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1. Introduction

Just as a group may be described by generators and relations, so the homo-
topy type of a connected CW (or semisimplicial) complex X may be described
([4], [5]) by the homotopy groups (X) and a sequence of cocycles
/a,/c, ..., k+, .... Here each/c+ is a cochain on a space whose homotopy
type depends on the groups (X), ..., (X) and the cocycles k, ...,/c+,
while v+(X) is the coefficient group. The lc+ are usuully called "k-in-
variants", although "lc-cocycles" might be a more appropriate name.

It is our purpose to give a similar result for homotopy types of (semi-
simplicial) spectra. It will be shown that, using a suitably generalized notion
of cochain, the homotopy type of a spectrum Y may be described by the
homotopy groups Y (- < i < ) and a collection of cochains/c (one
for every pair of integers (i, j) wiCh i < j), where each/c is a cochain on a
spectrum which depends only on r Y, while the coefficients depend only on

Y.
The paper is written semisimplicially, and we shall freely use the results

of [2].

2 and 3 deal with the analogues for spectra of the notions path space,
fibre map, and loop space, while 4 is concerned with the inverse of "taking
loops".

In 5 cochains are generalized. This generalization is mainly based on the
facts that (i) a cochain complex may be considered as a chain complex (if the
degree of a q-cochain is taken to be -q), and (ii) a chain complex determines
[2, 5] an essentially unique abelian group spectrum containing it. The
cocycles of a cochain complex then correspond exactly with the simplices (of
the corresponding abelian group spectrum) of which all faces are ,, and
the cochains with those of which all faces, except possibly the 0-face, are ,.
This suggests considering the other simplices of the abelian group spectrum as
well.
Decomposing a spectrum into abelian group spectra one gets a string of

diamond-shaped diagrams which we call a "decomposition". These decompo-
sitions are considered in 6. With each decomposition one may associate a
collection of (generalized) cochains, and it is shown in 7 that under suitable
circumstances a decomposition is completely determined by these cochains.
In 8 we then use this to show that the homotopy type of a spectrum Y may be
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described by the homotopy groups r Y and a suitable collection of cochains

2. Path spectra

2.1 DEFINITION. Let Sp denote the category of set spectra which satisfy
the extension condition [2, 7]. For Y Sp its path spectrum AY will be
the spectrum w.h’ich has a simplex hy for every simplex y e Y; the face and
degeneracy operators and the gradation are given by

d Ay Ad+ y for all i,

s Ay As+ y for all i,

degree Ay degree y 1.
Clearly AY e p.

Similarly for a map w Y -- Z e Sp we define a map Aw AY -- AZ by
hy -- Awy for all y e Y. The function h so defined then is a functor
A $p-- 8p, the path functor.
Then [2, 10] we have

2.2 PROPOSITION. Let Y e Sp. Then r AY 0 for all i.

This follows at once from the fact that for every simplex hye AY of degree
i with d. Ay for all j, we have do As0 y y and d. As0 y for j > 0.

The remainder of this section will deal with some natural transformations
between iterated path functors, which will be used in 5.

2.3 DEFINITION. For every object Y e Sp, simplex y e Y, and map w
let AY Y, Ay y, and Aw w, and let

AY AA-IY, Any Ahn-ly, and Anw- AA-lw
for n > 0. Then for every pair of integers (i, n) with 0 =< i _-< n, maps

ii Y An+IY -- AY and o- Y hn+lY ---> A+2Y
may be defined by the formulas

(i Y)lkn+lY Andn-i y and ( Y)h+y h+s_ y.

A/I AThe functions and clearly are natural transformations -- and
An-bl nT2

A straightforward calculation yields

2.4 PROPOSITION. The natural transformations and a satisfy the identities

tij_l ii for i < j,

a_ i for i < j,

identity for i j, j + 1,

_1 for i>j+ 1,

a a_ for i > j.
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2.5 PROPOSITION. Let Y e 8pE and let 0 <- i <= n. Then the maps

i(AJy) An+ly .__> Amy

coincide for all j with 0 <= j <= n i. The same holds for the maps

i(AJy) A+ly
__

A+2y.

2.6 Notational convention. Instead of ti Y and Y we will often write ti
and z. In view of Proposition 2.5 this will cause no confusion.
Another immediate consequence of the definitions is

2.7 PROPOSITION. Let Y 8pE and let 0 <-_ i <= n. Then the maps

A(tii Y) A+2Y -- A’+Y and ti+ Y A+Y -- An+Ycoincide. The same holds for the maps h(o- Y), +1 Y A+Y A+3Y.
3. Loop spectra

We first consider for spectra the notions of fibre map and homotopy sequence
of a fibre map.

