AN ISOMORPHISM THEOREM FOR CERTAIN FINITE GROUPS'

BY
CuarRLEs W. CURTIS

Introduction

Let K be a finite field of characteristic p, and let SL(2, K) be the unimodu-
lar group of 2 by 2 matrices of determinant one with coefficients in K. We
shall be concerned with a finite group G which satisfies a list of axioms which
say, roughly speaking, that G is generated by a certain number of subgroups
which are homomorphic images of SL(2, K), and that G has p-Sylow sub-
groups X and Y with certain special properties. We prove that all the finite
simple groups G’ defined by Chevalley [2] with respect to a finite field K of
characteristic p = 5, and the variations of them defined by Steinberg [13],
satisfy our axioms.

The first main result concerns two finite groups G and G satisfying the
axioms, and generated by subgroups ¢:(SL(2, K;)), -+ -, $:1(SL(2, K;)) and
& (SL(2, Ky)), -+, ¢:.(SL(2, K;)), respectively, where the K; are subfields
of K, and the ¢; and ¢; are homomorphisms of SL(2, K,) into G and G. Let
M and M be irreducible right QG- and 2G-modules respectively, where Q is an
arbitrary extension field of K, and QG, QG denote the group algebras over
Q of G and G. A sufficient condition is obtained in order that there exist
an Q-isomorphism S : M — M such that

mei(g9)S = (mS)di(g),
forallmeM, g e SL(2, K;), and 1 = ¢ = [. When the hypotheses of this
theorem are satisfied, and in addition the modules M and M are faithful G-
and G-modules, it follows that G =~ G, and that the modules M and M are
isomorphic as QG-modules.

The second main theorem again concerns finite groups G and G sat-
isfying the axioms, and generated by the same number of homomorphic
images of SL(2, K), for a given field K. It is also assumed that the p-Sylow
subgroups X and X of G and G respectively, are isomorphic and satisfy a
further condition. It is then proved that both G and @ satisfy the conditions
(1)-(13) of Steinberg’s paper [12], and consequently possess irreducible
modules over © of dimension p", where p" is the order of X. Finally it is
shown that if neither G nor G has a nontrivial center, then the result of the
preceding paragraph can be applied to show that G and G are isomorphic.
The sufficient condition that G@ = G involves only group-theoretic properties
of @ and G, and no information about modules over G and G is needed in
order to apply the theorem.
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A somewhat different application is made to the following problem. Let
® be a Lie algebra of classical type over an algebraically closed field Q of
characteristic p = 5, and let G, be the finite group of automorphisms of &
considered in [6]. Then G, is known to satisfy the axioms of the present
paper. By the result of Steinberg’s paper [12], there exists an irreducible
QG -module M of dimension p™, where p™ is the order of a p-Sylow subgroup
of Gy, and m the number of positive roots of € with respect to a Cartan sub-
algebra. It is proved that one of the irreducible projective representations
of Gy constructed in [6] from an irreducible restricted -module, is in fact an
ordinary representation of Gy, and is equivalent to the irreducible represen-
tation of Gy afforded by the module M of Steinberg.

1. Axiomatics

This section is written in three parts. In part (a), we give our axioms for
G. In part (b) we show that the conditions (1)-(14) of Steinberg’s paper
[12] are consequences of what hasbeen assumed in (a). In part (¢) we prove
that the groups defined by Chevalley [2] and Steinberg [13] satisfy our axioms.

First we list a few notations:

AANAB A is normal in B

Nq(4) normalizer of A in G

Ce(A) centralizer of A in G

(a,b) = aba™" b"

(4, B) the group generated by all commutators
(a,b) withaed,beB

[A:B] index of a subgroup B in a group 4

[A:1] order of the group A

o’ = bab™’

A’ = pAb™

la. Throughout the paper, K will denote a finite field of ¢ = p’ elements,
where p is a prime and f a positive integer. No other special hypotheses
concerning K are needed for §§1a and 1b, and §§2-4. @ will always denote
a field containing K.

