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1. Introduction

If x(t) and y(,t) are stochastic processes with the same parameter set, they
induce measures m and my on a suitably chosen space of sample functions.
It is an important problem of statistics to find conditions guaranteeing the
existence of the Radon-Nikodym derivative (or likelihood ratio) dmx/dmy and
to find formulas for computing it. These derivatives are also helpful in de-
scribing one process in terms of the other, in particular, in carrying almost
everywhere properties from one process to another which is less well known.

This problem has been studied most in the case where x(t) and y(t) are
closely related to a Brownian-motion process (see, for example, [1], [2], [7],
[10], and [11]). Prokhorov [9] and Skorokhod [12] have investigated the case
where x(t) and y(t) are solutions of a diffusion equation (again, of course,
closely related to Brownian motion), and Skorokhod [13] has also investi-
gated the case where x(t) and y(t) are processes with independent incre-
ments. The most important case in engineering applications is that for which
the processes are Gaussian. This has been attacked by, among others, Gre-
nander [6], Slepian [14], Feldman [5], and Woodward [15].

In most of the above work the special nature of the processes involved is
relied on, in particular, the independence or near independence of many of
the random variables arising in the computations. In this paper we shall de-
velop a technique relying less on such computations and more on assumed
geometrical relationships between the processes. This technique has already
been applied in [8] to the mean value problem, y(t) x(t) -k f(t) for a fixed
f(t) when x(t) is the solution of a diffusion equation.

Throughout Sections 2 and 3 we shall make the following assumptions.
We assume given a set X, a z-algebra S of subsets of X, a probability measure
P on (X, S), an algebra F of bounded, real-valued S-measurable functions
containing the constant functions, and a one-parameter group T, of auto-
morphisms of F. F and T, are to satisfy

(1) T, preserves bounds and T,f(x) has a continuous derivative which is
bounded uniformly in a and x for every f in F and x in X.

(2) If fn is a uniformly bounded sequence from F with limf(x) 0 for
all x, then lira T,f(x) 0 for all x.

(3) There exists a function in some L,(P), 1 <= p oo, satisfying, for
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every f in F

f 0f4)f dP - T f) dP

Examples of such situations are given in Section 4 of this paper.
0We shall write Df for Tf By the Stone-Weierstrass theorem,

-0

for every f and g in F the functions max (f, g) and min (f, g) are in F, the
uniform closure of F. contains ff for every positive f in/?, and T can be
extended to/P. The funetionals l" l(f) f T f dP defined on/? can be
extended to Daniell integrals l(f) f f dP where P are probability meas-
ures on subfields S of S. Both/ and F are dense subsets of Lp(P) for
every a. We shall assume in what follows that 4 is S0-measurable (replacing
it by its conditional expectation on So with respect to P0 if necessary).

It is easily verified that if the P are absolutely eontinuous with respect to
P0, the transformations V(c) defined on F by

can be extended to a group of isometries of L(P0) into itself, and that, at
least formally, the generator of V(o) contains the operator A defined on F by
Af (1/p)4f Dr. In Section 2 we shall construct approximations to the
semigroups V(a), o _._> 0, and V(-o), o >__ 0, and in Section 3 we shall find
conditions under which these semigroups are isometries. Section 4 is devoted
to applications of these results.

2. The semigroups V+(a) and V-(a)
For any f in F and a _-> 0 we define a transformation of/ into bounded

S0-measurable functions by

( )V](a)g exp T-fd T-g.

LEMM 2.1. V(a) takes F into F, and V](a) V]() V(a -- ). If g
is in F, V](a) g is in the domain of D, the closure of D, and

DV](a)g fV](a)g -a V](a)g.

We have, for g in F,

of f0-- V](a)g dPo (f ) V](a)g dPo.

Proof. Since the derivative of T,f(x) is bounded uniformly in a and x,
(n (or Ekn__o T-lca/n f converges uniformly to f T_f dfl, and hence

V(a)g lira . T-fd T-g
kO
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is in . It is easily verified that

( )T exp T-fd exp T-+fd

and hence that V:() V:()g V( - )g. It follows from the continuity
and boundedness of DT_f thatD converges boundedly to

k T-f d DT_f d (f T- f) k T- f d

Thus, for g in F and

k=O

Ds converges boundedly to

0(f T_f)()g + (g())DT_ V()g V()g,

which proves the second assertion. Finally,

f v,()g dPo=lim f sdPo=l f Ds. dPo

which completes the proof of Lemma 2.1.