3.1 DEFINITION. Let p E -- B e 8p (the category of spectra), and let
[2, 4] Ps p {pi}’{Ei} ---> {B} e (Ps. Then p is called a fibre map
if p E -- B e 8, is a fibre map for all i. If ,} B denotes the subspectrum
consisting of the base points nly, then the subspectrum p-{,} E is called
the fibre of the fibre map p E B.

As for set complexes [4] we have

3.2 PROPOSiTIOn. Let p" E -- B Sp be a fibre map with fibre F. Then
F 8p. Moreover E e Sp if and only if B $p.

3.3 DENTO. Let p E --, B e 8p be a fibre mp with fibre F, and let
Ps p {p}" {E}-- {B}. Then [2, 10]

r.(F) +l(F+), (E) +I(E+) and r.(B) +(B+)

for all n > 0 and i. Moreover the boundary maps 0, r.(B) -- _(Fi)in the exact homotopy sequences of the fibre maps p [4] are such that
0, 0.+, +1, i.e., commutativity holds in the diagram

7n(B) On, rn-(F)

lid lid
r,+(B+) 0,+,+1

r(F+).

Hence the homotopy sequences of the fibre maps pi give rise to a sequence

---, ’+B 0 ’j r,p B 0>TrnF >rnE >rn
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where j F - E is the inclusion map. It is called the homotopy sequence of
the fibre map p E -- B. Clearly we have

3.4 PROPOSITION. The homotopy sequence of a fibre map in SpE is exact.

We now turn to loop spectra. As for set spectra one readily verifies

3.5 PROPOSITION. Let Y e SpE and let (2.3) o AY Y e Sp be the map
given by o Ay do y for all y Y. Then o is a fibre map.

We therefore may state

3.6 DEFINITION. The loop spectrum of a spectrum Y e Sp is the fibre
of the map t0 AY -- Y. It will be denoted by 2Y. Similarly for a map
w Y - Z e sp we define a map 2w 2Y -Z as the restriction of the map
Aw. Clearly the function t so defined is a functor 2 Sp - SpE, the loop
functor.

Propositions 2.2 and 3.4 imply

3.7 PROPOSITION. Let Y Sp. Then the map 0 r+l Y -- r, Y in the
homotopy sequence of the fibre map o AY --> Y is an isomorphism for all n.

Another useful property of the loop functor is given by

3.8 PROPOSITION. The functor $p --> $p preserves homotopies, i.e., maps
homotopic maps into homotopic maps.

Proof. By 3.7 and [2, 10.5], f maps homotopy equivalences into homotopy
equivalences. The proposition now follows from

3.9 PROPOSITION. Let T $p ---> 8pE be a functor which maps homotopy
equivalences into homotopy equivalences. Then T maps homotopic maps into
homotopic maps.

Proof. Let Sp. be the category obtained from Sp by identifying two maps
whenever they are homotopic, and let Q be the identification functor. The
proposition now follows from [2, 9.1] and the fact that [2, 9.2] QT is a homo-
topy functor.

4. The functor -Given Y e Sp, consider the problem of finding a Z e Sps such that ftZ Y.
It will be shown that for group spectra this can be done in a functorial manner,
by using the analogue of the W construction of [3].

4.1 DEFINITION. For B e Spa (the category of group spectra [2, 5]) we
denote by 2-1B the spectrum of which a simplex oi degree q is any infinite
sequence of simplices of B

c- (bl, "",bi, "")
such that

(i) degree b q i for all i,
(ii) b for all but a finite number of i’s.
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Its faces and degeneracies are given by

d c (d_l 51, ..., (do bi)bi+l bi+2 ...),

s c s_l bl ..., so b ,, b+l ...).

For i 0 this should be interpreted as (b, and (,, bl, ). A straht-
forward calculation shows that

Similarly for a map v B -- B’ e Spa let t-lv 2-1B - t-lB be the map
given by (bl, ...) -- (vbl, ...). Then clearly the functi’on 2-1 so defined
is a functor 2-1 Spa --* Sp. The use of the symbol -1 for this funcor is
iustified by

4.2 PROPOSITION. Let B e Spa. Then the map B -IB Sp given by
b -- A(b, ,, -.-, ,, for all b e B is natural and is an isomorphism.