Let SL(2, K) denote the group of all 2 by 2 matrices

Ii: §]7 a;B;V’BGK’ ad — By =L

For all £ e K, let

wo =[5 ] ww=[1§] aw=[§ &] &=

Let U be the subgroup of SL(2, K) consisting of all u(£), £ ¢ K, V the sub-
group consisting of the elements v(£), £ e K, and D the subgroup consisting
of all d(§), £ # 0. Let



AN ISOMORPHISM THEOREM FOR CERTAIN FINITE GROUPS 281

-—-01-
=11 0o

then computations show that d* = d ", d e D, and that
w=uv(=Du(l), o’ eD, U =V, U'=U, V'=1V, deD.

It is known (see [2, p. 34]) that Uu V is a set of generators of SL(2, K),
and that
SL(2, K) = UDvu UDuwU.

Now we are ready to state our axioms (1.1)~(1.13) concerning a finite
group G.

(1.1)  For some positive integer 1, there exist subfields Ky, - -+, K; of K, and
I homomorphisms ¢, + - -, ¢1 of SL(2, K;) into G such that

¢1(SL(2, K1) u - -+ ui(SL(2, K))
1s a set of generators of G, and ¢;(SL(2, K;)) # {1},1 = ¢ = L

Forl =i = Llet Xi=¢(U),Y;=¢iV),D; = ¢pi(D), x:(§) = ps(u(£)),
yi(§) = ¢u(v(§)), di(§) = ¢:(d(§)), wi = ¢i(w).

(1.2) The set X; u --- u X, generates a p-subgroup X of G; the set
Yiu --- u Y, generates a p-subgroup Y of G.

(1.3) There exists a subgroup H of G such that
D; C HC N¢(X)), 1
(14) (X:,Y) =11}, i#j, 1=4j=1
(15) (Y, V)" C Y forallzieX:, 1
(X, X)"cXforally;eY;, 1
(16) wieNo(H), 1 <4 = L
We shall see that the axioms (1.1)—(1.6) are sufficient for the first main

theorem in §3, and for the application in §5. The remaining axioms are
needed in order to prove the conditions (1)—(14) of Steinberg’s paper [12].

(17) No(X) = XH, HnX = {1}, and p /[H:1).

Let W be the subgroup of G generated by Hu {w;, ---,w;}. Then H A W
by (1.6). Let W* = W/H, and denote the coset wH by w* for all w ¢ W.

(1.8) There exists an element wy e W such that X** = Y.
(1.9) XHnY = {1}.

From (1.9) it follows that w; ¢ H, 1 = 7 < [, since X;° C Y. TFor the next
step we require also the fact that

H c Nqo(Y).

IIA
.
IIA

l; and
L.

IA 1IA
IA Il/\.

%
)
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To see this, let h e H, and y ¢ Y. By (1.8) it follows that y = z*° for some
z e X. Thus for some A’ ¢ H we have

yh — (xwo)h — xhwo — xwoh’ — (zh’)wo € Y
since H C N¢(X). The same argument shows that H C Ne(Y,),1 =7 =,
since Y; = X7,

For each coset w* = wH in W* let X,» = {2 ¢ X: 2" ¢ X}, and let Xys =
{reX:2"eY}. Since HC Ng(X) nNg(Y), it is clear that Xo+ and Xo»
are defined independently of the choice of the coset representatives. It is
also clear that X,,» and X, are subgroups of X such that X,.n X« = {1}.

Now let X D X' 2 DX 8 5 ... be the descending central series of the p-group
X, where X’ = (X", X),7=2,3,--+,and X = X".

(1.10) For each w* e W¥, each term X * of the descending central series of X
is generated by X*n Xy and X' n Xo .

(1.11)  For each w* e W*, either X; € Xos or X; € Xs, for 1 < ¢ < 1.
(1.12) If X, and X.,,» are conjugate in X, then wi = wy .