LEM 2.2. For any sequence f from F converging o

(1/p) (l/p) m (, N)

and bounded above, and any O, $he operaors V](a) converge o an operator
V() on . Each V() has a unique extension o L(Po) satisfying

(2) V(a), a 0 is a strongly continuous semigroup with V(O) I.
(3) V(a)f is nonnegatie iff is.
(4) Y()(fg) (V()f)T_g for every fin L(Po) and g in .
(5) The generatorA of V(a) is the closure of the operator

f (1/p)f Df
defined on F.

Proof. For any f and g in F, with f bounded above by M, we have

f (V](a)l V()I) dP

f (() 2+() + ()) dP
Oa
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f [(2f- )V.s()l 2(f + g )Vs+o(a)l -F (2g )Vo()l] dP

f [(2f- N) + (N )](V/(a)l V()I) dR

+ f (f- g)(2V+(a)l 2V(a)l) dP

{] 2f + f g }4e2aM,
so that

f (V](a)l Y(a)l) dr { 2f + []f g ]}4e,
Hence assung that the f’s are bounded above by M, and using x y
x y which holds for positive x and y and p 1 gives, if sup g(x) 1,

ll v() v() I! v()- v()

dP

2 .()i ()i

This proves that V.()g converges unory for in hounded intervl nd
fixed g in F to n element V()g in L(Po).

For any positive g in F,

so that

This exends esily o in ; in prgieulr i is rue Cot is posigiv nd
in P so [ V,() ]l . enee V() en be exenaea o n operor on
(Po) sising (1). Properties (3) nd () re proved by simple eon-
ginuiy rgumens. For f in 8,
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and because of (1), this implies that VN(a) is a semigroup.
because Vs,(a)f converges to VN(a)f uniformly in a,

VN(o)f-- v()f

Again, for f in F,

<= VN(o)f v()f + VN()f Vs()//] + Vy(o)f Ve()f
can be made arbitrarily small, proving that VN(a) is strongly continuous and
completing the proof of (4). In proving (5), it will be sufficient to show (see
[4, Corollary 16, p. 627]) that

(X AN) e-"XVv(o)f d f,

and because of (1), we need only show this for f in F. From Lemma 2.1,

AN V.(a)f N f Vs(a)f q- -a (Vs(a)f),
SO

1
N e-"XV](a)f( AN) V](o)f

P

and using Riemann approximating sums gives
.b

(X AN) J0 e V](a)g da

e-"XV](a)f da + f e-XV](b)L
P

The proof is completed by lettingf converge to 1/p) and be bounded from
above, and then letting b go to .
THEonn 2.1. V() converges strongly to a strongly continuous semigroup

V+(a) satisfying
(1) v+<a) 1.
(2) v+()(fg) (V+(.)f)T_.gfor g in .
(3) V+(a) preserves positivity.
(4) The generator of V+(a) contains the operator A defined on F by

Af (1/p)f Df.

Proof. For positive f in L(Po), V(a)f is a nondecreasing, nonnegtive
sequence with v<Df f nd hence, converges for such f and trivially
then for all f in L(Po). Properties (1), (2), and (3) are immediate. For
f in F,

[I V()f V()f il V()Af d m Ill Af



LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES 401

so that

]1 V+(a)f- V+(flDf <-I1 v/( Df- Vr(a)f

/ v/()f- v()f / Vr(a)f- VN()f

can be made arbitrarily small by choosing I a small enough and then N
large enough. This proves the strong continuity of V+(a). The semigroup
property of V+(a) now follows straightforwardly from the fact that the VN(a)
are semigroups with V(a) --< 1. For any f in F, since A is the gener-
ator of V(a),

V+(a)f lim Vr(a)f f -t" lim Vr()Ar f d f -t- V()Af d,

and thus

lim V+(e)f f lim
1 V(’)Af d, Af.