An argument similar to the one used in the proof of Proposition 3.8 yields

4.3 :PROPOSITION. The functor -1 Spa ---* Sp maps homotopic maps into
homotopic map.

We end by showing that the functors t and t-1 give rise to a functor
t Sp -- Sp (Sp is the category of abelian group spectra [2, 5]) for every
integer n.

4.4 DEFINITION. Let B e Sp. Then the addition o B induces an ad-
dition on AB and tB turning them into abelian group spectra. Similarly
gt-B may be turned into an abelian group spectrum by coordinatewise ad-
dition. For a map v B -- B’ Spx the maps Av, tv, and 2-v then become
homomorphisms. The resulting functors Sp -- Spx will also be denoted by
A, t, and 2-, as no confusion will arise from this.

A consequenc,e of this definition is tlmt for any B e Spx and pair of integers
(i, n)with 0 -< i -<_ n, the maps

A+IB A+Bi A+B- AB and zi --are also in Sp.

4.5 Notational convention. We will write t Sp -+ Sp for the identity
functor and 2 2gt-1 and gt 2-t-(-) for every integer n > 0. Also
for every B e Sp, and b e B we will identify b with the simplex

h(b,,,"-,,,’-’)
Then clearly we have

4.6 :PROPOSITION. Let i and j be integers >- O. Then- - Sp, -- Sp5. Cochains on a spectrum
The cochain complex C*(Y; ) of a spectrum Y with coefficients in aa

abelian group r may be defined as for set complexes.
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5.1 DEFINITION. For Y e Sp let {Cq Y, 0} denote the normalized chain
complex of Y, i.e., Cq Y is the abelian group with a generator Cy for every
y e Y) and a relation Cy 0 whenever y is degenerate; the boundary homo-
morphisms 0 C Y -- C_1 Y are such that OCy i=o( 1) iCdi y for all y.
The normalized cochain complex C*(Y; -) then is defined by cq(Y; 7)
Hom(C Y, r) and t Hom(0, i).

This definition will be generalized in two respects. In the first place one
may, as for set complexes [4] establish a one-to-one correspondence between
the elements of Cq( Y; 7) and the maps Y -- Aa--IK where K denotes a
suitably defined "Eilenberg-Mac Lane spectrum of ". This suggests con-
sidering maps Y -- ha--lB for an arbitrary abelian group spectrum B.
Furthermore C*(Y; 7) may be considered as a chain complex (ifthe degree
of a q-cochain is taken to be -q), which in view of [2, 5], determines an
essentially unique abelian group spectrum containing it. The cocycles of
C*(Y; r) then correspond exactly with the simplices of which all faces are,, and the cochains with those of which all faces, except possibly the 0-face,
are ,. This suggests that the other simplices might equally well be worth
considering. We will call them cochains too and therefore state

5.2 DEFINITION. Let Y e Sp and B e gp, and denote by Horn(Y, B) the
abelian group of the maps Y -- B e Sp, where the addition is induced by the
addition on B. For every integer q the inclusions (see 4.6)

t-qB c c AJt-q-B
induce inclusions

Horn(Y, f-qB) (:U. Horn(Y, AJf-q-JB) (:7_ ".

The union of these groups will be denoted by C(Y; B); its elements will be
called q-cochains of Y with coefficients in B. Furthermore for every q-cochain
c e cq( Y; B) and integer i ->_ 0 we define a (q 1)-cochain i c and a (q 1)-
cochain c as the compositions

y c A]f-q-:iB (ri /k+la-q-lB

for suitably large j. That these are well defined, i.e., independent of j,
follows from 2.5 and the naturality of ti and a. The groups cq(Y; B)
together with the operators ti and a will be denoted by C*(Y; B). An im-
mediate consequence of Proposition 2.4 then is

5.3 PROPOSITION. C*(Y; B) is an abeln group spectrum if the and(are
considered as the face and degeneracy operators respectively, and the degree of a
q-cochain is taken as --q.

The following proposition is also readily verified.
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5.4 PROPOSITION. Let c e cq(Y; B).
only if c 0 for i >- j.

Then c e Hom( Y, A-q-B) if and

In view of this proposition we may make the following notational con-
vention.

5.5 Notational convention. Let c e C(Y; B) be such that q =< 0 and c 0
for i >- -q, and let c e Cr(B; B’). Then c may be represented by a map
c" Y-- A-B, and c’ by a map c’’B ---> hia-r-iB for suitably large j.