(1.13) There exists a homomorphism e: W* — {1, —1} such that
e(wf) = -1, 1 =721

Note that (1.13) is possible in view of the fact that w} s 1 in W*, for
1271

1b. TFor the convenience of the reader we first reproduce the conditions
(1)-(14) of Steinberg’s paper [12], with some appropriate changes in nota-
tion.

(1.14) There exist two subgroups X and H of G such that X n H = {1},
XH is a group, and X A XH.

(1.15) There exists a group W* (the Weyl group) and for each w* e W*
an element w € G such that U ysews Hw is a group W, H A W, and W/H = W*

under the mapping w — Hw = w*. Theidentification Hw = w* will be made.

(1.16) Corresponding to each w* e W*, X has two subgroups X,» and
X7 such that:

(1.17) X = Xio Xow s

(118) wX,pw' X if wH =w"; and

(1.19) X = X for some wy e W™

(1.20) Let {w;, ---, wy be coset representatives of H in W. Then

G = U%=1 XHUJ,L X;’,i* ,
and
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l4 4 ” "
zhw; " = x hhw;x, , v, T1eX, h, heH, 2" e¢Xyyx, 2 eXyp

. . V.
impliesx = 1, h = by, w; = w;,z" = a7 .

(1.21) W™ contains a set of elements {w}}1<:<; such that:

(122) (wH*=1 1=i=1;

(1.23) {wf¥, ---, wf} is a set of generators for W*;

(1.24) for each i, 1 < 4 £ I, Xy, Hu Xoy,o Hw; Xy » is a subgroup of G;
(1.25)  for each w* e W* and w¥, 1 < ¢ < l, at least one of the inclusions

! !
XZ,,;* (e Xwax y .X,,;iv c Xw*w.i*
is valid; and

(1.26)  thereis a homomorphism & : W* — {1, —1} such that e(w¥) = —1,
1=s¢=1L

The last condition from Steinberg’s paper is
(1.27)  There is an element x ¢ X such that x ¢ X» for all w* # 1.

Now we have the task of showing that (1.14)-(1.27) follow from
(1.1)-(1.13). Although we do not use any interpretation of the group @ in
terms of automorphisms of Lie algebras, ete., many of the arguments will
be almost identical with those in Chevalley’s paper [2].

(1.14) follows from (1.2), (1.3), and (1.7). (1.15) follows from (1.6)
and the definition of the group W, if we take for the elements w e G a set of
coset representatives of H in W. The subgroups in (1.16) are those defined
after (1.9).

Proof of (1.17). Let (X.+)* and (X5.)* denote the subgroups Xy« n X*
and Xo.nX", 4= 1,2, ---. By (1.10), X° is generated by (X,+)* and
(X7.)%. Since X is a p-group by (1.2), X* is abelian for sufficiently large ¢,
and in that case X' = (X,+)*(X%s)*. Now let k be fixed, and suppose that
foralli > k, X' = (Xu+)'(Xus)’. Then

X' = (X)) (X0 M (X", X5) = (Xpo) " (Xun) "X
= (X XP(X00k (since X**' A X*)
= (Xue) " (X0pe) (X)X L) = (Xop) " (Xie) .

By induction we have X* = (X.,.) (X4)® for all 4, and (1.17) is proved.
(1.18) is true by the definition of Xy ; (1.19) is valid because of (1.8).
The proof of (1.20) is the same as the proof of the corresponding result in

Chevalley’s paper [2, Theorem 2, p. 42], and will be omitted.

The statements (1.21)—(1.23) follow from the definition of the group W,
and the fact that for 1 £ 7 < I, w} e D; € H by (1.3).
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Proof of (1.24). Because H C N(X,) by (1.3), it is sufficient to prove
that Xy,,» = X;, 1 <4 < . Since X{* C Y, we have X; C X,,+. We
next prove that if j > 4, then X; C X,,,+. Since w; = z,(1)y:(—1)z:(1),
we have for z; e X;,

() y(—Da(De;zi(1) "yi(—=1) Te(1) ™
(1) (@:(1), )"V 2 TV ai(—1) X
by (1.4) and (1.5). Similarly, if z ¢ (X, X),
2% = 2y(1) (xi(1), 2)" T 2" TP (1) e X.
Since X; u - - u X generates X, it follows from what has been proved that
X =X,+X;, Xp.nX;={1}.
By (1.17) we have also
X =Xoo Xue, XopnXus= ({1}

It follows that [X;:1] = [X,+:1], and since X; € Xu,», we have X; = Xyp.s .
As we have remarked, this proves (1.24).

