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Introduction

Let K be a finite field of characteristic p, and let SL(2, K) be the unimodu-
lar group of 2 by 2 matrices of determinant one with coefficients in K. We
shall be concerned with a finite group G which satisfies a list of axioms which
say, roughly speaking, that G is generated by a certain number of subgroups
which are homomorphic images of SL(2, K), and that G has p-Sylow sub-
groups X and Y with certain special properties. We prove that all the finite
simple groups G’ defined by Chevalley [2] with respect to a finite field K of
characteristic p >- 5, and the variations of them defined by Steinberg [13],
satisfy our axioms.
The first main result concerns two finite groups G and ( satisfying the

axioms, and generated by subgroups 1(SL(2, K1) ), ..., z(SL(2, Kz) and
J#I(SL(2, KI)), ..., $(SL(2, K)), respectively, where the K are subfields
of K, and the and are homomorphisms of SL(2, K) into G and (. Let
M and _r be irreducible right G- and -modules respectively, where is an
arbitrary extension field of K, and 2G, G denote the group algebras over
2 of G and (. A sufficient condition is obtained in order that there exist
an t-isomorphism S" M -* t such that

m(g) (m):(g),
for all m e M, g e SL(2, K), and 1 __< i -< 1. When the hypotheses of this
theorem are satisfied, and in addition the modules M and r are faithful G-
and (-modules, it follows that G , and that the modules M and r are
isomorphic as G-modules.
The second main theorem again concerns finite groups G and ( sat-

isfying the axioms, and generated by the same number of homomorphic
images of SL(2, K), for a given field K. It is also assumed that the p-Sylow
subgroups X and of G and ( respectively, are isomorphic and satisfy a
further condition. It is then proved that both G and satisfy the conditions
(1)-(13) of Steinberg’s paper [12], and consequently possess irreducible
modules over of dimension p, where p is the order of X. Finally it is
shown that if neither G nor ( has a nontrivial center, then the result of the
preceding paragraph can be applied to show that G and G are isomorphic.
The sufficient condition that G involves only group-theoretic properties
of G and (, and no information about modules over G and ( is needed in
order to apply the theorem.
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A somewhat different application is made to the following problem. Let
be a Lie algebra of classical type over an algebraically closed field of

characteristic p => 5, and let Go be the finite group of automorphisms of
considered in [6]. Then Go is known to satisfy the axioms of the present
paper. By the result of Steinberg’s paper [12], there exists an irreducible
t2G0-module M of dimension pro, where p’ is the order of a p-Sylow subgroup
of Go, and m the number of positive roots of with respect to a Cartan sub-
algebra. It is proved that one of the irreducible proiective representations
of Go constructed in [6] from an irreducible restricted -module, is in fact an
ordinary representation of Go, and is equivalent to the irreducible represen-
tation of Go afforded by the module M of Steinberg.

1. Axiomatics
This section is written in three parts. In part (a), we give our axioms for

G. In part (b) we show that the conditions (1)-(14) of Steinberg’s paper
[12] are consequences of what has been assumed in (a). In part (c) we prove
that the groups defined by Chevalley [2] and Steinberg [13] satisfy our axioms.

First we list a few notations"

A/ B A is normal in B
No(A) normalizer of A in G
Co(A) centralizer of A in G
a, b) aba-l b-(A, B)

[A’B]
[A’I]
a bab-A bAb-

the group generated by all commutators
(a, b) with a e A, b e B
index of a subgroup B in a group A
order of the group A

For all eK, let

v() d() O.

Let U be the subgroup of SL(2, K) consisting of all u(), K, V the sub-
group consisting of the elements v(), e K, and D the subgroup consisting
of alld(), 0. Let

la. Throughout the paper, K will denote a finite field of q pf elements,
where p is a prime and f a positive integer. No other special hypotheses
concerning K are needed for la and lb, and 2-4. will always denote
a field containing K.

Let SL(2, K) denote the group of all 2 by 2 matrices
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[oo=
--1

then omputations show that d d-, d D, nd that

o u(1)v( 1)u(1), 2 D, oUo- V, U U, V V, d D.

It is known (see [2, p. 34]) that U u V is set of generators of SL(2, K),
and that

SL(2, K) UD u UDU.

Now we are ready to state our axioms (1.1)-(1.13) concerning a finite
group G.

(1.1) For some positive integer l, there exist subfields K1, ..., K of K, and
homomorphisms 1, ", of SL(2, Ki) into G such that

I(SL(2, K) u t Cz(SL(2, K)

is a set of generators of G, and i(SL(2, K) 1}, 1 =< i _-< 1.

For 1 <= i <= /, let Xi (U), Yi (V),D (D),x() (u()),
yi() (v()), di() O,(d()), wi ().

(1.2) The set X1 u u X generates a p-subgroup X of G; the set
Y1 u u Y generates a p-subgroup Y of G.

(1.3) There exists a subgroup H of G such that

Di c H Na(X), 1 <-_ i <= 1.

(1.4) (X, Y.) {1}, ij, 1 -< i,j-< 1.

(1.5) Y, Y) Y for all x eXi 1 <- i <= l; and
(X, X)u X for all yi e Yi 1 <= i <= I.

(1.6) weNo(H), 1 <= i <= 1.

We shall see that the axioms (1.1)-(1.6) are sufficient for the first main
theorem in 3, and for the application in 5. The remaining axioms are
needed in order to prove the conditions (1)-(14) of Steinberg’s paper [12].

(1.7) No(X)= XH, U nZ {1}, and p/[U’l].

Let W be the subgroup of G generated by H {wl, ..., w}. Then H A W
by (1.6). Let W* W/H, and denote the coset wH by w* for all w e W.

(1.8) There exists an element Wo e W such that XTM Y.

(1.9) XH n Y {1}.
From (1.9) it follows that w H, 1 -< i =< l, since X Y. For the next

step we require also the fact that

H No(Y).



282 CAnES W. CURTIS

To see this, let h e H, and y e Y. By (1.8) it follows that y xTM for some
x e X. Thus for some h’ H we have

y (xW0) x0 x0 (x’)0Y
since H Na(X). The same argument shows that H Ne(Y), 1 =< i -< l,
since Y X.

For each coset w* wH in W*, let X’, {x X" x e X}, and let X,
{x e X" x e Y}. Since H N((X) Ne(Y), it is clear that X, and X,
are defined independently of the choice of the coset representatives. It is
also clear that X’, and X:, are subgroups of X such that X’, X, {1}.
Now let X X: X be the descending central series of the p-group

X, where X i-
"", X1.(X ,X),i= 2, 3, andX=

(1.10) For each w* Xe W*, each term of the descending central series of X
is generated by Xin X, and Xn X,.

(1.11) For each w*eW*, either Xic X, or Xc X,,for 1 <= i <= 1.

(1.12) If XI, and X:, are conjugate in X, then w*i w2

(1.13) There exists a homomorphism " W* -- 11, -1} such that
e(w) --1, 1 <= i <- 1.

Note that (1.13) is possible in view of the fact that w’ 1 in W*, for
l<=i<_l.

lb. For the convenience of the reader we first reproduce the conditions
(1)-(14) of Steinberg’s paper [12], with some appropriate changes in nota-
tion.

(1.14) There exist two subgroups X and H of G such that X n H {1},
XH is a group, and X/ XH.

(1.15) There exists a group W* (the Weyl group) and for each w* e W*
W*an element w e G such that U o, ,, Hw is a group W, H

under the mapping w -- Hw w*. The identification Hw w* will be made.

(1.16) Corresponding to each w* W*, X has two subgroups X, and
X, such that"

(1.17) X X, X,;
(1.18) wX w- C X if wH w*; and

(1 1) " W*.Xo, X for some w
(1.20) Let Wl "’*, )q} be coset representatives of H in W. Then

G Uq XHw "XWi,i=l

and
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xhwi x’p

xl hi Wj X X, X e X, h, hi H, x" e X,,
p!

implies x x,h= ht,w= w,x xl

(.)

(1.22)

(1.23)

(1.24)

(1.25)

xl eXwj

W* contains a set of elements {W}l <_ i’< such that"

(w’) 1, 1 -< i _-< l;

{w w} is a set of generators for W*

for each i, 1 =< i =< l, X, H u X, Hwi Xp, is a subgroup of G;

for each w* e W* and w 1 < i < l, at least one of the inclusions
p!

* Xw* Xi* X,*w*
is valid; and

(1.26) there is a homomorphism v W* -- 1, 1} such that (w) 1,
l<__i<=l.

The last condition from Steinberg’s pper is

(1.27) There is an element x X such that x X, for all w* 1.

Now we have the task of showing that (1.14)-(1.27) follow from
(1.1)-(1.13). Although we do not use any interpretation of the group G in
terms of automorphisms of Lie algebras, etc., many of the arguments will
be almost identical with those in Chevalley’s paper [2].

(1.14) follows from (1.2), (1.3), and (1.7). (1.15) follows from (1.6)
and the definition of the group W, if we take for the elements w e G a set of
coset representatives of H in W. The subgroups in (1.16) are those defined
after (1.9).

Proof of (1.17). Let (X’,) and (X,) denote the subgroups X, n X
and X,nX, i 1, 2, .... By (1.10), X is generated by (X,) and
(X,) . Since X is a p-group by (1.2), X is abelian for sufficiently large i,
and in that case X (X’,)(X,). Now let ] be fixed, and suppose that
for all i > /, X (X’,) "Xw,). Then

Xw,) k(x.) x, x) (x.) (x.)x+
(X’,) X+I(x:,) (since X+/ X)
(x.)(x.)+(x.)+(x.)" (x.)(’x.)."

By induction we have X (X,) i(X,) for all i, and (1.17) is proved.
(1.18) is true by the definition of X’, (1.19) is valid because of (1.8).
The proof of (1.20) is the same as the proof of the corresponding result in

Chevalley’s pper [2, Theorem 2, p. 42], and will be omitted.
The statements (1.21)-(1.23) follow from the definition of the group W,

and the fact that for 1 =< i _-< l, w D c H by (1.3).
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Proof of (1.24). Because H c Na(Xi) by (1.3), it is sufficient to prove
that Xi, Xi, 1 -< i -< 1. Since X c Y, we have XicX,. We
next prove that if j i, then X. Xi,. Since w x(1) yi( 1) xi(1),
we have for x e X,

x(1)y(- 1)xi( 1)x. x( 1)-lyi(- 1)-1xi(1) -1

x(1) (x(1), x.) (-1) x.(-1) x( 1) e X

by (1.4) and (1.5). Similarly, if x e (X, X),
x’ x(1) (x(1), X) yi(-1)

X
yi(-1) xi(1)-1 X.

Since X1 u u Xz generates X, it follows from what has been proved that

X X’, X, X’, nX {1}.

By (1.17) we have also

" X’w oX X, X,,
It follows that [X" 1] [X," 1], and since X c X,, we have X X,.
As we have remarked, this proves (1.24).

Proof of (1.25). We have already shown that X X,. Either
X c X, or X c X:,, by (1.11). Inthe latter case, we have wX w-1 c Y.
Setting w-1 -1w w, we obtain (w’)-lY w’ w’c Y. Then (w’) X cX,
otherwise c&(SL(2, Ki))’)-’ Y, and in particular D’)-

by (1.3), (1.6), and (1.9), which is a contradiction. From (w’)-lX w’ X
we obtain X X(-), Xo,w, since wi =- wi (mod H). This com-
pletes the proof of (1.25).
We note that (1.26) is included as axiom (1.13). The last condition (1.27)

can also be proved from (1.1)-(1.13), but since only (1.14)-(1.26) are needed
for the result we shall use from Steinberg’s paper [12, Theorem 2, p. 349],
we shall not include the proof of (1.27).

1 c. Let G’ be the group defined by Chevalley [2, p. 47]. We assume that
the characteristic p of K is greater than three. Let a, ..., a be a funda-
mental set of roots of the Lie algebra fi. We identify X with ,, and Y
with _,, 1 -< i _-< 1. Then (1.1) is satisfied if we identify K with K,,
and with , 1 =< i _-< l, since G’ is generated by , and _,, 1 _-< i _-<
(see [2, p. 48]).

(1.28) LEMMA. The subgroup 1I of G’ (defined in [2, p. 38]) is generated
by , ... u , if p >-_ 5. If 1I, is the group generated by all subgroups,, where o is a root of height >= m, then 1I coincides with 11", where 1I

i-11I ,1I), i >= O, is the it term in the descending central sum of G’.

Proof. For each m ->- 0, let 1I denote the term generated by the sub-
groups ,, for a a positive root of height __> m. By [2, p. 39],
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where we set lira l} if all roots of fi have height < m. Let

be the descending central series of 11. Evidently, 1I c 11, i >- 1. Suppose
for some i -> 1, 11 1I. We shall now prove that 1ITM 1I+1, and for
this it is sufficient to prove that lira c 1ITM for all m >- i + 1. For sufficiently
large m, we have 1I c 11TM. Suppose for some m >= i + 1, we
have 1I+. 1ITM for j 1, 2, .... In order to prove that 1I 1ITM, it is
sufficient to show that for any positive root a of height m and e K, we have

].+1.x,() We can express + for some positive root/ of height
m 1 and a fundamental root a. Since p _-> 5, the formulas for N,.a and
M.a, in [2, p. 36] show that C1,1,, # 0 in K. Therefore by formula (4)
of [2, p. 36], we can find ’, n’ e K such that

,
(x(’), x.,(,’) x.()x

where x* 11TM,1I+1 c and x(’) 1I_ 1I lI. It follows that
i+1x,(() e and we have proved that lira 11TM for m => i + 1. Therefore

we have

(1.29) 1I Hi, i 1, 2, "...

In particular Lt: (1I, 1I), and since {,, ..., ,} generate 1I modulo
(11, Lt), and 11 is a p-group, it follows from the Burnside basis theorem [8, p.
176] that {,, ..., ,} generate 1I. This completes the proof of Lemma
1.28.

If we identify the subgroup X in (1.2) with 1I, then the fact that X is a
p-group follows from [2, p. 39, Lemma 6]. Similarly Y is a p-group.

Let H be the subgroup ’ n G of G’. Then, remembering that
1I X, we have by [2, Corollary 2, p. 43] that No,(U) 1I@ G’ 1I@’.
The fact 1I n @’ {1} follows from [2, Lemma 13, p. 42]. Finally the in-
clusions DHN,(X), 1 <= i <= l, and the fact that p X [H:I] are
clear from the definition of H and the formulas (6) and (7) of [2, p. 36].
These remarks prove (1.3) and (1.7). (1.4) follows from formula (4) of
[2, p. 36] and the fact that if a and f are fundamental roots, ia + j is a root
only if i and j have the same sign.
The second assertion of (1.5) follows from [2, Lemma 8, p. 40] and the fact

that for a fundamental root a, 1I, 1I (1I, 1I).
If we identify w with , defined in [2, p. 36], then (1.6) follows from

[2, Lemma 3, p. 37]. By the argument in the proof of [2, Lemma 4, p. 38],
we can identify the group W defined in la with the group !B of [2]. If we
select w0 e !B so that its image (w0) in the Weyl group is the operation which
interchanges positive and negative roots, then (1.8) holds for this choice of
w0. The first statement of (1.5) is also a consequence of what has been
shown so far.

(1.9) is an immediate consequence of [2, Lemma 13, p. 42].
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To prove (1.10), we begin with the facts that for an element w* of the Weyl
group W/H, 1Io is generated by all x,(), e K, and a positive root such
that w*() is also positive, while 1I, is generated by all x,() with > 0
and w*() < 0. It follows from the definition of 1I, i >= 1, that 11 is gen-
erated by 1I n I, and 1I n 1I,. Since 1I 1I, i >= 1, by (1.29), we obtain
(.0).

(1.11) is immediate from the definitions of 1I, and 1I,.
To prove (1.12), suppose that 111, and 1I2, are coniugate in 1I. By

[2, Lemma 12, p. 41] we have llwl, llw2,, and the roots { > 0" w*() > 0}
are the same as the roots { > 0" w2 () > 0}. Therefore w(w*) -1 maps
positive roots onto positive roots, and it follows that w’ w.

Finally, (1.13) is proved by Steinberg’s observation [12, p. 350] that for
each element w* of the Weyl group, we can set

e(w*) 1) (*),
where n(w*) is the number of positive roots a such that w*(a) < O.
For Lie algebras of types A (1 odd), D (1 -> 4), and E6, Steinberg has

shown in [13] that fi admits an involution a, and has defined a certain sub-
group G(1) of the set of elements in G’ which commute with a (see [13, pp.
881 and 891]). He proved in [13] that G(1) is a simple group which, in the
case of Lie algebras A and D, can be identified with projective unitary or
projective orthogonal groups, respectively (see [13, pp. 882 and 886]). It can
be proved using the structure theorems in Steinberg’s paper, and arguments
similar to those in the first part of this section, that the groups G() satisfy
the axioms (1.1)-(1.13) of the present paper. The details of this verifica-
tion will be omitted.

2. Preliminary results on SL(2, K)
As in la, K denotes an arbitrary finite field. Besides the facts stated in

la concerning SL(2, K), we require the following formulas"

(2.) v(,)u() d(,)u(’),(,’),
where # (1 W v) -, ’ -, v’ #, if 1 - 0; and

,(,)u() d(,)(,’),

where , ’ -, in case 1 - 0.
These facts may be established by a computation, and we omit the details.
Now let be an arbitrary extension field of K. We let (SL(2, K))

denote the group algebra of SL(2, K) over .
(2.3) LEMMA. Let T be a right (SL(2, K))-module, and let to e T be

such that to O, to u to, u e U, and to d f(d) to, for all d e D, where f(d) e .
Let u, and let o too. Then ou o U e U; and od ](d)to,

The author is indebted to the referee for this observation, as well as for suggestions
which have made important simplifications of the proofs of some of the other theorems
in the paper.
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d e D, where (d) e , and
o o + ()o ,

where the coejicients (v) depend only on the function f" D -- .Proof. For all u e U, we have u 57 in the group algebra 2(SL(2, K)
therefore 0u t0 for all ueU. If deD, we have Us U, and
hence d d. Then we have for d e D,

0d t0cod t0wd t04-103 f(d-1)o.
Finally the properJties of 03 imply that

to03 to u(1)v(--1)u(1) u()
to v( 1) :u()

to u(1)(--1)u(1) + to v(--1)u()

to 03 - to d(1 )- u((1 ) )v(- (1 )-)
to 03 " ZIf(d(1 )-1) to v( (1 )-1),

and the lemma is proved.

3. Equivalence of irreducible G-modules

In this section 2 denotes an arbitrary extension field of K, G a finite group
satisfying axioms (1.1)-(1.6) of la, and M a finite-dimensional right
2G-module.

(3.1) DEFINITION. A. maximal vector relative to G (or in 3 and 4 simply
a maximal vector) is a nonzero element m of M such that mx m for all
x e X, and mh f(h)m for h e H, where f(h) .

Remark. For our purposes it is enough to consider only G-modules which
contain maximal vectors. If the group H is abelian (as it is if G is a group
G defined in Chevalley’s paper [2]), and is an algebraically closed field,
we can prove that any right 2G-module M contains at least one maximal
vector. Indeed, let N be an irreducible 2(XH)-submodule of M. Since
X / XH, Clifford’s Theorem [3] implies that N is a completely reducible
X-module. But X is a p-group and 2 has characteristic p; therefore the
action of X on N is trivial. Thus N is in fact an irreducible (XH/X)-
module. Since H is abelian and 2 is algebraically closed, it follows thut N
is one-dimensional, say N 2n. From what has been said, we deduce that
n is a maximal vector.

Before proceeding, we point out that if M is a right G-module, then each
of the homomorphisms i’SL(2, K)--> G gives M the structure of an
2(SL(2, K) )-module, the action of x SL(2, Ki) on m e M being given by

mx= m4(x), 1 <= i <-_ 1.
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The results of 2 can of course be applied to each of these SL(2, K)-modules
associated with M. As in that section, we let

2 x x, 1 =< i-< 1.

(3.2) LEMMA. Let m be a maximal vector in a right G-module M. For
each i, 1<=i<= l, let mw (. Then either hi 0 or i is a maximal
vector, for 1 <-_ i <- I.

Proof. Suppose h 0, and let h e H. By (1.3), h Na(X);hence
ih h. Then

h h mwi h mw h mhw f(h)

where f is the function on H associated with m. It is also clear that
x i for all x X. Since X is generated by {X, X}, it is sufficient

to prove that for x e X, j i, we have x . Since

w x(1)y(- 1)x(1),
we have, for x X,

x x x(1)( 1)x(1) (, x(}) )x
(3.3)

(-1)(Z, x(}))x (-1)x-’( x,(}))x,
because m is a maximal vector and

mx y(- 1) my(- 1)xmyi( 1) -
by (1.4). Continuing we have, by (3.3),, x U(-1)( x(})) + U(-1)[x-lx(})x

+ y( 1)[(x-’, x(}) ]x,(})

+ , [(x-’, x(}))(-’-]y(-1)x(})

since (x-1, x(}))(-) e X by (1.5), and m(g 1) 0for g e X because m
is a maximal vector. This completes the proof of the lemma.

For any right G-module M the set of maximal vectors in M generate an
-subspace of M which we shall denote by M+.

(3.4) LEMMA. Let M be an irreducible right G-module such that M+ mo
mo O. Then M moY mo mo rad Y, where rad flY is the radical

of the group algebra Y.

Proof. The set X, u u X Y is a set of generators for G such that
m0 x m0, x e X, 1 i 1. Since M is irreducible, in order to prove that
M m0 Y, it is sufficient to prove that if y e Y and x e X, 1 i l, then

mo yx e mo Y.
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First suppose that y yi e Yi. Then y yi(), x x() for some, e K. By (2.1) and (2.2) we have either

yixi d()x(’)y(7’) if 1+0,

and mo y x mod()x(’)y(’) f(d())mo y(’) mo Y, or

yx= d()wy(’) if 1+ 0.

In the latter case we have by Lemma 2.3

mo y xi f(d())[mo w y(’) + x x mo y(

Since M+ mo, Lemma 3.2 implies that mow e mo, and hence
mo y x emo Y as required.
Now let y e Y be arbitrary. Then we can write y y(y), where

yeY, lj l, ande(Y,Y). Thenwehave

mo yx =mo y x(y)xTx mo Y

by what has been proved together with the facts that x yx= y, ij,
by (1.4), and xTx e Y, by (1.5).

For the last statement of the lemma, we use the fact that since Y is a
p-group, and has characteristic p, Y . 1 tad Y, and rad Y has a
basis over consisting of the elements y 1, y e Y, y 1. From these
remarks, together with the first part of the lemma, it is clear that
M mo mo tad Y, and the lemma is proved.

Let M be an irreducible G-module satisfying the hypotheses of the pre-
ceding lemma. Then there exists a function f’G such that for all
X

(3.5) mo x f(x)mo (mod m0 rad Y).

The main theorem of this section asserts that this function determines the
module M up to isomorphism. For our purposes, it is necessary to prove a
more general theorem. Let be another finite group satisfying the axioms
(1.1)-(1.6), where the field K, the subfields K, and the number are the
sameasforG. Let, bethegivenhomomorphismsof SL(2, K)
and let (), (), (), be defined as the corresponding elements were
defined for G.

(3.6) THEOREM. Let G and be finite groups satisfying the axioms (1.1)-
(1.6), with respect to the same field K, the same subfields K and with the same
number of homomorphisms in (1.1) of SL(2, K) into G or . Suppose there
exists an isomorphism of Y onto such that 0(y() (), 1 i l,
K, and such that for x() X, and y e (Y, Y), O(y() 0(y)(). Let
be an extension field of K, and let M and M be irreducible G- and G-modules

such that M+ mo, + o. Let f and ] be the functions on G and
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to gt defined by (3.5), and suppose that

f(d(#) f(d(t) ), 1 <= i <= l, t K
and

f(w) ](), 1 <- i <= 1.

Then there exists an -isomorphism S of M onto il such that for all m e M,

(mx() S (mS)(), (my() S (mS)(),

for eK and l <= i <- 1.

Proof. Let Z- Xu uX YI"" Y. Then Z is a set of
generators of G, and 2 1 u I7"1 u I?z is a set of genera-
tors for . Every element of M can be expressed as a linear combination of
elements of the form

m0zl...zs, zeZ, s>_- 0,

which is irredundant in the sense that if two adiacent elements z z+l belong
to the same X. or Y., then zz+ is replaced by z z z+l. Corresponding
to each such expression we have an irredundant expression 0
where if z. x() or y.(), . 2() or () respectively. Define
f(z, ..., z) e by the formula

moz z =- f(z ..., z)mo (modmorad2Y)

and f(l, ..., ) e 2 by setting

m0 z ](, ..., )m0 (mod m0 rad tl).

We shall prove first that

(3.7) f(z, ..., zs) ](2, ..., 2)

for all irredundant expressions m0 z z nd 0 .
We use induction on the number of factors z which belong to
X X, the result being obvious if 0, since in that case
f(z,...,z) ](1,..., ) 0. We may assume > 0, and that the
result is valid for expressions with less than factors from X u Xz.
If z e X, then by the induction hypothesis and the fact that m0 z m0,

((z ., zs) f(z ., z) ]( ., ) ]( ., )
For fixed t, we may now assume that (3.7) holds for expressions moz z
in which the index of the first z e X u X is less than the index of the
first zeX t... t X in a given expression moz...z. Next suppose
zeY,zeX. Then f(z,...,z) --f(z.,z,...,z) if jk, and we
are back to the first case. Ifj /, let z y.() and z. x(), , eke.
Then by (2.1) and (2.2) we have either of two cases. Suppose first that

z z d()x(’)y(’);
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then

f(zl ", zs) f(d())f(y(’), ..., zs) f(d())f(j(’), ..., )
f(l,’",

by the induction hypothesis. Now let

zl z d()wj y( 7’)

Then by the proof of Lemma 2.3 and the hypothesis of the theorem we have

mow mow( + -xr,xo xm0y(h)------ (* + x)mo (mod mo tad flY),

where moW *mo by Lemma 3.2,and x f(d(-h)), h K. Since

f(wj) (@), it follows that if o& *o ,then * *. Then by
Lemma 2.3,

mozl z, f(d(#))[*moy(n’)za.., z,

+ _,,of(d(-h))mo y(v’+ h)za z,)],

and a similar expression holds for 0 Zl zs, with * *. Then

f(z, ..-, z,) f(d(g)) [*f(y(,’), za, ..-, z,)

+ ’_xof(d(-h))f(y](v’+ h),z3, ...,z,)]

](()) [*](-(,’), , ...,
+ Z:0 ](3(-))](.(’ + ), ,..., )l
f(, ..., )

by the induction hypothesis. Finally suppose that zq e Y1 u u Y
for 1-< q-<_i-- 1 for some i-> 3, and let zeX.. If z_eY for /c#j,
then

f(Zl, "’’, Z) f(z "’’, Z,-2 Zi Zi-1, "’’, Zs) ?( 1, "’’,

by the induction hypothesis. If on the other hand, z e Xj, z_ e Y, and
z_ e Y, k # j, then by (1.5),

--1 zl-- Z(1) z(r)z_ ,z_) z(), e Y u u Y l <-_ r <= t,
and by the hypothesis of the theorem

---1 i--2) i-- (1) (t)Zi--I
--1 Zi--2) zi--1 zi-1Then since z_2 z_ z z_ z(z-I z-2 we have

Z
(1)

Z
(t)f(z zs) f(z z,_a zi_ z ," z,_ ")
(0

__
...)

](, ..., )
by the induction hypothesis. This completes the proof of (3.7).
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Now consider the set . of all elements in r,

for which the corresponding expression

a(il, ", i,)m0 zil z,, 0

in M. Then h7 is a submodule of 3r, and since br is irreducible, 57 is either
zero or 2=M. We prove 2V= {0} by showing that r0eR. If on the
contrary 0 e-, then we have

0 a(i, ...,i)0
while

a(ij, ..., is)too zil z, 0

in M. By (3.7), upon taking congruences mod 0 rad 21 and m0 rad 2Y,
we obtain the contradiction

1 (il, ..., i8)](il, ",

a(i, ..., i,)f(zi, ...,z,,) O.

Thus V 0. It follows that the mapping

" Z (i1, "’’, i)rto Zil Z.-’-> Z o(il ", i,)?0 2i
is an t-homomorphism for M onto . Since M is irreducible, the kernel is
zero, and S is an -isomorphism. The fact that S intertwines the generators
of G and in the required way is clear from the definition of S. This com-
pletes the proof of the theorem.

(3.8) COROLLARY. Let G, , M, I satisfy the hypotheses of the previous
theorem. I] M and il are faithful G- and O-modules, respectively, then G
and are isomorphic.

Proof. Consider the mapping

p Zl Z-- 1 2

of G onto G. If z z, 1, it follows from the theorem that1 . T
for all e r, and since r is a faithful -module, we have ... 1.
Similarly, ... 1 implies z...z8 1. From these remarks it is
clear that p is an isomorphism of G onto G.

4. The isomorphism theorem
We shll combine the theorem of the preceding section with Steinberg’s

result [12] on the construction of irreducible modules for finite groups satis-
fying (1.14)-(1.26) to obtain an isomorphism theorem for finite groups
satisfying (1.1)-(1.13). As in 3, 2 denotes an arbitrary extension field of K.

This argument is similar to the well-known proof of E. Cartan and H. Weyl that an
irreducible representation of a semisimple Lie algebra is determined by its highest
weight.
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(4.1) LEMMA. Let G be a finite group satisfying the axioms (1.1)-(1.13).
Then there exists an irreducible faG-module M with the following properties.

(i) M+ mo for some mo 0 in M.
(ii) moh mo for all h eH.
(iii) m0w e ra0 rad 2Y.
(iv) M is a faithful G-module if Ca(X) n H 1}.

Proof. By lb, G satisfies (1.14)-(1.26). 5/Ioreover, we shall prove
that X is a p-Sylow subgroup of G. If X is not a p-Sylow subgroup, then
there exists a p-group X’c Na(X) such that X’ properly contains X, and
this contradicts (1.7). By Theorem 2 of Steinberg [12], there exists an
irreducible right faG-module M constructed in the following way. In the
group algebra faG, let

and let {w} be a complete set of coset representatives of H in W.
form the element

e

In fag

the summation being over all coset representatives of H in W. Then let
lf eX.

In [12, Theorem 2(i)], i is shown that M viewed as a righ faX-module is
isomorphic to the righ fiX-module faX itself. Since X is a p-group, fax is
indecomposable, and has a unique minimal submodule, ’whioh is a one-
dimensional space on which X acts trivially. Therefore the space M+ is at
most one-dimensional.
From what has been said we have e3 0, and clearly ez e3 for all
e X. Now let h H. Since H c No(X), we have 3h h3, and

since h= . This proves that m0 e is a maximal vector, and we
have established parts (i) and (ii) of the lemma.
Now consider w, 1i 1. Since Xi X,, we have X, {1}.

By (1.17) and the fact that X:, X, {1} we have

hen by (i) o* emm 1, [1, p. a48], ew7 e, nd
-1 -1 ff

mo w eXw eX,,,, X,. w

ewi Xwi wi
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We have

since xTM e Y for x e X,

We have shown that

Ex’
x (x

and since Xw. {1}, so that

xl =0

--1

(z X,,).

mo wi e M rad 2Y c m0 rad 2Y,

since M 2m0 m0 tad 2Y by Lemma 3.4. Since hwi w-( for some
h e H, we have

mo w mo hw mo w e mo rad Y,
and (iii) is proved.

It remains to prove (iv). Let g e G be expressed uniquely according to
(1.20) as

g hxwx’, x e X, h e H, x’ e X. g 1.
If m0 g m0, then from what has been proved we have m0 w m0, but if
well, we have weNo(X), and hence X.{1}. By the proof of part
(iii) we obtain also m0 era0 tad 2Y, which is a contradiction. Therefore
too(g-1) 0 if well. If well, we may assume that w= 1; then
X.= {1},andwe have g=xh. Ifx 1, thenxh= hx’for some xeX,
x’ 1, and we have

exh ehx’ ex’ e

since eh e and because the elements ex, x X, are linearly independent.
It remains to consider the case g h ell. If Co(X) H {1}, then for
some x eX, xh hx’ for x’eX, xx. Then exh ehx’ ex’ ex.
This completes the proof of the lemma.

Finally we can state our main theorem.

(4.2) THEOREM. Let G and be finite groups satisfying the axioms (1.1)-
(1.13). Suppose that both G and satisfy the condition Co(X) n H= {1}.
Suppose that the field K and the subfields K are the same in both cases, and that
{ ..., } and {1, "", z} are the given homomorphisms of SL(2, Ki) into
G and respectively. Let

xi() i(u() () i(u() etc.

Finally suppose there exists an isomorphism O of the p-Sylow subgroup Y of G
onto the p-Sylow subgroup of such that 0(y()) !(), and for all
ye(Y,Y), x() eX, 1 <= i <= l, we have O(y()) O(y) (). Then the
mapping

x() -- () y() --() 1 <_ i <= l,

can be extended to an isomorphism of G onto G.
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The proof is immediate by Lemma 4.1, Theorem 3.6, and Corollary 3.8.
We prove finally that for a group G satisfying (1.1)-(1.13), Ca(X) n H

is contained in the center of G, so that the hypothesis of Theorem 4.2 is
satisfied for the simple groups constructed by Chevalley [2] and Steinberg
[13]. Let h Ca(X) H. Then by the proof of part (iv) of Lemma 4.1,
M(h- 1) -0. Since the set of all geG such that M(g- 1) 0 is a
normal subgroup of G contained in Ca(X)n H, we have w-lhwo e Ca(X),
and hence h C,(Wo Xw) Ca(Y). Since X u Y is a set of generators for
G, it follows that h belongs to the center of G, and our assertion is proved.