C+r B’We then denote by c’c (Y; the composition

y c A-qc
A-qB A-q+-r-BP"

We end with defining the Eilenberg-Mac Lane spectrum K of an abelian
group r and relating cochains with coefficients in K with normalized cochains
with coefficients in .

5.6 DEFINITION. Let v be an abelian group. For every integer i >= 0 and
element a , identify a with the corresponding/-simplex of the Eilenberg-Mac
Lane complex K(, i) e $. [4]. Let K(v, i),/ci} be the prespectrum [2, 3]
such that l(a, 0) a e K(r, i -t- 1) for every/-simplex a K(r, i). Then
the Eilenberg-Mac Lane spectrum of - is the spectrum Kr defined by Kr
Sp {K(r, i), k} [2, 4]. It is not difficult to verify that the addition of the
K(r, i) induces an addition on Kr, turning it into an abelian group spec-
trum. In fact, as for the K(r, i), this is the only way in which Kr can be
turned into a group spectrum.

Now for Y e gp and c e Cq(Y; r) denote by hc" Y A-q-K e gp the
(unique) map such that for every y e Y of degree q

Aq(hc)y (-1)q[c(Cy)] if q _>- 0,
or

(hc)y (--1)qA-q[c(Cy)] if q -< 0.
Then we have

If C*( Y; -) is considered as a chain complex, and5.7 PROPOSITION.
C*(Y; Kr) as an abelian group spectrum, then the function h is an isomorphism

h (C*(Y; v)) MC*(Y; Kr)

where the chain complex MC*(Y; K-) is as in [2, 5].

It is easily verified that hceMC*(Y; Kr) for all c eC*(Y; ), i.e.,
hc =0 for i > 0, and that degreewise h is an isomorphism. It thus remains

to show that h is a chain map, i.e., that o(hc)y h(c)y for every c cq( Y; r)
and y Y(q+). f q >= O, let z e -q-/r be such that (hc)y Az. Then
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Aq+ldi+1 z Aqdi Az Aqdi(hc)y 1)q[c(Cdi y)]

for i > 0 Moreover ’ Aq+ldiz 0. Consequently

Aq+0(hc)y Aq+l0 Az Aq+d0 z Aq+di+1 Z

(--1)q+[c(Cd, y)] (-1)q+[(c)(Cy)] Aq+h(c)y,
and hence o(hc)y h(c)y. The proof for q < 0 is similar and will be
omitted.

6. Decompositions of spectra and cochain systems
One often tries to reduce a problem on spectra to one on abelian group

spectra (which one then hopes to be able to solve) by decomposing one or
more of the spectra involved into abelian group spectra. It is this kind of
decompositions which will be studied in more detail in this section and the
next. It turns out that one can associate with such a decomposition a
collection of cochains (in the sense of 5) and that, under suitable conditions,
these cochains completely determine the decomposition.

6.1 DEFINITION. A decomposition is a commutative (infinite) diagram

such that for every integer i
(i) YieSps
(ii) AieSp,
(iii) fi is induced by gi, i.e., for every a e Ai and v e AYi+ with gi a 0 v,

there is exactly one simplex y e Yi such that fiy a and h y v. Such a
decomposition will be denoted by

6.2 DEFINITION. Let Ai_, A, be a collection of abelian group
spectra indexed by the integers, and for every pair of integers (i, j) with

C+1-" A). Then the set {/} will0 _-< i _-< j let be given a cochain/ e (Ai
be called a cochain system if (see Notational Convention 5.5)

tt/ 0 forn >_-j- i- 1,
forn <j-i- 1.

6.3 DEFINITION. Let Y Ai f gi hi) be a decomposition. For every
pair of integers (i, j) with 0 <= i <-_ j denote by m the composition

Ah+l h--lh’-.__ Aa’-iy ha’-ify :h AY+
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and by/c the composition (now i < j)
a"g m+lA Y+ A’--A

C+-y(A A The set {/} then willClearly m{ e C-(Y;A) and ]{ e ; ..
be called the cochain system of the decomposition (Y, A, f, g, hi).

This terminology is justified by

6.4 PROPOSITION. The cochain system of a decomposition is a cochain
system.

Proof. In view of 2.7 and the naturality of ti, the following diagram is
commutative

A Anhi+l+n

A g++AnAi+l+n

This readily implies that tin k{ +l+nk+l+. for n < j i 1.
i/ 0 for n_>_ j i 1 is a direct consequence of 5.4.