Proof of (1.25). We have already shown that X, = X&,.. Either
X, Xpeor X; C Xue, by (1.11). Inthe latter case, we have wX,w™' C Y.
Setting w™" = w; 'w’, we obtain (w')”'Y; w’ < Y. Then (w)”'X; w C X,
otherwise ¢;(SL(2, K;))"™" < Y, and in particular D{*°™' c Y nH = {1}
by (1.3), (1.6), and (1.9), which is a contradiction. From (w')7'X;w’ < X
we obtain X; C X(—1y» = Xiwp,» since w;' = w; (mod H). This com-
pletes the proof of (1.25).

We note that (1.26) is included as axiom (1.13). The last condition (1.27)
can also be proved from (1.1)—(1.13), but since only (1.14)—(1.26) are needed
for the result we shall use from Steinberg’s paper [12, Theorem 2, p. 349],
we shall not include the proof of (1.27).

1c. Let G’ be the group defined by Chevalley [2, p. 47]. We assume that
the characteristic p of K is greater than three. Let o1, -, a; be a funda-
mental set of roots of the Lie algebra g. We identify X, with X,,, and Y,
with ¥_,,, 1 = ¢ = [. Then (1.1) is satisfied if we identify K with K,,
and ¢; with ¢,; , 1 < 4 < [, since G’ is generated by ¥, and ¥_,,, 1 < 7 < [
(see [2, p. 48]).

(1.28) Lemma. The subgroup W of G’ (defined in [2, p. 38]) s generated
byXe,u---UXs of p = 5. If W, is the group generated by all subgroups
Xo, where a is a root of height = m, then U, coincides with U™, where U* =
(W7 1), = 0, is the ¢ term in the descending central sum of @'.

w;
(IZ,"

Proof. For each m = 0, let U, denote the term generated by the sub-
groups X, , for a a positive root of height = m. By [2, p. 39],

(um ) um’) c um+7n’ )
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where we set U,, = {1} if all roots of g have height < m. Let
U=uoswWos---
be the descending central series of I. Evidently, U' < U;, ¢ = 1. Suppose

for some s = 1, U* = ;. We shall now prove that U™ = ., and for
this it is sufficient to prove that Il,, < W forallm = ¢+ 1. For sufficiently
large m, we have U, < U™, Suppose for some m = ¢ + 1, we
have U,4; < W forj = 1,2, ---. In order to prove that U,, < U it is
sufficient to show that for any positive root « of height m and ¢ ¢ K, we have
2a(£) e U™, We can express a = 8 4+ «; for some positive root 8 of height
m — 1 and a fundamental root @;. Since p = 5, the formulas for N, and
M5, in [2, p. 36] show that C11,s;,8 # 0 in K. Therefore by formula (4)
of [2, p. 36], we can find ¢, 9’ ¢ K such that

(25(8), Zai (1) = @a(H)2”

where x* eUny C U™, and  25(¢) € Upay cuc W. It follows that
za(£) e W™, and we have proved that U,, U for m = ¢ + 1. Therefore
we have

(1.29) u = u,, i=1,2 .
In particular U, = (U, U), and since {X.,, ---, Xq,} generate Ul modulo
(U, 1), and U is a p-group, it follows from the Burnside basis theorem [8, p.
176] that {¥,,, - -+, ¥a,} generate U. This completes the proof of Lemma
1.28.

If we identify the subgroup X in (1.2) with U, then the fact that X is a
p-group follows from [2, p. 39, Lemma 6]. Similarly Y is a p-group.