This establishes (5) and completes the proof of Theorem 2.1.
Theorem 2.1 also holds, of course, with T, D, and 4 replaced by T T_

D’ --D, and 4’ -4, giving a strongly continuous semigroup V_(a)
satisfying

(1)’ V_(a) --< 1,
(2)’ V_(a) (fg) (V_(a)f) T. g for g in/,
(3)’ V_(a) preserves positivity, and
(4)’ -A is contained in the generator of V_(a).

THEOnEM 2.2. V_(a) V+(a)f(x) e.(x)f(x), where e. V_(a) V+(a) l
is an L,(Po) continuous family of functions with eo 1. The e. are non-
increasing in a, 0 <= e. <= 1, and

e 1 lim
1 V-(3’)[(4 4,,) g,(’r) II d.

If e i for ome a > 0, hen V_() V+() V+() V_() I for all .
Proof. If f is in F, then

V_(a) V+(a)f V_(a)[(V+(a)l)T_.f] (V_(a) V+(a)l)f

by properties (3) and (3)’ above, and this equation extends immediately to
all f in L(Po). The L(P0) continuity of e. follows from the strong con-
tinuity of the semigroups. It is also apparent from this equation for e. that
e0 1 and e. _>- 0. For any f in F, Vf(a) 1 can be approximated boundedly
by elements s. from F as in Lemma 2.1 with

lim. As, (1/p)Vf(a) 1 nV(a) 1,
so that

0---0 V-(a)V(a)l V-(a) I(f pi ) 1_-_ Vs(a)l
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and hence

V_(a) V(a) 1 1
1 V-()[(4 pf) V() iI d.

The formula of he heorem is obtained by leing f be bounded from above
and converge o (1/p), and ghen legging n go go . I is dear from his
formula ha e _-< 1 and e is noninereasing. Suppose finally ha e 1 for
some a > 0, so that V_()V+() I for/ =< . If G is the generator
of Y+() and f is in the domain of G, then (V_()f f)/ + Gf <-
V_() ((f V+(e)f)/ + Gf) + V_() Gf Gf which goes to 0.

Thus the generator of V-(5) contains -G and therefore equals -G (again
by [4, Corollary 16, p. 627]). For any f in the domain of G,

0__ V_()V+(B)f V_()r-G + G]V+()f O,o
nd this completes the proof.

THEOtE 2.3. If e. 1 for some a > O, then
(1) For any a and , S. So and P. and Po are mutually absolutely con-

tinuous.
(2) T. has an extension to L(Po) which is linear, preserves bounds, and

satisfies T.(fg) T. f) T. g) whenever f, g, and fg are in L(
(3) V+(a)f (dP/dP)T_.f and V_(a)f (dP_./dP)Tf for all

f in L.(P0), and all a >= O.
(4) There is a measurable version of T. which satisfies

log
dP,

T-o 4 d.dP

Proof. From Theorem 2.2, V(a) V(a) V+(a) if a > 0 and V(a)
V_(- a) if a _-< 0, is a group of isometries. For any positive f in F

f fdP. f [T,,(fi/’)]’ dPo f [V(ot)T,(fi/’)]’ dPo f (V(a)l)’fdPo,

which shows that P. is absolutely continuous with respect to P0, So S.,
and that (V(a)1) dP./dPo. Now suppose that f is a decreasing se-
quence of nonnegative functions from/ which converges to 0 almost every-
where with respect to P.. Then T.f decreases to 0 almost everywhere with
respect to P0, and

dPo

converges to O, completing the proo* of (1). According to (1), we hve
0 < V(-)1 < m Mmost everywhere Po, so we can define

Tf (-)f/(-)
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for all f in L(Po). T, is clearly a linear positivity-preserving extension of
T., and, since . 1 1, it also preserves bounds. If g is in/, then .’,(fg)
V(-a)f) T, g/V(-a) 1 (l;.f) ’ g), and letting g converge boundedly

to an arbitrary bounded S0-measurable function completes the proof of (2).
We shall write T. for , from now on. (3) is clear from the definition of
T.. If fn is a sequence from F converging to CN, with f,+l <= f -- 1In and

fn+l f < , then V()fn converges almost everywhere to V()N
so that T_f converges almost everywhere to T_a. Thus T_ is
dXdPo-measurable, and for almost all x,

T_ (x) d lim f0 T_ f(x) d p log (V(a) 1)(x).