That

7. Locally finite decompositions and cochain systems
7.1 DEFINITION. A decomposition (Y, A, f, g, h) will be called

locally finite if for every integer i and every y e Y there is an integer s (de-
pending on y) such that m y for j > s. Similarly a cochain system

Ci+- (A A.{lc} where k{ e is called locally finite if for every i and
every a e A there is an integer s (depending on a) such that/ a for j > s.

Clearly we have

7.2 PROPOSITION.
locally finite.

The cochain system of a locally finite decomposition is

The following two propositions now essentially assert that there is a one-
to-one correspondence between locally finite decompositions and locally
finite cochain systems.

7.3 PROPOSITION. Every locally finite cochain system is the cochain system
of a locally finite decomposition.

7.4 PROPOSITION. Let (Y, A, fi, g, h) and (Y A, f, g, h) be
locally finite decompositions which have the same cochain system. Then there
are unique isomorphisms v Y -+ Y’ such that f v f, g’ v+ g, and
h’i v (Av+)h for all i.

ciTi-J(Proof of Proposition 7.3. Let /c e A A.) be a cochain system.
For every integer i define a spectrum Y as follows. A simplex of Y of
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degree q is any infinite sequence (ai, ai+1, such that
(i) aJeA-A for allj >_- i,
(ii) a for all but a finite number of j’s,
(iii) degreea q for allj _-> i,
(iv) tia ai+k+ for all n < j i.

Its faces and degeneracies are

ai+ld,(a, aTM, (d,, a, d ),

They clearly are also in Y, and hence Y is a spectrum.
Define maps f" Y -- A and g’A- Y+l by

f a, aTM, a,
gia tci a, tci a, ...).

If we denote a simplex A’(a, aTM, e A Yi also by (Aa, Aa-+, .-.),
then we can define a map h Y -- AY+I by the formula

h(a, aTM, (aTM, a+2, ).

A simple computation then yields that f, g, and h are indeed maps of
spectra, that 0 h g’ f for all i, and that f is induced by g (Definition
6.1(iii) ). The proof that Y e SpE is also straightforward although some-
what longer and uses the fact that the A satisfy the extension condition
[2, 5]. The details are left to the reader.
That the decomposition (Y’ A’ f’ h’) is locally finite and has

{/} as cochain system now follows from the fact that

ai+ ami(a, ...)

for all (a, aTM, e Yi and j => i.

Proof of Proposition 7.4. Let {/c} be the cochain system of
(Y, Ai, fi, g, hi). Then it suffices to prove the proposition for the case
that (Y, A, f, g , h) is the locally finite decomposition from the proof
of Proposition 7.3.

For every integer i and y e Y let
i+1

vi y (m y, m y, ..).

Then a simple calculation yields that f v =f, g viq-1 gi, and h v
(Avi+i)hi, while iterated application of 6.1(iii) yields that the v are iso-
morphisms v Y -- YIn order to prove the uniqueness of the v, assume that w Y -- Y are
maps such that f w f, g wi-t-1 gi and h w (Aw+)h for all i. These

+1conditions clearly imply that w y (m y, rn y, for all i and y e Y,
i.e., w v for all i.

7.5 Remark. It should be noted that the only property of the A, used in
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6 and 7 is that they satisfy the extension condition.
their addition.

No use was made of

8. Application to homotopy types
8.1 DEFINITION. A cochain system {k} where k e Ci+I-J(A;As) is called

an elementary cochain system if A f-K(r2 A) for every i.

Clearly we have

8.2 PROPOSITION. Every elementary cochain system is locally finite.
We shall now associate with every locally finite cochain system {k} a

spectrum L{k} e Sp and show that every homotopy type in Sp can be
obtained in this manner. In fact for every spectrum X e Sp there is an
elementary cochain system {k} such that L{k} has the same homotopy type
as X. Thus every homotopy type of spectra may be "described" by means of an
(in general not unique) elementary cochain system.

First we state

8.3 DEFINITION. Let P be as in [2, 2]. Then for Y e Sp, its suspension
is the spectrum of which the simplices of degree q are the base point and all
pairs (, y) such that e P, y e Y, y ., and dim + degree y q 1;
the face and degeneracy operators are given by

d(,y) (die, y), s(,y) (s,y), i =< p,

(, d__l y), (, s_v_l y), i > p

(where p dim ) whenever this has a meaning, and di(, y) otherwise.
Similarly the suspension of a map w Y -- Z e Sp is the map Sw SY SZ
given by (, y) -- (, wy) whenever this has a meaning, and (, y) --otherwise. The function S so defined is a functor S Sp Sp, the suspension
functor. We shall sometimes denote by S the identity functor of Sp, and for
every integer n > 0 by S" the composite functor SSn- $p ---> Sp.