5. Irreducible modules of dimension p for Lie algebras of
classical type

We shall prove first that if G is the subgroup defined in [6] of the group of
invariant automorphisms of a Lie algebra of classical type associated with
a complex semisimple Lie algebra , then G. satisfies the axioms (1.1)-(1.13).
Therefore, by Steinberg’s result [12], G has an irreducible module M of dimen-
sion pro, where m is the number of positive roots of with respect to a Cartan
subalgebra. The purpose of this section is to prove, as an application of
Theorem 3.6, that this module is isomorphic to an G-module constructed
from an irreducible restricted -module by the methods of [5] and [6].

Changing the notation of [2, p. 32] slightly, we let c be a complex semi-
simple Lie algebra, and (X, ..., X) the basis of c defined in [2, p. 32],
containing the root elements X, of relative to a Cartan subalgebra
Let t be an algebraically closed field of characteristic p >- 5, and let K be
the prime field in t. Let z be the Lie algebra over the integers with basis
(X, ..., X), and let (R) z. Then is a Lie algebra over t with
basis elements (X*, ..., X*), where X’ 1 (R) X, 1 =< i -<_ , and the
constants of structure of relative to this basis all belong to K. Among the
X appear the elements E, corresponding to the root elements X of
and the remaining basis elements generate an abelian subalgebra
which is easily seen to be a Cartan subalgebra of . Then has a Cartan
decomposition

where we may view each element E, as a root element belonging to a nonzero
root a of with respect to . We shall assume in this section that satisfies
the axioms (i)-(v) of 5/ills and Seligman [9, p. 5201. The question of which
Lie ,algebras of classical type can be obtained from complex semisimple Lie
algebras by reduction modulo p has been settled by Seligman [10]. (See
also [41 for the case of Lie algebras with nondegenerate Killing forms.)

There is a one-to-one mapping of the set of roots of
which preserves additive relations in the sense that if a sum of two nonzero
roots is a nonzero root of 9, the same holds for the corresponding roots in
Let a, ..., a be the roots of corresponding to a fundamental system
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(= maximal simple system) of roots of 9c. Then a- a, i j, is not a
root of 9, otherwise [E,, E,.] 0 by [9, (xiii), p. 524], and this is impossible
since [X,, X,j] 0 in c. Therefore al, "", } is a simple system of
roots, and it is clear that {al, "’, z} is a maximal simple system of roots in
the sense of [4]. 5/[oreover the roots al, ", az} are linearly independent,
for if they were not, there would exist H e , H 0, such that a(H) 0
for all roots a, and H would belong to the center of 9, contrary to [9, axiom
(ii) ]. Letting H, be a generator of the one-dimensional space [9_,, 9,] for
a root a 0, a computation shows easily that if , , a- are nonzero
roots, then H,+ is a linear combination of H, and H. Therefore every H,
is a linear combination of the elements H [_,, ,], 1 __< i _-< l, such that
a(Hi) 2. Since the elements H, generate by [9, (viii)], and since
has dimension l, it follows that H, ..., H is a basis of over
Now let G be the group of automorphisms of generated by the auto-

morphisms
x,() exp ad E,, K,

where a is a root 0. From the discussion in [2, pp. 32-36] it follows that
G is isomorphic to the group G defined in [2] relative to the complex semi-
simple Lie algebra 9c and the field K. If we let

x() expadE,, y() expadE_,, 1 -< i__< l, eK,
then the mapping SL(2, K) -- G given by

4)(u() xi(), 4)(v() y(), e K,

defines a homomorphism of SL(2, K) into G for 1 _-< i _-< 1. With this
interpretation of the homomorphisms {, ..., ,}, the results of 1c imply
that G satisfies the axioms (1.1)-(1.13) of la.

Let be the irreducible restricted right 9-module whose maximal weight
satisfies h(H) p-- 1, 1-<i__< (see [5, Theorem 2, p. 315]). We

summarize some of the properties of in the following lemma.

(5.1) LEMMA. The irreducible restricted right 9-module M whose maximal
weight is )(H) p 1, 1 <- i <= l, has the following properties.

(i) If o is a maximal vector (see [5, p. 312]) in il, then for 1 <__ i <= l,
the elements o oE_, ., o E--} are linearly independent, and span an

irreducible 9-submodule V of M, where is the three-dimensional simple
subalgebra of with basis {E_, E, H}.

(ii) There exists an irreducible projective representation F’G-- GL(M)
of G by linear transformations F(g), g G, such that for all m ,A ., and
g G, we have

(mA)F(g) mF(g)A,
where A --> A is the automorphism g of .

(iii) The restrictions FIX and F Y of F to the subgroups X and Y of G
are ordinary representations of these subgroups.
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(iv) A vector me2l satisfies mF(x) --m for all x e X if and only if
m o

Proof. (i) We may assume thut [E_,, E,] H, and a(H)= 2.
kLet0E_, 0for0 v - 1, and0E, 0. In order to prove i)

it is sufficient to prove that Ic p, because of the well known classification
of the irreducible restricted modules for the three-dimensional simple Lie
algebra.
The subspace V =00E_. is invariant relative to 9, and we have

0 ES, H (-1 2,)0 ES,, 0 p k 1,

since 0 H -0, and [E_. ,H] -2E_, Then computing the trace
of H on the space V we have, since H [E_. E,],

0= :(--1-- 2P) -k-2(k(-- 1)/2) -k:.
Therefore k p, and (i) is proved.

(ii) follows from the definition of the projective representation F given
in [5, II.2], and the theorem of [6, p. 856].

(iii) We prove first that F]X is an ordinary representation. We refer
to the construction of the representation F in [5, pp. 317 and 318]. By the
discussion there, it follows that for any x e X (not necessarily a generator),
we may define F(x) by

(5.2) F(x) o E, Er o E, E,r
and obtain an invertible linear transformation of such that (5) of [5, p. 318]
is satisfied, namely

(5.3) (mA)F(x) mF(x)A A , m M.

Because of (5.3) and the fact that is an irreducible 9-module, any two
determinations of F(x) satisfying (5.3) der by a scalar factor, so that the
definition (5.2) is consistent with the rest of the discussion in [5] and [6].
Since F is a projective representation we have

(5.4) F(xi x2) F(x)F(x2)a(xx, x2), (x, x2) e .
Since mo F(x) mo for all x X, (5.4) implies that a(Xl, x) 1 for all
x, x2 e X, and F X is an ordinary representation. A similar discussion applies
toFfY.

Finally (iv) foows from [6, Lemma 1.7, p. 856], and Lemma 5.1 is proved.

(5.5) LEMMA. Let be the group oflinear transformations on generated by

() F(x()), () F(y()), e K. 1 i 1.

Then the following statements hold.
(i) For 1 i l, o() V oEL,



298 CHARLES W. CURTIS

(ii) The mapping

can be extended to a homonorphism $i of SL(2, K) into
(iii) Letting 3() $i(d() ), i(w), we have

and
r03i() 0, eK, 1 =<i=< l,

0i e r0 rad ftlYi, l_<i<=l.

Proof. By the proof of Lemma 1.6 in [6, p. 855], we have

(5.6) m0y() rB0+r +m2+
where if p0 is the rank of 0, 1 has rank po + e, 2 has rank po-t- 2e,
etc. Since _r has a basis consisting of rank vectors of the form

which has rank p0 + el + e + "", and since vectors of different ranks
are linearly independent, it follows that is a multiple of
for 1, 2, ..., and (5.6) implies (i).

(ii) Consider the space V of M defined in (i). By the definition of
F(xi()), and by (i) of Lemma 5.5, we have mox() V, and 0() e V,

e K. Then we have by (5.3),

(5.7) 0ES, () ()
-,,o-, moE, () 0() (()-,) ,

for 0, 1, 2, From these formulas it is clear that V is invariant
relative to +() and i(), e K.

Since the elements u() and v(), e K, generate SL(2, K), it follows by
(ii) of Lemma 5.1 that the mappings

u() -- x() -- F(x() (),

define a projective representation of SL(2, K) on M, with V as an invariant
subspace. (For later use we remark that since V is an irreducible 9-module,
and because of (5.7), it follows by the theorem of [6, p. 856] that V is an
irreducible invariant subspace.) We have

o(ee) ((5.8) g)i(g )a(g, g’) a(g, g’) e a, g, e SL(2, K)

Since deti (g) 1 for all g SL(2, K) by (iii) of Lemma 5.1, (5.8) implies
that a(.g, g’)V= 1, and hence a(g, g’) 1. Therefore $ is an ordinary
representation of SL(2, K), and (ii) is proved.

(iii) We have shownthat$ L isanirreduciblerepresentationof SL(2, K)
on the space V of dimension p. From the classification of the irreducible
modular representations of SL(2, K) (see [1, p. 588]), it follows that
is equivalent to the representation of SL(2, K) afforded by the space W of
homogeneous polynomials of degree p 1 in two variables x, y such that
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xu() x W y, yu() y,

xv() x, yv() x -k y,

xd() x, yd() -ly.
The maximal vector in W relative to SL(2, K) is y-l, and we have

y-d() -)y- y-,
since -1 I for all e K, 0. Also since 0 u(1) v( 1) u(1), we obtain

y-o y-iv(-1)u(1) (-x -k y)-u(1) (-x y -[- y)p-i Xp-,
which belongs to y-lrad ftV. Transferring these results to Vi, we obtain
(iii), and Lemma 5.5 is proved.
Now let p be the mapping of G-- G defined by

(5.9) p(i()) x(), p(()) yi(), K, 1 =< i -< l.

Let 1,’", i. be generators of (as in 3) such that 1..- , 1.
For all m e M, A e 9, we have by (5.3), letting (z} z zi,,

mA mA m ,A() mA().

Therefore (A A(>) 0, and since is a faithful 9-module, we have
z} z,...z. 1. Therefore p is a well-defined mapping of onto G,
and is clearly a homomorphism. The kernel of p is 2.1- n G, by (5.3) and
Schur’s Lemma.

(5.10) LEMMA. The group satisfies the axioms (1.1)-(1.6) of la, with
the definition of 1, given in Lemma 5.5. Moreover the homomorphism
p defined by (5.9) is an isomorphism of z onto Y such that p(i()) y()
ad if , z),

(5.11) p(()) p()(), 1 =< i =< l, K.

Proof. (1.1) follows from (ii) of Lemma 5.5, and the definition of . By
the definition of p, we have

(5.12) p(F(x) x, x X.

Since FIX is an ordinary representation by (iii) of Lemma 5.1, (5.12) im-
plies that p is an isomorphism of upon X, and hence is a p-group. Simi-
larly p 1? is an ispmorphism of Iv upon Y, and hence tv is a p-group. Moreover
(5.11) follows from the definition of p, as soon as the fact that (, Iv) c lv

is established.
Let/ p-i(H) then/) c/ for i __< i _-< 1. By the argument of [2, p. 48],

H is generated by the set D1 u u D. Therefore/ is generated by
1 U l U p--1(1), where p-(1) is the kernel of p. In order to prove that
/ c N(), it is sufficient to prove that/)s c N(). Let . /).,
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Then there exists an element 1 e and e p-l(1) such that

Applying both sides of this relation to the maximal vector 0, and using (iii)
of Lemma 5.5, we obtain 1, and hence e N() as required. This
completes the proof of axiom (1.3).
By a similar argument, if i e i, - e l i j, then

Now consider the actions of and . on 0. We have

0 9" 0 #i e V..
If 0 #" a 0 E2:+, a , then by (5.3)

m0 a 0(E)
But

xiE_ E_ exp ad E E_
since -a a is not a root if i j. Therefore

Comparing this equation with (5.13), we obtain g 1 in (5.13), and (1.4)
is proved.
We have already shown that p is an isomorphism of 1 onto Y such that

p(()) y(), 1 =< i =< l, K. From lc, it follows that (Y, Y)
is generated by the elements x_(), e K, where a is a positive root

al, ...,a. Byletting
_() F(x_() ),

the facts that F is a homomorphism of Y onto and p(F(y)) y for y e Y,
imply that p(_() x_(). Then for x e X, we have

-()

for some eand e . Inorderto show that 1, it is sufficient to
prove that if m_ is a minimal vector in , then m_ _() m_. As we
have pointed out before, the methods of [6] show that

m_ , m_E:
Then

m_ _() m_(E exp ad E_).

We shll now prove by induction that

m_(E exp d E_) m_E
Suppose the result is vlid for . Then by the induction hypothesis,

exp ad E_,) m_ E:(E + [E, E_,] - 1/2 E_,IE_,].
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The commutators [[E,i, E_.]... are multiples of E,_.,, and the roots a ja
are all 0, since a is a fundamental root and a is not. For j > 0, we have
for some a, b, in ,

m_ E. E,i_j, am_ E,_j, E + bra_ E2,_, E- + 0

since all the roots ka ja are < 0, and m_ is a minimal vector. Returning
to our original formula we have

m_ 4_.() _-1
;Zi m_

and _() implies 1. We have now proved the first half of
axiom (1.5); a similar argument proves the second half.

Finally lete/. Then for1 __< i =< 1, p() w,and
p(Coi) p(f) Tie H

by (1.6) for G. Since I p-l(H), fco H, and (1.6) holds for . We have
already proved (5.11), so that Lemma 5.10 is established.
We come now to the main theorem of this section. Because G satisfies the

conditions (1.14)-(1.26), either by the results of lb or by the argument in
Steinberg’s paper [12], the construction of Steinberg can be applied to G to
construct an irreducible gtG-module of dimension p, where p is the order of
X.

(5.14) THEOREM. Let be a Lie algebra of classical type, which is obtained
from a complex semisimple Lie algebra by reduction modulo p, over of char-
acteristic p >- 5. Let I be the irreducible restricted -module whose maximal
weight satisfies h(H) p 1, 1 <- i -<- 1. Let G be the group of auto-
morphisms of generated by x() and yi() for e K and 1 <- i <= l, where K
is the prime field in . Let F be the irreducible projective representation of G on
il. Let M be the irreducible right G-module of dimension p’ defined by Stein-
berg. Then F is an ordinary representation of G, and is equivalent to the repre-
sentation of G afforded by the module M of Steinberg.

Proof. Because of Lemma 5.10, it is possible to apply Theorem 3.6 to G
and (, M and 2. The homomorphism p ]7

__
y has the properties re-

quired of the isomorphism in Theorem 3.6. By Lemma 4.1, M has a one-
dimensional space of maximal vectors relative to G. By (iv) of Lemma 5.1,
the space of maximal vectors of is at most one-dimensional. We shall
prove that 0 is a maximal vector in M. It is sufficient to prove that
0 ] e 20 for all ] e/. Since/ is generated by/)1 u /) u p-l(1), this
result is clear by (’iii) of Lemma 5.5. By (iii) of Lemma 5.5 and (ii) and (iii)
of Lemma 4.1, the functions f and ] associated with m0 and 0 satisfy the
conditions

]() f(), ](() f(d() ),
for 1 -<- i -< and e K. By Theorem 3.6, there exists a vector-space iso-
morphism S of 2 onto M such that for all e and generators {z}, {} of
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G and ( respectively, we have

F(z) F(z) S (S)zl zs.

From this it follows that dim M p Moreover by (iii) of Lemma 5.1, we
have

det F(g) 1, g e G.

Therefore, as we saw earlier in the case of SL(2, K),

F(gg’) F(g)F(g’)a(g, g’), (g, ’) n,
implies a(g, g’)m 1, and hence a(g, g’) 1. Therefore F is an ordinary
representation of G, G ----- G, and (5.15) asserts that F is equivalent to the
representation afforded by the module M of Steinberg. This completes the
proof of the theorem.
Remar] 1. Theorem 5.14 asserts that has an irreducible restricted

module of dimension pro, where m is the number of positive roots of with
respect to @. This result complements Theorem 2 of [7], in which it was
was proved that dim M -< pm for all irreducible restricted -modules.
Remark 2. If we assume that has a nondegenerate Killing form, then

with M we have an associated C-module V in the sense of [7, p. 137], where
9c is the complex semisimple Lie algebra belonging to 9. The maximal weight
A of V satisfies

A(Hi) p-- 1, l__<i__< 1.

Applying the Weyl formula for the dimension of V we obtain

(5.16) dim V I (A + p)(H,,) p,.
,,>0 p(H,,)

To prove (5.16), let H,, H, e Q. Then

(A + p)(H,,) (_, i)p,

.since p(Hi) 1, 1 <= i <= 1. Therefore each factor

(A W p)(H,,)
p,

and dim V p. From the results of [7] it follows that the 9-module
obtained from V by reduction modulo p is irreducible, and isomorphic to .
Remark 3. We shall apply Theorem 5.14 to construct a minimal right ideal

of dimension p in the u-algebra 11 of 9. The u-algebra of 9 has a basis over
2 consisting of the standard monomials

E,u(P, Q, R)

where 0 =< p, q, re _-< p 1. For a vector exponent P, we write
[P PC. Let 1I+ be the nilpotent subalgebra of 11 consisting of all
standard monomials u(P, 0, 0), [PI 0, 1I_ the nilpotent subalgebra con-
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sisting of all u(O, O, R), R 0, and the subalgebra of 1I generated by
1 and[H1,...,H,}.

(5.17) LEMMA. There exists an element Uo 11+ such that u0 0, u0 E, 0,
a O, anduoHi --uoforl <= i <= 1.

Proof. Since 1I+ is a nilpotent algebra, there exists an element u 0 in
1I+ such that u0 E, 0 for all a > 0. Let H denote the right multiplication
x -- xHi in the subalgebra gt[Hi] of . Since the powers H, 0 _-< s _-< p 1,
are linearly independent and H Hi, the minimum polynomial of H is
h h, which has h 1 as a factor. Therefore there is an element
such thatciHi -ci, 1 _-< i _-< 1. Since -- 2[H1](R) (R) 2[H],
c i=lci 0. 5/[oreovercHi -cforl =< i_-< 1. Now letu0- u0c.
Because the standard monomials u(P, Q, 0) are linearly independent, it follows
that u0 0. M:oreover, uoH Uo(cH) --uo, 1 <- i <= 1. For all roots
o O, uoE, Uo cE, u0 E, c’ 0, for some c’ depending on c and E,.
This completes the proof of the lemma.

(5.18) LEMMA. Uo Uo 1I_ is a right ideal in 1I.. is clearly a subspace of 1I such that (1I_ c ,. If H e @, then

Uo u(O, O, R)H [--1 ri ai(U)]uo u(O O, R)

For a > 0, we show that Uo u(O, O, R)E, . by induction on IRI. If IRI > 0,
write

u(O, O, R) u(O, O, R’)E_ IR’I < ]RI > O,
and obtain

u0 u(0, 0, R) E, u0 u(0, 0, R’) E, E-a + u0 u(0, 0, R’) [E_, E,],

where [E-s, E,] is either 0, in , or a multiple of E_+, for a root - + a 0.
In all cases both summands are in , by the induction hypothesis, and the
lemma is proved.

(5.19) IaEMMA.
over . The elements Uo and Uo u(O, O, R) IRI O, form a basis of

Proof. By Lemma 5.18, the indicated elements generate over 2. Since
u0 e 1I+, u0 is a linear combination of standard monomials u(P, Q, 0). We
have u(P Q, 0)u(0, 0, R) u(P, Q, R) for all R, and since the standard
monomials u(P, Q, R) are linearly independent, the conclusion of the lemma
follows.

(5.20) COROLLARY. The dimension of . over is pn, where m is the number

of positive roots of with respect to .
(5.21) THEOREM.

right ideal in 1I.
The right ideal , constructed in Lemma 5.18 is a minimal
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Proof. By Lemma 5.17, u0 is a maximal vector in ( of weight }, such that
},(H) -1, 1 _-< i-< 1. Then has an irreducible homomorphic image
,1 (/ such that the maximal weight of (1 is . By [5, Theorem 1, p.
312], --- where is the irreducible 9-module appearing in Theorem
5.14. By Theorem 5.14, dim ( pro, hence {01, and ( is an irreducible
right 1/t-module.
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