The proof follows, on letting N go to , from the monotonicity of and
V() 1.
From the above theorem

dP.T_. a log
dPo’

so by the Cramer-Rao inequality [6, pp. 247-248], if is in L(Po) and
sup.=<.=< T-. dP./dPol is in L(Po), then for any estimate a* of a with
bias b(a) f c*(x) dP. a and any a in the interval [a, b], we have

--a) dP.>__

Before leaving this section we note that the constructions involved in the
proof of Theorem 2.1 only made use of the T. for a =<- 0, so that this theorem
is applicable to the case where T. is only a semigroup. This is stated for-
really in the next theorem.

THEOREM 2.4. If (1) through (3) of Section 1 are satisfied except that T. is

defined only for a >= O, then there exists a strongly continuous semigroup
satisfying

v() <= l.
(2) V(a) (fg) (V(a)f) T, g for all g in .
(3) V( a) preserves positiity.
(4) The generator of V(o) contains the operator A defined on F by

Af /p)f + Dr.
If V(o) is an isometry, then Po is absolutely continuous with respect to P,.

Proof. All but the last statement followfrom Theorem 2.1 with T., D, and
replaced by T_., --D, and - respectively. If V(a) is an isometry and f

is a positive function in , then

f fdPo f [V(a)(f/)]dPo f (V(a)l)’T.f dPo.
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Hence, if T, fn decreases to 0 almost everywhere, f f,, dPo also goes to O, which
proves the last statement.

3. Conditions guaranteeing that V_(a) V+(a) V+(a) V_(a) I

In this section we shall derive various sets of conditions which are sufficient
to insure that V_(a) and V+(a) are the two halves of a group of isometries.
Relatively simple examples, one of which is given below, show that this is not
always the case. When p 2, the operator iA is symmetric, and, of course,
if its defect indices are 0, the semigroups are the two halves of a group of
unitary operators. In the examples given here, and in all other cases known
to the author, the defect indices of iA are equal; but, as will be seen below, it
is possible that none of the skew-adjoint extensions of A generates the desired
group of unitaries, and in fact no such group need exist.
The following class of examples will illustrate the range of possibilities

under the assumptions of Section 1. We take X to be the unit circle, S the
Borel sets, P of the form m(x) dx, F the continuously differentiable functions,
and T, to be rotation, i.e.,

Tf(x) =f(x- o) if x- __> r,

=f(2+x- ) if x-- < .
If re(x) is assumed to be continuously differentiable, then Df -f’ and

m’/m satisfy (1) through (3) of Section 1 provided- mdx < .
In the simplest case, m(x) 1/2r, O, the closure of iA is self-adioint

if p 2, and V+(a) T,.
Next we takem(x) c exp (-1/( x2)). The map f-- v/f carries

L.(m(x) dx) isometrically onto L_(dx) and takes A into -d/dt. However, it
carries F into (essentially) the set of continuously differentiable functions
vanishing at r, so the defect indices of iA in this case are (1, 1). Since A is
not maximal, it is properly contained in the generators of V+() and V_(a).
It is easily shown by calculation that

V+(o)f(x) =k, (-) f(x o) if z a -r

and is 0 otherwise;

V_(o)f(x) (m(n-t- ))(x)
f(x + o) if x--<_

and is 0 otherwise; and e,(x) i if -r - a <_- x r a and is 0 otherwise.
(x) is in L,(m(x) dx) for every p, 1 -<_ p < , and it is clear that e, is the
same no matter which p is chosen. It will be shown in the discussion of the
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next case that this result is also independent of the form of m(x) beyond the
fact that it has exactly one 0. Before going to that case, we note that an iA
with defect indices (n, n) can be constructed in the same way by choosing an
m(x) with exactly n zeros.

In both of the above cases the P. were mutually absolutely continuous; but
for an m which is positive on -r + a < x < r a and vanishes elsewhere,
this is not so. The map f--v/m f now carries F into the set of continuously
differentiable functions vanishing outside the interval from -r + a to r a,
and iA again has defect indices (1, 1). V+(a) has the same form as above
except that T. is replaced by T’,, rotation through the circle short-circuited
by identifying -r + a and r a. T is also the group generated by the
unique positivity preserving skew-adjoint extension of A. If m’(x)
m x gives rise to a group of isometrics, then so must m(x), but this

is impossible by Theorem 2.3. This justifies the statement made above about
the nondependence of the second case on the form of re(x).
The next theorem shows, as might be expected, that there is little to be

gained by considering cases other than p 1.

THEOREM 3.1. If V+(a) and V_(a) are the two halves of a group of isome.
tries for some p > 1, then the same is true for every q, p >= q >= 1. If they are
a group of isometrics for p 1 and is in Lp(Po), then they are a group of isome-
trics for every q, 1 <= q <= p.

Proof. We shall write V+(a) and V_(a) for the semigroups constructed
in L(Po). It is clear from the construction of qV+(a) that qV+(a)1
(V+(a) 1) P/q, so if V+(a) 1 (dP./dPo)lip, qV+(a) is an isometry. Simi-
larly, qY_(a)is an isometry sol e, qV_(a)qy+(a)l 1 and e, 1.
Conversely, if 1V+(a) and 1V_(a) are the two halves of group of isometrics
in LI(P0), then

V+(a)f (dP,/dPo)/PT_,f and V_(o)f (dP_,/dPo)l/pT, f
are isometrics, and hence, V_(a) (pV+(a))-1.
THEOREM 3.2. If , the closure of A, is the generator of V+(a), or if - is

the generator of V_(a), then V_(a) V.(a) -. In particular, if ( fi)F
is dense in L(Po) for some h O, then .71 generates V+(a), and V_(a)
V+(a) -. Conversely, if V_(a) V+(a)-l, then the generator of V(a)
IV(a) V+(a) ira >= O, V(a) V_(a) ira <-_ 0]istheoperatorA0with
domain [J _<,< V(a) F defined by Ao V(a)f V(a) Af.

Proof. If generates V+(a), then V+(a)j" is in the domain of ., so

0___ Y_(a)V+()f-- V_(a)[- + 2:]V+()/= 0.

If (), A)F is dense and G is the generator of V+(a), then for g in the dense
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set (X-- G)FD (X- A)F, (X- G)-lg is in the domain of X A, and

(X A) fo e-"x V+(a) g da

(X G) [(X G)-(X A.)] fo e-"x V+(a) g da

(X-G) fo e-xV+(a) gda g,

which proves the second assertion. Suppose now that V_(a) V+(a) -.
We first show that A0 is well defined. If V(a)f V(fl)g, then Ao V(c)f
Y(c)Af V(a)AY(fl a)g Y(a) Y(fl a)Ag Ao Y(fl)g. For fin F,

(X Ao)o (1/n)e-Xt’*V+(]c/n)f o (1/n)e-X/Y+(lc/n) (X A)f

so f e-"XV+(a)fda is in the domain of Ao, and

f,
0

which proves that A:0 is the generator of V+(a), and hence of V(a).
The above theorem can be improved if p 1.

THEOREM 3.3. In case p 1, the J’ollowing conditions are equivalent:
(1) A)F is dense for some O.
(2) { is the generator q/’ V+(a) or -{ is the generator of V_(a).
(3) v_() (v+())-.
Proof. From the previous theorem, (1) and (2) are equivalent, and they

imply (3). (3) implies by Theorem 2.3 that

f
Hence if f is in F,

K

lim(X-A) [ e-xV(a) fda
ao

[lim ( ) e-"x V(a)f da + f- e-:XV,(K)f f e-KXV(K)f,

so f: e-"V(a)f dc is in the domain of 22, and

lim (X fi_ e-"x V(a) f da (X A: e-x V(a) f da f.

i8

TttEOREM 3.4. If, for some : > 0 either

liminff dP or liminff1 q (x)>nl xl (x)<--nl

O(e-), then V_(a) (V+(a))-l.

(--4)) dP
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We prove the theorem under the first hypothesis. From Theorem

THEOREM 3.5.

<= lira inf 4’n e’" d’ 0.

If there are a sequence (f,) from F converging to in Lp(P0)
and an a > 0 such that

lim inf lim inf f0a ftN- T ._afn>N

then V__(a) V+(c) --1.

Proof.

T_ f, dP da O,

1 lim V_(a)[(4 )V(a) 1] da
N

0lim lin V-(c)[f,, (f.,))Vv(o)ll do
N

litany 1Lm (V_(o)Vv(o)l)IT-f, (T-fi,)v] do

_<_ lira lira T_ fn 7’-- fn) v) do,
N

where we have written (f,)N and (7’....(,,) for min (f,, N) and (T_ f, N)
respectively. Hence by Fatou’s lemma

f f[ f0(e,, l) dP <= lirn inf liminf T_ fn do dP,
N T ._afn’N]

from which tile theorem follows.

4. Applications

In this section we discuss applications of the theory developed in Sections
2 and 3.

A. Translation qf a random analytic function
P is to be tile probability measure associated with the stochastic process

x(t), < < o, given by x(t) :-o . a t’/nt where/% are positive
real numbers satisfying n----0 (-,+//’,,) < , and the a are independent,
identically distributed, random variables with density g(a)da satisfying
f_ a’g(a)da < o Note that the random variables y a tn/n[ are
independent and Z f Y dPlogn < , so [3, Theorem 4.2, p. 157] the
series for x(t) converges with probability 1, and applying this argument to a

sequence t -- , that z(t) has an. infinite radius of convergence with proba-
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bility 1. We further assume that g is continuously differentiable and, setting
g’/g, that f_ (a)g(a) da

F is the set of polynomials in functions of the form

h(x) exp i kx(t) H(dk, ,dM)

with

f (1 + . ))IH(dl, ,dUn) l<
Conditions (1) and (2) of Section 1 are easily verified for T. given by

: (" )T,h(x) exp i kx(t + a) H(dk

and
T, Q(h, ..., h) Q(T, hi, T, h).

The random variables bn (an)a,,.+i form an orthogonal sequence in L(P),
so that

(x) --=0 (,+/) (a) a+,

is in L(P) because of the assumption made on the ’s. The following lemma
shows that condition (3) is satisfied for this .

Proof. Sinee (f/( 1)t)a 2- eonverges in L(P) go z’(i),

fx ( ))a = f ( ’())( ()a

where w (’n/n l) Ea" ’a" t.

f oxp ( E,. x; x(t))dP

i ’n+l
On

f a,+lexp (iw,+la+x) dP

n=O / exp (iWn+l an+l) dP
J

r/ fi n=0 W a+, exp x(t.)

Using the independence of the a’s,

f xp ( x(t))dP.
Again, since the defining sequence for is L=-convergent,

f ,(x)exp (i . Xx(t))dP n__0"+l. f (a); exp (iwa)dP

J exp (iV0n a) dP

fan+lexp (iWn+lan+l)dP

f exp (i Xjx(t)) dP,

f exp (iw+ a,,+) dP
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and integrating

((a) exp (iw, a,) dP g’(a) exp (iw, a) da

by parts completes the proof of the lemma for f(x) exp (i.Xjx(t)).
The extension to general f is straightforward.

Before going on to a discussion of the Gaussian ease, we note that the above
analysis can be carried through with only minor changes without the as-
sumption that the a’s are identically distributed. In the Gaussian ease
g(a) (1/@ ro) exp (-a2/2r), (a) -a/r, so

(x) (l/z) :=o (+l/)a a+l

We wish to find a sequence fk satisfying the conditions of Theorem 3.5 for this
case. In the next two lemmas and the theorem that concludes this part of
Section 4, we shall use the following notation" x (k) is the kh derivative of the
function x; for any function G, G, is the function whose value is n, G(x), or
-n if G(x) is greater than n, between -n and n, or less than -n, respectively;
and A() is the operator A(ti)f(a) -(f(a + ) --f(a)).

LEMMA 4.2. If the a’s are Gaussian,

foal l x() --a)x(+l) --a) dP da < .
Proof. Leaving out the first term, which is obviously integrable, and

applying Schwartz’s inequality to the rest, we obtain

f0f 1 X(k)(_a)X(k+l)(_a)drda

1 ()

_
(x(+)(x (--a) (--a)) dPda

k=l k--i k=l

(z((--)) dPd,
k=l k--1

where we have used the fct that _/ is bounded. Using the power series
expansions for x() and evaluating, shows thht this last integral is domi-
nated by

(ni) =o = k--] ] ni)"
a

a <a
nO

Since n+/ is always less than 1 for lc beyond some ]0, the ]c summations
are bounded, and the proof is complete.