8.4 PROPOSITION. Let Y e $p let o e P be as in [2, 2], let i be an integer
> O, and let Spy. ---> Sp be the i-fold loop functor. Then there is a unique
map t" SY ---> Y such that t( o, o, Ay) y for all Ay e Y.
Moreover this map is natural and is a weatc homotopy equivalence.

Proof. Existence, uniqueness, and naturality may be verified by a straight-
forward computation. That is a weak homotopy equivalence is proved just
us in the proof of [2, 5.3].

8.5 DEFINITION. Let the cochains k C+I-(Ai A) form a locally finite
cochain system, and let (Y, AC, f, g, he) be the essentially unique de-
composition associated with it (7). The maps f’Y A are easily
verified to be fibre maps. Denote the fibre of f by F, and let L’{l} be the
spectrum obtained from the union of the spectra Yo, SY-1, S2Y-, by
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identifying, for every integer i > 0, S F_ with its image under the composite
map

Si-ltS g_S F_ SY_+I S Y-+I.
Then we define the spectrum n{k} e Sp by L{k} FL’{}.

-2K X)8.6 PROPOSITION. Let X e Sp and for every integer i let A (
Then there exists a (not necessarily unique) elementary cochain system {} with

C+-s( Ai) such that L{k} has the homotopy type of X.

Proof. We will outline the proof of Proposition 8.6 but leave to the reader
mny details which re merely nlogues for spectra of "well known" results
on set complexes [4].
For every integer i let E X denote the i-Eilenberg subspectrum of X, i.e.,

the lrgest subspectrum which hs no simplices of degree < i except the bse
points, nd let P X be the i-Postnikov quotient spectrum, i.e., the spectrum
obtained from X by identifying two simplices whenever they hve the sme
iterated fces of degree i. In view of [2, 8], X my supposed to be minimal.

E X, nd for every integer i 0 letFor every integer i 0 let Y
Y be minimal spectrum such that Y E X. The existence of the
ltter follows readily from 4 nd [2, 5 nd 8]. For every integer i let
A P Y, and let f Y A be the projection. Clearly A i minimal,

-K(z X) Also f iszA zCX,ndzA 0forj 2i, i.e A
fibre mp with Y+ s fibre. Let Y be the spectrum obtained from Y

by identifying ll simplices of Y+ with the pproprite bse point, nd
let h’ Y AY+ be map which is the identity on Y+. Such mp
exists in view of the contractibility of AY+ (2). Then the composition
0 h Y Y+ induces mp h: Y’ Y+, nd the map f Y A
induces mp f Y A. The ltter is wek homotopy equivalence
(by the rgument used in the proof of [2, 5.3]). As Y+ e Sp, this readily
implies the existence of mp g A Y+ such that gf h nd hence
gf o h In exactly the sme mnner s for set complexes [1] one my
prove homotopy lifting theorem for fibre mps of spectra. Applying this
we get map h Y AY+ such that gf o h, nd a straightforward
clcultion yields that (Y, A, f, g, he) is locally finite decomposition,
nd that its cochin system {k} is n elementary cochin system.

Finally let w L{k} X be the unique mp such that for every integer- .q--Ei 0ndsimplexyeS Y Xwehvewy tyeEX X.
Then it is not difficult to verify that w is weak homotopy equivalence, nd
that hence L{lc} nd X hve the sme homotopy type.

BIBLIOGRAPHY

1. V. K. A. M. GUGENHEIM, 0n supercomplexes, Trans. Amer. Mth. Soc., vol. 85 (1957),
pp. 35-51.

2. D. M. KAN, Semisimplicial spectra, Illinois J. Mth., vol. 7 (1963), pp. 463-478.



ON THE -COCtIAINS OF A SPECTRUM 491

3. S. MAc LANE, Constructions simpliciales acycliques, Colloque Henri Poincard, Paris,
1954.

4. J. C. MOORE, Semi-simplicial complexes and Postnikov systems, Symposium Inter-
nacional de Topologla Algebraica, Mdxico, La Universidad Nacional Au-
tdnoma de Mdxico y la UNESCO, 1958, pp. 232-247.

5. M. M. POSTNIKOV, Investigations in the homotopy theory of continuous mappings,
Amer. Math. Soc. Translations (2), vol. 7 (1957), pp. 1-134.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS


