LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES RELATED
BY GROUPS OF TRANSFORMATIONS

BY
T. S. PirrcHER!

1. Introduction

If 2(t) and y(2) are stochastic processes with the same parameter set, they
induce measures m, and m, on a suitably chosen space of sample functions.
It is an important problem of statistics to find conditions guaranteeing the
existence of the Radon-Nikodym derivative (or likelihood ratio) dm,/dm, and
to find formulas for computing it. These derivatives are also helpful in de-
scribing one process in terms of the other, in particular, in carrying almost
everywhere properties from one process to another which is less well known.

This problem has been studied most in the case where x(¢) and y(¢) are
closely related to a Brownian-motion process (see, for example, [1], [2], [7],
[10], and [11]). Prokhorov [9] and Skorokhod [12] have investigated the case
where z(¢) and y(¢) are solutions of a diffusion equation (again, of course,
closely related to Brownian motion), and Skorokhod [13] has also investi-
gated the case where x(t) and y(¢) are processes with independent incre-
ments. The most important case in engineering applications is that for which
the processes are Gaussian. This has been attacked by, among others, Gre-
nander [6], Slepian [14], Feldman [5], and Woodward [15].

In most of the above work the special nature of the processes involved is
relied on, in particular, the independence or near independence of many of
the random variables arising in the computations. In this paper we shall de-
velop a technique relying less on such computations and more on assumed
geometrical relationships between the processes. This technique has already
been applied in [8] to the mean value problem, y(¢) = z(t) + f(¢) fora fixed
f(t) when x(t) is the solution of a diffusion equation.

Throughout Sections 2 and 3 we shall make the following assumptions.
We assume given a set X, a o-algebra S of subsets of X, a probability measure
P on (X, S), an algebra F of bounded, real-valued S-measurable functions
containing the constant functions, and a one-parameter group T, of auto-
morphisms of #. F and T, are to satisfy

(1) T, preserves bounds and T, f(x) has a continuous derivative which is
bounded uniformly in « and z for every fin F and z in X.

(2) If f, is a uniformly bounded sequence from F with lim f,(z) = 0 for
all z, then lim T, f,(z) = 0 for all z.

(3) There exists a function ¢ in some L,(P), 1 £ p < =, satisfying, for
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every fin F
0
Jorap =5 [ wepap|

Examples of such situations are given in Section 4 of this paper.

We shall write Df for —a— Tof \ . By the Stone-Weierstrass theorem,

for every f and g in F the functlons max (f, g) and min (f, g) are in F, the
uniform closure of F. F contains f” for every positive f in F, and T, can be
extended to 7. The functionals I, : l.(f) = f T.fdP deﬁned on F can be
extended to Daniell integrals l.(f) = [ fdP. where P, are probability meas-
ures on subfields S, of S. Both # and F are dense subsets of L,(P,) for
every . We shall assume in what follows that ¢ is Se-measurable (replacing
it by its conditional expectation on S, with respect to Py if necessary).

It is easily verified that if the P, are absolutely continuous with respect to
Py, the transformations V(«) defined on F by

Vs = |22 ] Ty

can be extended to a group of isometries of L,(P,) into itself, and that, at
least formally, the generator of V(a) contains the operator A defined on F by
Af = (1/p)é¢f — Df. In Section 2 we shall construet approximations to the
semigroups V(a), « = 0, and V(—a), @ = 0, and in Section 3 we shall find
conditions under which these semigroups are isometries. Section 4 is devoted
to applications of these results.

2. The semigroups Vi(a) and V_(a)

For any fin F and a« = 0 we define a transformation of ¥ into bounded
Se-measurable functions by

Vi(a)g = (exp [ T-ﬂfdﬁ) Tewg

Lemma 2.1. Vi(a) takes F into F, and V() V(B8) = Vi(a + B8). Ifg
isin F, V;(a)g is in the domain of D, the closure of D, and

= a
DV(a)g = fVi(a)g — da Vi(a)g.
We have, for g in F,

;_02 f Vila)g dPo = f (f — ¢)Vi(a)g dPo.

Proof. Since the derivative of T, f(z) is bounded uniformly in « and =z,
= (a/n) Y to T—rasm f converges uniformly to [§ T—s f dB, and hence

n 1 a k
Vi(a)g = lim 2 Al ([ T~ﬂfd13) T-ag
n k=0 K. 0
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isin F. It is easily verified that

T, (eXP fo T-sf dﬁ) = exp fo T—g+y f dB

and hence that V(o) V;(8)g = Vi(a + B)g. It follows from the continuity
and boundedness of DT_, f that Doy converges boundedly to

o ([ reras)” [ rasas = (= ([ Tysas)

Thus, for g in F and

=2 m ([ 1 d8) 70,

k=0

Ds,, converges boundedly to
9
(f = T-eVi@)g + (V@ DDT—sg = fV{e)g = o Vi(ay,
which proves the second assertion. Finally,

f 6V, (a)g dPy = lim f ¢s» APy = lim f Ds, dP,

]
=ffo(a)g dPq — f <a—0'[ Vf(a)g) dP,
which completes the proof of Lemma 2.1.
LemMa 2.2. For any sequence f, from F converging to

(1/p)¢~ = (1/p) min (¢, N)

and bounded above, and any « Z 0, the operators Vy,(a) converge to an operator
Vy(a) on F. Each Vy(a) has a unique extension to L,(P,) satisfying

(L Va(e) || = 1.

(2) Vy(a), a = 0 1s a strongly continuous semigroup with Vy(0) = I.

(3) Vx(a)f is nonnegative of f s. _

4) Vx(a)(fg) = (Va(a)f) T—a g for every f in L,(Po) and g in F.

(5) The generator Ay of Vw(a) is the closure of the operator

f— (1/p)¢xf — Df
defined on F.

Proof. For any f and ¢ in F, with f bounded above by M, we have

9 2
2 [ i = viary ap

= %f (V2f(a)1 - 2V(f+o)(0‘)1 + Vzg(a)l) dP
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= [ 12 = 9)Vas(e)l = 20 + g = Va1 + (2 ~ 6)Vay(e)1] dP
= [12f = on) + (b — OV ()1 = Vi(@)1)* dP

+ [ (= D@Vrry(e)1 — 2Vsy(e)D) dP

2 —onll + |l f— g4,
so that

[ 1 = Vi) aP < (127 = ou | + 17 = g |} 4ac™.

Hence assuming that the f,’s are bounded above by M, and using |z — y |” =
| 27 — y” | which holds for positive z and y and p = 1 gives, if sup | g(z) | = 1,

| Viladg = Vi) II” = | Vi)l — V()1 ||

< [ 1 Von(@)l = V()1 | P

IIA

2eaM f I fon/2(a)1 - fom/z(oz)l | dP

IIA

1/2
2¢™ ( [ | Viprae(e)l — Vppa(a)l |2>
< 4Val™ (|| pfa — on || + (8/2) | fo — fu D2

This proves that V,(a)g converges uniformly for « in a bounded interval and
fixed g in F to an element Vy(a)g in L,(Py).
For any positive ¢ in F,

I\

i} a
S [ Var@g aP = [ (0 = 6)Var(edg aP = 26 || 01 — 6 |,
so that
f (Va(a)1)"T—ag dP < j g dP.
Thi_s extends easily to ¢ in F; in particular it is true for ¢g? if ¢ is positive and
inFso| Va(a)g| = | gl|l. Hence Vy(a) can be extended to an operator on

L,(P,) satisfying (1). Properties (3) and (4) are proved by simple con-
tinuity arguments. For fin F,

Va(a) Va(B)f = lim, Vy(a) Vi, (8)f = limy (V(e)1) T—a Vy, (B)f
= lim,, (an(oz) 1) T_a Vf”(ﬁ)f = hmn Vf”(a) Vf”(ﬁ)f
= VN(a + B)f)
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and because of (1), this implies that V() is a semigroup. Again, for fin F,
because V;,(a)f converges to Vy(a)f uniformly in e,

| Vi(a)f — Va(B)S |
= [ Va(a)f = V() f | + 1 Va(B)f = VB | + | Vi) f — Vi (B |

can be made arbitrarily small, proving that Vy(a) is strongly continuous and
completing the proof of (4). In proving (5), it will be sufficient to show (see
[4, Corollary 16, p. 627]) that

O = 4y) [ Vil da =,
(1]
and because of (1), we need only show this for fin . From Lemma 2.1,

An V3@ = (5w = 1) Vileds + 2 (Ve

So]
O = ANV es = (5 = Lon) eV itedr = 2 (27,

and using Riemann approximating sums gives

b
(N — Ax) L e_a)\Vf,,(a)g do

- <f,, — -:; ¢N> fo M, (a)f da + f — ¢V, (b)F.

The proof is completed by letting f, converge to (1/p)¢~ and be bounded from
above, and then letting b go to «.

TrEorREM 2.1. Vy(a) converges strongly to a strongly continuous semigroup
Vila) satisfying

(1) || Vale) | = 1. ]

(2) Vi(a)(fg) = (Vi(a)f) T-ag for g in F.

(8) Vi(a) preserves positivity.

(4) The generator of Vi(a) contains the operator A defined on F by

Af = (1/p)ef — Df.

Proof. For positive f, in L,(Po), Vy(a)f is a nondecreasing, nonnegative
sequence with || Va(a)f || = || f || and hence, converges for such f and trivially
then for all f in L,(P,). Properties (1), (2), and (3) are immediate. For
fin F,

8
| Vateds = Va(®)f | = [ 1 Van)dwsldy <18 = | | Axf |
< 18—l G ) |61+ 1 D)
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so that
| Vile)f — VB | £ || Va(a)f — V(S ||
+ || Va(B)f — Va(B)f | + || Vala)f — Va(B)f |l

can be made arbitrarily small by choosing | 8 — « | small enough and then N
large enough. This proves the strong continuity of V,(a). The semigroup
property of V. (a) now follows straightforwardly from the fact that the Vy(a)
are semigroups with || Vy(a) || £ 1. For any f in F, since Ay is the gener-
ator of Vy(a),

Velalf = tim Va(a)f = 7 +lim [ Va(®)dnsds =7+ [ V(£)AS ds,
and thus
1iml’fi°"¥;f - lim%fo V(y)Afdy = Af.

This establishes (5) and completes the proof of Theorem 2.1.

Theorem 2.1 also holds, of course, with 7 , D, and ¢ replaced by T% = T, ,
D' = —D, and ¢' = —¢, giving a strongly continuous semigroup V_(a)
satisfying

() [V =1, _

(2)" V(a)(fg) = (V(a)f)Tagforgin F,

(3)" V_(a) preserves positivity, and

(4)" —A is contained in the generator of V_(a).

TueoreEM 2.2. V_(a)Vi(a)f(x) = e (z)f(x), where e = V_(a)Vi(a)l
is an L,(Po) continuous family of functions with e = 1. The e, are non-
increasing in o, 0 = eo = 1, and

e = 1 — lim % f Vo6 — ¢a) Val)1] dr.

n->0

If e = 1 for some a > 0, then V_(B) Vi (B) = Vi(B)V_(B) = I for all B.
Proof. 1If fisin F, then

V() Vi(a)f = V() [(Vi(a) )T-of] = (VA>) Vi) 1)

by properties (3) and (3) above, and this equation extends immediately to
all fin L,(Py). The L,(P,) continuity of e, follows from the strong con-
tinuity of the semigroups. It is also apparent from this equation for e, that
eo = lande, =2 0. Foranyfin F, V;(«)1 can be approximated boundedly
by elements s, from F as in Lemma 2.1 with

lim, As, = (1/p)¢Vi(a)l — DVy(a)1,
so that

2y (@)Y el = V() [(f - %d)) v,(an] ,
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and hence
VAV =1 =2 [ VA8l — p) V()1 d.

The formula of the theorem is obtained by letting f be bounded from above
and converge to (1/p)¢, and then letting n go to «. It is clear from this
formula that e, =< 1 and e, is nonincreasing. Suppose finally that e, = 1 for
some a > 0, so that V_(8)V,(B) = I for 8 £ o If G is the generator
of V,.(B) and f is in the domain of G, then || (V_(&)f — f)/e + Gf || =
I V(&) ((f — V(D) /e + G || + | V-(£)Gf — Gf || which goes to 0.
Thus the generator of V_(8) contains —G and therefore equals —@G (again
by [4, Corollary 16, p. 627]). For any f in the domain of G,

j—B V_(B)V4(8)f = V-(8)[—G + GAV+(B)f = 0,

and this completes the proof.

TaeorEM 2.3. If ¢, = 1 for some a > 0, then

(1) For any a and B, S, = Sg and P, and Pg are mutually absolutely con-
tinuous.

(2) T. has an extension to L,(P,) which is linear, preserves bounds, and
satisfies To(fg) = (Tof) (T g) whenever f, g, and fg are in Ly(Po).

(3) Vi(a)f = (dPo/dP)"*T_of and V_(a)f = (dP_a/dP)"* T for all
fin Ly(Py), and all « = 0.

(4) There is a measurable version of T, ¢ which satisfies

dP. “
IOg E‘F = </0 T-—Bd’ dB

Proof. From Theorem 2.2, V(a) : V(a) = Vi(a) if @ 2 0 and V(a) =

V_(—a) if @« £ 0, is a group of isometries. For any positive f in I
[1ape = [ @y apo = [ V(@17 aPo = [ (V()1)7dP,

which shows that P, is absolutely continuous with respect to Py, So C Sa,
and that (V(a)1)® = dP,/dP,. Now suppose that f, is a decreasing se-
quence of nonnegative functions from F which converges to 0 almost every-
where with respect to P, . Then T, f, decreases to 0 almost everywhere with
respect to Py, and

[ g.apo = [ G477 Py = [ (V=) ()7 aPu = [ (V(=e)1)"Ta 1, aPy

converges to 0, completing the proof of (1). According to (1), we have
0 < V(—a)l < « almost everywhere Py, so we can define

Tof = V(—a)f/V(—a)l
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for all fin L,(P;). T, is clearly a linear positivity-preserving extension of
T.,and, since T, 1 = 1, it also preserves bounds. If ¢ is in 7, then 7.(fg) =
(V(=a)f)Tag/V(—a)l = (Tof)(T.g), and letting g converge boundedly
to an arbitrary bounded Sy-measurable function completes the proof of (2).
We shall write T, for T, from now on. (3) is clear from the definition of
T.. If f,is a sequence from F converging to ¢x , with f,4y < fu + 1/n and
Sl fazs — fu |l < o, then V(B)f. converges almost everywhere to V(8)¢x
so that 7 g/, converges almost everywhere to T_g¢n. Thus T_géy is
dB XdPy-measurable, and for almost all z,

fo P éw(z) dB = lim fo s u(x) d8 = plog (Val(e)1)(2).

The proof follows, on letting N go to o, from the monotonicity of ¢» and
VN(OZ) 1.
From the above theorem
] dP«
T—-a (l) = (—92 log m y

so by the Cramer-Rao inequality [6, pp. 247-248], if ¢ is in L.(P,) and
SUPasass | T—ad dPo/dP; | is in L1(Py), then for any estimate o™ of « with
bias b(a) = f o*(z) dP, — o and any « in the interval [a, b], we have

[ o = ay*ap. g<1+%)2/f¢2dpo.

Before leaving this section we note that the constructions involved in the
proof of Theorem 2.1 only made use of the 7', for @ = 0, so that this theorem
is applicable to the case where T, is only a semigroup. This is stated for-
mally in the next theorem.

TueoreMm 2.4. If (1) through (3) of Seclion 1 are satisfied except that T, is
defined only for a = 0, then there exists a strongly continuous semigroup V()
satisfying

(1) | V(e | = 1. ]

(2) V(a)(fg) = (V()f)Tag forall g in F.

(3) V() preserves positivity.

(4) The generator of V(a) contains the operalor A defined on F by

Af = —(1/p)éf + Df.
If V(o) is an isometry, then Py is absolutely continuous with respect to P, .

Proof. All but the last statement follow from Theorem 2.1 with T’y , D, and
¢ replaced by T_o, —D, and —¢ respectively. If V( a) is an isometry and f
is a positive function in /', then

[1ary = [ W@ @mrar = [ (V@1)Tafap,.
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Hence, if T, f. decreases to 0 almost everywhere, f fn dPg also goes to 0, which
proves the last statement.

3. Conditions guaranteeing that V_(a)Vi(a) = Vi(a)V_(a) = I

In this section we shall derive various sets of conditions which are sufficient
to insure that V_(«) and V() are the two halves of a group of isometries.
Relatively simple examples, one of which is given below, show that this is not
always the case. When p = 2, the operator 74 is symmetric, and, of course,
if its defect indices are 0, the semigroups are the two halves of a group of
unitary operators. In the examples given here, and in all other cases known
to the author, the defect indices of 74 are equal; but, as will be seen below, it
is possible that none of the skew-adjoint extensions of A4 generates the desired
group of unitaries, and in fact no such group need exist.

The following class of examples will illustrate the range of possibilities
under the assumptions of Section 1. We take X to be the unit circle, S the
Borel sets, P of the form m(z) dz, F the continuously differentiable functions,
and T, to be rotation, i.e.,

Tof(x) = f(z — @) if ©—azm,
=f2r+2—a If 2—a<m
If m(z) is assumed to be continuously differentiable, then Df = —f and

¢ = m'/m satisfy (1) through (3) of Section 1 provided
K !’ |\P

f M mdrs < w.

e | M

In the simplest case, m(z) = 1/2m, ¢ = 0, the closure of 74 is self-adjoint
ifp=2and Vi(a) = T,.

Next we take m(z) = cexp (—1/(x" — 2%)). Themap f — /m f carries
Ly(m(x) dx) isometrically onto Ly(dx) and takes A into —d/dt. However, it
carries F' into (essentially) the set of continuously differentiable functions
vanishing at , so the defect indices of ¢4 in this case are (1, 1). Since 4 is
not maximal, it is properly contained in the generators of Vi(a) and V_(«a).
It is easily shown by calculation that

_ 1/2
Vila)f(z) =<M—ZW&)> floe—a) i t—az —7
and is O otherwise;
i = ("EN) et i stas
_(a)f(z) = ) flx + « if z4+a=nr

and is 0 otherwise; and e,(x) = 1if —7 + o £ 2 £ 7 — a and is 0 otherwise.
¢(2) is in L,(m(x) dzx) for every p, 1 £ p < oo, and it is clear that e, is the
same no matter which p is chosen. It will be shown in the discussion of the
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next case that this result is also independent of the form of m(z) beyond the
fact that it has exactly one 0. Before going to that case, we note that an ¢4
with defect indices (n, n) can be constructed in the same way by choosing an
m(x) with exactly n zeros.

In both of the above cases the P, were mutually absolutely continuous; but
for an m which is positive on —7 4+ a@ < * < 7 — @ and vanishes elsewhere,
this is not so. The map f —+/m f now carries F into the set of continuously
differentiable functions vanishing outside the interval from —x + a to = — aq,
and 74 again has defect indices (1, 1). V.(a) has the same form as above
except that 7', is replaced by T , rotation through the circle short-circuited
by identifying —7 + @ and # — a. T. is also the group generated by the
unique positivity preserving skew-adjoint extension of A. If m'(z) =

m (W — % gives rise to a group of isometries, then so must m(z), but this
™

is impossible by Theorem 2.3. This justifies the statement made above about
the nondependence of the second case on the form of m(x).

The next theorem shows, as might be expected, that there is little to be
gained by considering cases other than p = 1.

TueoreEM 3.1. If Vi(a) and V_(a) are the two halves of a group of tsome-
tries for some p > 1, then the same is true for every q, p = q = 1. If they are
a group of isometries for p = 1 and ¢ is in L,(Py), then they are a group of isome-
tries for every q, 1 < q < p.

Proof. We shall write ,V;(a) and ,V_(a) for the semigroups constructed
in L,(Py). It is clear from the construction of ,V.i(a) that ,Vi(a)l =
GV (@)D so if ,Vi(a)l = (dPo/dPy)"", ,Vi(a) is an isometry. Simi-
larly, ,V_(«) is an isometry so || eq || = || V_(a) Vi(a)1] = 1 and e, = 1.
Conversely, if 1V () and ;V_(a) are the two halves of a group of isometries
in Ll(Po), then

V() = (APo/dP) " T_of and ,V_(a)f = (dP_./dPy)""T,f
are isometries, and hence, ,V_(a) = (,Vi(a)) ™

TuroreM 3.2. If A, the closure of A, is the generator of Vi(a), or if —A is
the generator of V_(a),then V_(a) = Vi(a)™". In particular, if (\ — A)F
is dense in L,(Po) for some N = 0, then A generates Vi(a), and V_(a) =
Vila)™. Conversely, if V_(a) = Vi(a)™", then the generator of V(e)
WV(a) = Vila) if «a 2 0, V() = V_(a) if « = 0] is the operator Ao with
domain U _pcoco V(@) F defined by Ao V(a)f = V{a)Af.

Proof. If A generates V,(a), then V(a)f is in the domain of 4, so
F) _ _
e V(a)Vi(a)f = V(a)[=A + A]Vi(a)f = 0.

If (\ — A)F is dense and G is the generator of V(a), then for g in the dense
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set (A — )F D (A — A)F, (A — @) 'y is in the domain of A — A4, and

N—A) l"’ e Vila) g da
== @0 - 70 - ) [ " Vi) g da

— =@ fo ™ Vila) gda = g,

which proves the second assertion. Suppose now that V_(a) = Vi(a)™.
We first show that 4, is well defined. If V(a)f = V(B)g, then 4, V(a)f =
V(g Af = V()AV(B — a)g = V(@) V(B — a)Ag = A, V(B)g. ForfinF,

(N — Ao) Dm0 (1/n)e MV (k/n)f = Dorte (1/n)e ™™V (k/n) (N — A)f

50 [§ ¢V (a)fda is in the domain of A, and
(n — Ao) f e Vila) fda = f e Vila) N — A) fde = f,
0 0

which proves that A, is the generator of V,(«), and hence of V(«).
The above theorem can be improved if p = 1.

TarorEM 3.3. In case p = 1, the following conditions are equivalent:

(1) (AN — A)F is dense for some N 5 0.

(2) A is the generator of V(a) or — A is the generator of V_(a).

(3) V(a) = (Vi(a)) ™

Proof. From the previous theorem, (1) and (2) are equivalent, and they
imply (3). (3) implies by Theorem 2.3 that

foK V_(a)l(¢ — ¢2) V()] da || = lim foK (¢ — &a) Vila) 1| da = 0.

lim

Hence if fisin F,

lim (A — 4) fOK ¢ Vola) f de

K
= lim I:(d’n - ¢)/0 ¢ V@) da + f — G_Kan(K)f:l = f — V(K
so [§ ¢V (a)f da is in the domain of 4, and

K C-]
lim (A — A) f e V(a) fda =(n — A) f e Via) fde = f.
K-> 0 0
TaroruM 3.4. If, for some ¢ > 0O euther
lim inf ¢’ dP or lim inf (—¢)"dP
[z ¢ (x)>n] [l (x)<—n]
is 0(e™"), then V_(a) = (Vyi(a)) ™
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Proof. We prove the theorem under the first hypothesis. From Theorem
2.3,

(1=l s timint [ 6 o) Valo)1 | dy

< liminf || ¢ — ¢n | f ™ dy = 0.
o

TaBOREM 3.5. If there are a sequence (f,) from F converging to ¢ in L,(Py)
and an a > 0 such that

lim inf lim inf f f T ofodP de = 0,
0 VT _Wfu>N]

N> n->00

then V(o) = (V.(a))™.
Proof.
e — 1= 1lim f V_()[(é — én) Val(a)l| da

~ lim lim [ V(s = ()w) V()] de
= lim lim fo (V) Vala) DI afs = (T—u f.)] da

<timlim [ (7-afu = (Taf)n) da,
N n 0

where we have written (f,) y and (T_o fo) 5 for min (f, , N) and (T f., N)
respectively. Hence by Fatou’s lemma

f (e — 1) dP < lim inf lim inf T_of, da dP,
N

n [T —afn>N1 Jo
from which the theorem follows.

4. Applications

In this section we discuss applications of the theory developed in Sections
() €
2 and 3.

A. Translation of a random analytic functron

P is to be the probability measure associated with the stochastic process
x(t), —o <t < o, given by a(t) = D_weota @, t”/n! where ¢, are positive
real numbers satisfying D vy (£n41/¢n)° < o, and the a, are independent,
identically distributed, random variables with density ¢(a) da satisfying
[*sa’g(a) da < . Note that the random variables y, = ¢, a.¢"/n! are
independent and Y fyi dPlog’n < o, so [3, Theorem 4.2, p. 157] the
series for x(t) converges with probability 1, and applying this argument to a
sequence ¢, — o, that 2(¢) has an infinite radius of convergence with proba-
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bility 1. We further assume that g is continuously differentiable and, setting
£ =g'/g, that [, £(a)g(a) da < .
F is the set of polynomials in functions of the form
pa) = [ e (i Enae) ) H@w, o v
=0
with
f(l +Z_)>\?) | H(d\, -+ ,dN\,) | < oo
J

Conditions (1) and (2) of Section 1 are easily verified for T, given by
Ta h(x) = f exp <’L Z )\j x(tj + a)) H(d)\l gyt ,d)\n)
=0

and
TaQChy, -+, he) = Q(Tahy, -+, Tahi).

The random variables b, = £(a,)@a,4: form an orthogonal sequence in Ly(P),
so that

(@) = =2 o (Cut/En) £(an) @uta

is in Ly(P) because of the assumption made on the ¢,’s. The following lemma,
shows that condition (3) is satisfied for this ¢.

Lewwa 4.1. For fin F, f &f dP = [ Df dP.
Proof. Since D n_y (¢n/(n — 1) Da, t7 " converges in Ly(P) to z'(¢;),

f Dexp (i Ne(t)) dP = i f (2@ (W) expi (20 Na(t:)) dP
- f: {nt1 w, f Gpt1 €XP (z Z N x(t,-)) dP

n
n=0 §‘

where w, = ({n/n) 2_;N\;t; . Using the independence of the a,’s,

f Dexp (3 2(1)) dP

© g_ f Apt1 eXp (iwn—H an+1) dP
|ty [ exo (132 a(t)) ap.
. J
/ exp (Wn+1 Ant1) AP

Again, since the defining sequence for ¢ is L.-convergent,

o f £(a,) exp (1w, a,) dP
f ¢(x) exp (¢ XJ: N x(tj)) dP = — ;‘:0 ;:1

f exp (iw, a,) dP

f Ut €XP (Wt Cnt1)dP

f exp (i Z N x(tj)) dp,
f exp (1Wnt1 A1) dP !
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and integrating

f £(a,) exp (1w, a,) dP = [o g'(a) exp (1w, a) da

by parts completes the proof of the lemma for f(z) = exp (1D_;\;j2(t,)).
The extension to general f is straightforward.

Before going on to a discussion of the Gaussian case, we note that the above
analysis can be carried through with only minor changes without the as-
sumption that the a,’s are identically distributed. In the Gaussian case

g(a) = (1/4/2 w0) exp (—a’/20), £(a) = —a/s, s0
o(x) = (1/‘7) Z:=0 (§n+1/§n)an Gn41 -

We wish to find a sequence f; satisfying the conditions of Theorem 3.5 for this
case. In the next two lemmas and the theorem that concludes this part of
Section 4, we shall use the following notation: 2‘* is the k¢ derivative of the
function z; for any function G, G, is the function whose value is n, G(z), or
—n if G(x) is greater than n, between —n and n, or less than —n, respectively;
and A(3) is the operator A(8)f(a) = 6 '(f(a + 8) — f(a)).

Lemma 4.2,  If the a,’s are Gaussian,
fa / 1 x(k)(_a)x(kﬂ)(_a)
0

k=0 &
Proof. Leaving out the first term, which is obviously integrable, and
applying Schwartz’s inequality to the rest, we obtain

[ []5 50 -a)a (e }dpda
<f f<k— (= ))/2 (g%(ﬂc(kﬂ)(—a)f)mdea
sc[ | (k_ (2 (— a)))dea,

where we have used the fact that ¢r—1/¢x is bounded. Using the power series
expansions for ' and evaluating, shows that this last integral is domi-
nated by

a0 Yo Z s —WQ < a0 Z (Z”: <s°n+k>2> @

k=1 {F1 w0 $r1 (nl)?”

Since &n44/¢x is always less than 1 for k beyond some ko, the & summations
are bounded, and the proof is complete.

dP da < .

k=1

LemmA 4.3. There is a sequence fr from F satisfying the requirements of
Theorem 3.5.

Proof. We choose n(k), m(k), and A, = A(6(k)) to satisfy

(1) [

1
fﬁl Og Qgt1 dP < = ,
a=m(D+1 g k
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m (k) 1
(2) [ S g0 | dP<q,
= q

[

(% L sta(-a)) (s o~

q= n(k)
(3) s 1
. <Z (q)( ) (q+1)(__a)> ldea <<,
g=0 fq n(k) k
m(k) “ m (k) 1
@ [|(E kweoners ) - (8 Saam) P <t
(nk) =0 §q n(k)

and fi to be w1th1n 1/k of
m (k)
(Z L (st (0))(a5"5(0)))
q-:O n(k)

S converges to ¢ by (1), (2), and (4). Finally, writing fN for the integral
taken over the set where the integrand is greater than N,

a N
lim inf lim inf f Tof. dP dex

N> k>0 0

N m(k)
ghminfliminfff Z_- (Af 2( —a) (ATHe( — ) AP

N->owo k>0
N m(k)
< lim inf lim inf f f L 2®(—a)a ™ (—q) dP da,
N-»>w k>0 q——[) q
and this equals 0 by Lemma, 4.2,

TueorEM 4.1.  If the a, are Gaussian,

log 757 (2) = 5 3 L [(0))* = (=)

Proof. By Theorem 2.3, T, can now be extended to L:(P;). We have
T aa, = (l/fn)x(n)(_'a), 50

T-d(e) = 13 &2 (—a)a® (=)
giving
log 2% (2) = 235 2 [ 4 (=p)a®(~p) a8
]- = 1 (n) 2 (n) 2
=§;”=0—2;[(x (0))" = (™ (=a))

B. Approximating ¢ by a martingale

It sometimes happens that there are subfields S, of S invariant under the 7'
on which the conditional expectations of ¢ can be calculated. Suppose, for
example, that X is a real Hilbert space, and that for some sequence (x;) from
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X all the functions I; : l;(x) = (z, x;) are in Ly(P). F is the set of all func-

tions of the form f(z) = f(l(z), -+, l.(z)) for a bounded  with continuous
bounded first derivatives. 7, is defined on F by

Ta.f(x) = f()\ix ll(x)y Tty )‘:‘L ln(x)>

for some bounded sequence A; of positive numbers. In particular, if the z; are
orthonormal, then 7T, f(z) = f(+°¢) where 7 is the transformation with eigen-
values (A;) and eigenvectors (z;). Let the joint distribution of 4, ---, I,
be given by a density function p,(a;, -+, a,). We assume

(al) The functions g¢,; :

)
Giar, <+, an) = — (a; paas, - ,an))/pn(al, Ce @)

da;
exist and are in L.(p.(@1, -+, a,) day --- da,), and, for every
@i, ooy Byt Gyt Gy
limg;5q0 @5 palay, -+, @) = 0.
éa(2) = — D imlogNjgui(li(z), -+, L(x)) is in L(P), and [ ¢ fdP =

| Df dP for every f in F which depends only on %, - -+, L, . Since this inner
product relation defines ¢, uniquely, the conditional expectation of ¢,41 on the

field generated by &, -, L, equals ¢,. This implies that [ ¢, dP is non-
decreasing and we assume

(a2) lim f &2 dP < w.

The sequence (¢,) is a martingale, and [3, Theorem 4.1, p. 319] there is a
function ¢ in Ly(P) which is the limit almost everywhere of the ¢, and satisfies
[¢fdP = [ DfdP forall fin F. Hence the conditions of Section 1 are satis-
fied if (al) and (a2) hold.

The following is an example of this type. (X, S, P) is the measure space
associated with a stochastic process [x(t); t e I]. Let (¢;) be a sequence of
points such that z(¢;) is dense in Ly(P), and suppose that the joint distribu-
tion of x(t), - -+, 2(4,) is given by a density p,(a1, ---, a,). F is the set
of functions of the form f(z) = f(x(#), - -, «(t,)) for bounded f with con-
tinuous bounded derivatives, and for some fixed function m(¢), we define T, by
Tof(x) = f(x(t) + am(t), -+, 2(t,) + om(t,)). Hence, if we define 7,
by (rq2)(t) = x(t) + am(t), then T, f(x) = f(rex). We assume

(bl) The functions ¢, :

9
qnj(a].’ tet ,an) = da: (p’n(aly tet ,an))/pn(aly"‘ ,an)
a;

exist and are in La(pn(ai, -+, @) day, -+, da,).
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As before, the function ¢,(z) = — D1y m(t;)qui(x(t), -+, x(t,)) satis-
fies [ ¢, fdP = [ Df dP for every f in F, measurable on the field generated
by z(t), ---, z(¢,); and the conditional expectation of ¢, on this field

is ¢, . We also assume
(b2) 1imf¢‘~; P < w.