LEMMA 4.3. There is a sequence f frown F satisfying the requirements of
Theorem 3.5.

Proof.

(1)

We choose n(]c), m(]c), and A, A((]c)) to satisfy

f ’+1 1
q=m(k)+l W aqaq+l dP < ,
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=o
a a+ dP < 1

(a x(-)) x(-))
(3)

(m) 1 ,(q) )X(q+i) ) 1
a (--a (--a) dP da <

k =o a ()

X =o
a a+ dP <

n(k)

nd f to be within 1/ of

) 1 ( x(0))(+x(0)))
f converges to by (1), (2), and (43. Finally, writing n for the integral
taken over the se where the integrand is greater than N,

lim inf lim inf T_ f dP d

lim i lim in - (k m(--)(k{+,(--)dP
N+ k q

lim inf lim inf .; (- (--) dP d,
N k q

nd this equMs 0 by Lemm 4.2.

THEOREM 4.1. If the an are Gaussian,

dP (x) ’1og 0 [(z((o)) (-))’1.

Pro@ By heorem 2.a, T can now be exgended go L(Po). We have
_

(1/r)z((-), so

T_4(z) _1 o z((-)z(+ (--)

giving
dP,

(x) 1 x(>( --)x(n+l)(--) d5log

2al =0 [(x()(0)) (x()(-a))]"

B. Approximating by a martingale

It sometimes happens that there are subfields S of S invariant under the T,
on which the conditional expectations of can be calculated. Suppose, for
example, that X is a real Hilbert space, and that for some sequence (x0 from
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X all the functions li li(x) (x, xi) are in L.(P). F is the set of all func-
tions of the form f(x) ](ll(x), In (x)) for a bounded ] with continuous
bounded first derivatives. T, is defined on F by

T,f(x) (X ll(x), ..., ln(X)

for some bounded sequence X of positive numbers. In particular, if the x are
orthonormal, then T,f(x) f(r"x) where r is the transformation with eigen-
values (X.) and eigenveetors (x). Let the joint distribution of l, ..., In
be given by a density function pn(al, a,). We assume

(al) The functions qnj

0 (aj p,(a an)) / pn(a an)qnj(al "", an) - /

exist and are in L2(pn(al, ’’’, an) dal dan), and, for every

al aa-i aa+l an

lima.-,+/- a pn ai an) O.

Cn(x) \-_ log X. q,(l(x), ln(X)) is in L2(P), and f ,.fdP
f Df dP for every f in F which depends only on 11, ln. Since this inner
product relation defines On uniquely, the conditional expectation of Cn+ on the
field generated by l, In equals Cn. This implies that f dP is non-
decreasing and we assume

(a2) lim f dP < .
The sequence (4) is a martingale, and [3, Theorem 4.1, p. 319] there is a
function in L.(P) which is the limit almost everywhere of the and satisfies

f 4,f dP f Df dP for all f in F. Hence the conditions of Section 1 are satis-
fied if (al) and (a2) hold.
The following is an example of this type. (X, S, P) is the measure space

associated with a stochastic process [z(t); I]. Let (t) be a sequence of
points such that x(h) is dense in L:(P), and suppose that the joint distribu-
tion of x(h), Z(tn) is given by a density pn(a, a,). F is the set
of functions of the form f(x) .(x(h), ..., X(tn)) for bounded ] with con-
tinuous bounded derivatives, and for some fixed function re(t), we define T, by
T,f(x) ](x(h) + cm(t), ..., x(t) -t- am(t) ). Hence, if we define r,

by (r,x)(t) x(t) + cm(t), then T,f(x) f(rx). We assume

(bl) The functions qnj

0 /qni(al ,an) "i (pn(ai a,)
/

p,(a ,an)

exist and are in L(pn(a an) da dan).
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As before, the functicn Cn(X) --i: m(t:)q,,i(x(t), ..., x(t,,)) satis-
fies f Cnf dP f Df dP for every f in F, measurable on the field generated
by x(t:), X(tn); and the conditional expectation of n+: on this field
is Cn. We also assume

(b2) lira f dP < .
As before, (bl) and (b2) imply the conditions of Section 1 with lira ,.

