
\mu(x) \smile y=0 .
$$

This clearly implies the result needed in (1.1)-that $S \cdot \bar{H}^{*}\left(P_{2} X\right)=0$ since $S=\lambda(\hat{S})$ and λ is the composition of μ with other homomorphisms.

To prove (6.1) we recall the definition of $\mu([2, \S 3])$. This is given by the following commutative diagram, where δ is the coboundary, m^{*} is the excision isomorphism, and n^{*} is induced by the inclusion:

Since $C X$ is acyclic, there is a class $v \in \bar{H}^{*}\left(C_{f}, C X\right)$ such that $n^{*} v=y$. Choose $u \in \bar{H}^{*}\left(C_{f}, C X\right)$ such that $m^{*} u=\delta x$. Then,

$$
\mu(x) \smile y=n^{*}(u \smile v)=n^{*} m^{*-1}\left(\delta x \smile m^{*} v\right)
$$

Let l^{*} denote the homomorphism induced by the inclusion $M_{f} \subset\left(M_{f}, X\right)$. Then, by the naturality of the cup-product and the exactness of the cohomology sequence of a pair, one has

$$
\delta x \smile m^{*} v=\left(l^{*} \delta x\right) \smile m^{*} v=0 \smile m^{*} v=0
$$

completing the proof of the lemma.

Bibliography

1. J. F. Adams, H-spaces with few cells, Topology, vol. 1 (1962), pp. 67-72.
2. J. Adem, Un criterio cohomológico para determinar composiciones esenciales de transformaciones, Bol. Soc. Mat. Mexicana (2), vol. 1 (1956), pp. 38-48.
3. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), vol. 57 (1953), pp. 115-207.
4. ——, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., vol. 76 (1954), pp. 273-342.
5. W. Browder, Torsion in H-spaces, Ann. of Math. (2), vol. 74 (1961), pp. 24-51.
6. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, Princeton University Press, 1952.
7. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, 1942.
8. J. Milnor, Construction of universal bundles II, Ann. of Math (2), vol. 63 (1956), pp. 430-436.
9. J. Milnor and J. Moore, On the structure of Hopf algebras, Trans. Amer. Math. Soc., to appear.
10. M. Rothenberg, On the Milnor construction of universal bundles, Thesis, University of California, Berkeley, 1961.
11. J. Stasheff, On homotopy Abelian H-spaces, Proc. Cambridge Philos. Soc., vol. 57 (1961), pp. 734-745.
12. E. Thomas, On functional cup-products and the transgression operator, Arch. Math., vol. 12 (1961), pp. 435-444.
13. ——, Steenrod squares and H-spaces, Ann. of Math. (2), vol. 77 (1963), pp. 306-317.
14. ———, On the mod 2 cohomology of certain H-spaces, Comment. Math. Helv., vol. 37 (1962), pp. 132-140.

Cornell University
Ithaca, New York
University of California
Berkeley, California

[^0]: Received March 9, 1962.
 ${ }^{1}$ This research has been partially supported by the National Science Foundation, the Air Force Office of Scientific Research, and the John Simon Guggenheim Foundation.

[^1]: ${ }^{2}$ The existence of such an isomorphism follows from the fact that $E_{1} X$ has the homotopy type of $X * X$ (where $*$ denotes the join), but we shall find it convenient to have this specific form of the isomorphism.

[^2]: ${ }^{3}$ A special case of this is considered by Adams in [1].