As before, (b1) and (b2) imply the conditions of Section 1 with ¢ = lim ¢, .
In cases of this type the likelihood ratios are usually also known on the sub-
fields. They, of course, also form a martingale, and it may well be easier to
work with them directly than to attempt to calculate ¢.
We have chosen to work in L, but the entire theory would clearly work
just as well in L, for p > 1. In I, however, some additional condition would
be required to insure f (lim ¢,)f dP = lim f¢>,, fdP.

C. The addition of a Gaussian indeterminacy in o

We suppose given (X, S, P), F, and T, satisfying (1) and (2) of Section 1.
For ¢ > 0, let K,(a) = (270) "* exp (—a’/20), and let P’ be the measure
gotten by completing the functionals

() [sap = f_:K,(a) (f TafdP> da

defined for f in F. We shall show that replacing P by P’ always leads to the
situation described in Theorem 2.3.

LemmaA 4.4, There is a ¢’ in L(P°) satisfying

f &f dP° = f Df dP° for all f in F.
Proof. For fin F,

fodP" - lim/MS—_;fdP”

e->0

- f_:KV(a) (%fTafdP)da =%f_:aKa(a) (f TafdP>da,

so for any B > 0 and f in F,

UDfdP’ < f—f_ZK.,(a)

[ Tuf dP } da + 2K,(B)

< f/ | [ dP" + 2K.(B).

The linear functional I(f) = f DfdP’ can now be extended to F, and the in-
equality still holds. For positive f in F, define

I"(f) = supos,<sU(g) and I (f) = supoge<s —Ug).
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It is clear that I*(fy + f2) = I7(fi) + [T(f2), and since for any ¢ satisfying
0=<g<=/fi+/f, the functions g; = gfi/(fi + f») are in F and satisfy
0 =< ¢g: = f:, the opposite inequality also obtains. Now if f, is any decreas-
ing sequence of nonnegative functions from F and lim [ f, dP’ = 0, then

lim I"(f,) £ lim (%‘ ff,, dP’ + 2K.,(B,,)> =0

if we choose B, = ([ f.dP°) . This plus I"(1) < « proves that there
is a function ¢3 in L,(P°) satisfying [ ¢%fdP" = I*(f). Similarly we can
show the existence of a ¢Z in L,(P°) satisfying [ ¢ZfdP" = I"(f). When-
ever 0 < g < f, we also have 0 < f — g < f so I"(f) = I(f) — l(g), and
hence IY(f) — I"(f) = I(f). The opposite inequality can be proved in the
same way showing that [ (¢7 — ¢7)fdP° = [ DfdP”.

LeMMa 4.5. f (¢ — ¢n) dP° = O(e™").
Proof. Tor any f in F of absolute bound 1 and any B > 0

[ 6.5 ap

and by a continuity argument, this holds for all Se-measurable f of abso-
lute bound 1. Putting f equal to the characteristic function of the set 4,
where ¢,(z) > n and setting B = o(n — 1) gives

P'(4,) = 2(2m0) 7 exp (—o(n — 1)*/2),

< Ef | /| dP" + 2K,(B),
g

and hence

f(¢—¢n)dP”§C§(k+1)exp<:g§%jl_)z>

which is obviously O(e™ ™).

Turorem 4.2. If (X, S, P), F, and T satisfy conditions (1) and (2) of
Section 1 and P’ is defined for any ¢ > 0 by (), then the conclusions of Theo-
rem 2.3 hold for P, —o < a < «. All the measures P, 0 < ¢ <
—w < a < «© are mutually absolutely continuous. If in addition there vs a ¢
in Ly(P) satisfying f¢f dP = f Df dP for all f in F, then each P, s absolutely
continuous with respect to each Pg, and we have

f dPe P, < (27")”2 el

aps,

Proof. The conclusions of Theorem 2.3 hold by virtue of the preceding
two lemmas. If (f,) is a decreasing sequence of nonnegative functions from
F, then lim [ f,dP% = 0 if and only if lim | T, f, dP = 0 for almost all
« which proves the mutual absolute continuity of the P, . If a ¢ exists satis-
fying [ ¢f dP = [ DfdP, then [ T.fdP is differentiable everywhere, and
its derivative is bounded by || ¢ || sup. | f(z) |, so in order for lim [ f, dP%
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to be 0, f T fn dP would have to go to 0 everywhere which shows the abso-
lute continuity of the Pg with respect to the P, . In this case, for f in F of

absolute bound 1
o ¥
] [ x| ([ ¢Tﬁ+afdP> dg d }

fTafd.P’ —/TafdPl
0 2 1/2
lo1 [ 1ol Kt ar = (2) 1o

Hence, for any measurable f of absolute bound 1

[i(1- Y are) < (2) 1ol

which implies the inequality of the theorem.

It

IIA
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