In cases of this type the likelihood ratios are usually also known on the sub-
fields. They, of course, also form a martingale, and it may well be easier to
work with them directly than to attempt to calculate .
We have chosen to work in L2, but the entire theory would clearly work

just as well in Lp for p > 1. In L1 however, some additional condition would
be required to insure f (lim ,)f dP lim f 4, f dP.

C. The addition of a Gaussian indeterminacy in oe

We suppose given (X, S, P), F, and T, satisfying (1) and (2) of Section 1.
For z > 0, let K(a) (2rz) -1/2 exp (-oe/2r), and let P be the measure
gotten by completing the functionals

f (f)(,) f dP K(oe) T,f dP doe

defined for f in/. We shall show that replacing P by P always leads to the
situation described in Theorem 2.3.

LEMMA 4.4. There is a in L(P) satisfying

f f dP f Df dP for all f in F.

Proof. For f in F,

f Df dP lim/ Tf f dP

K(oe) 0 T. fdP doe

so for any B > 0 and fin F,

IDfa , <=B f_ fK()
o" B

T, f dP doe + 2K(B)

_<_ B___ f f dP* + 2K.(B).

l+(f) sup0,=<: l(g) and 1-(f) sup0=<:-l(g).

The linear functional l(f) f Df dP can now be extended to/P, and the in-
equality still holds. For positive f in /, define
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It is clear that l+(fl -t- f2) >- l+(fl) -t- /+(f2), and since for any g satisfying
0_-< g -<f+f2, the functions g,: gfi/(fl +f) are in and satisfy
0 <_- gi _-< fi’, the opposite inequality also obtains. Now if fn is any decreas-
ing sequence of nonnegative functions from f and lira f fn dP= O, then

liml+(fn) " ,m(f AdF" +K.(Bn))--O
if we choose B, (f f, dP’)--1/2, This plus l+(1) < o proves that there
is a function

_
in LI(P) satisfying f _f dP= l+(f). Similarly we can

show the existence of a eL in L1 (P’) satisfying ffdP 1-(f). When-
ever 0 g f, we also have 0 f- g f so l+(f) l(f) l(g), and
hence l+(f) 1-(f) /(f). The opposite inequality can be proved in the
same way showing that f ( [)f dP f DfdPL
LEM 4.5. f ( ) dP O(e-’).

Proof. For any f in fi of absolute bound 1 and any B > 0

nd by continuity rgument, this holds for II S0-mesumble f of bso-
lute bound I. Putting f equal to the characteristic function of the set A.
where O(x) > n nd setting B (n I) gives

’(An) 2(2) -’’ exp (-(- )V2),
and hence

(--,) dP" <_ C (k + 1)exp -a(/- 1)

which is obviously 0(e-n).
THEOREM 4.2. If (X, S, P), F, and T satisfy conditions (1) and (2) of

Section 1 and P is defined for any r > 0 by (,), then the conclusions of Theo-
rem 2.3 hold for P., -o0 < a < . All the measures P,, 0 < r < ;

< a < o are mutually absolutely continuous. If in addition there is a
in LI(P) satisfying f fdP f Df dP for all f in F, then each P, is absolutely
continuous with respect to each P, and we have

Proof. The conclusions of Theorem 2.3 hold by virtue of the preceding
two lemmas. If (fn) is a decreasing sequence of nonnegative functions from, then lim ff dR: 0 if and only if lim f T, fn dR 0 for almost all
a which proves the mutual absolute continuity of the P:. If a exists satis-
fying f of dR f Df dR, then f T,f dR is differentiable everywhere, and
its derivative is bounded by [I sup If(x)[, so in order for lim f fn dRY,
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to be O, f Tfn dP would have to go to 0 everywhere which shows the abso-
lute continuity of the P with respect to the P. In this case, for f in F of
absolute bound 1

T, f dP f T, fdP

Hence, for any measurable f of absolute bound 1

which iinplies the inequality of the theorem.
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