Let H be the subgroup & = $ n @ of G’. Then, remembering that
1l = X, we have by [2, Corollary 2, p. 43] that Ne(U) = UHn G = 19"
The fact Un 9’ = {1} follows from [2, Lemma 13, p. 42]. Finally the in-
clusions D; € H C No(X,), 1 £ ¢ = [, and the fact that p /' [H:1] are
clear from the definition of H and the formulas (6) and (7) of [2, p. 36].
These remarks prove (1.3) and (1.7). (1.4) follows from formula (4) of
[2, p. 36] and the fact that if @ and 8 are fundamental roots, <o 4 j8 is a root
only if 7 and j have the same sign.

The second assertion of (1.5) follows from [2, Lemma 8, p. 40] and the fact
that for a fundamental root «, U, D U, = (U4, N).

If we identify w; with w,, defined in [2, p. 36], then (1.6) follows from
[2, Lemma 3, p. 37]. By the argument in the proof of [2, Lemma 4, p. 38],
we can identify the group W defined in §1a with the group ® of [2]. If we
select wo € W so that its image ¢(wo) in the Weyl group is the operation which
interchanges positive and negative roots, then (1.8) holds for this choice of
wy. The first statement of (1.5) is also a consequence of what has been
shown so far.

(1.9) is an immediate consequence of [2, Lemma 13, p. 42].
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To prove (1.10), we begin with the facts that for an element w* of the Weyl
group W/H, U, is generated by all z.(£), £ ¢ K, and a a positive root such
that w*(a) is also positive, while U,» is generated by all 2,(£) with & > 0
and w* () < 0. It follows from the definition of U;, ¢ = 1, that U1, is gen-
erated by U; n U,» and W;n .. Since U, = U, ¢ = 1, by (1.29), we obtain
(1.10).

(1.11) is immediate from the definitions of U,« and Up« .

To prove (1.12), suppose that 1, and U,,+ are conjugate in U. By
[2, Lemma 12, p. 41], we have U,,,+ = 1,,+, and the roots {& > 0: w}(a) > 0}
are the same as the roots {a@ > 0: wi(a) > 0}. Therefore w¥(w5) ™" maps
positive roots onto positive roots, and it follows that w¥ = w3 .

Finally, (1.13) is proved by Steinberg’s observation [12, p. 350] that for
each element w™ of the Weyl group, we can set

e(w") = (=)™,
where n(w”*) is the number of positive roots « such that w*(a) < 0.

For Lie algebras g of types 4; (I odd), D; (I = 4), and E,, Steinberg has
shown in [13] that g admits an involution ¢, and has defined a certain sub-
group G of the set of elements in @’ which commute with ¢ (see [13, pp.
881 and 891]). He proved in [13] that G is a simple group which, in the
case of Lie algebras 4; and D,, can be identified with projective unitary or
projective orthogonal groups, respectively (see [13, pp. 882 and 886]). It can
be proved using the structure theorems in Steinberg’s paper, and arguments
similar to those in the first part of this section, that the groups G satisfy
the axioms (1.1)—(1.13) of the present paper.” The details of this verifica-
tion will be omitted.

2. Preliminary results on SL(2, K)

As in §l1a, K denotes an arbitrary finite field. Besides the facts stated in
§1a concerning SL(2, K), we require the following formulas:

(2.1) v(mMu(E) = d(wu(&)v(q),
where p = (1 + &)™, & = u & n = pn, if 1 + &y > 0; and
(2.2) v(mu(é) = d(w)w(y),

where u = £, 7" = u ', incase 1 + &y = 0.
These facts may be established by a computation, and we omit the details.
Now let @ be an arbitrary extension field of K. We let Q(SL(2, K))
denote the group algebra of SL(2, K) over Q.

(2.3) LEmMMmA. Let T be a right Q(SL(2, K))-module, and let toe T be
such that to #% 0, tou = to, ue U, and tyd = f(d)t, for all d € D, where f(d) €Q.
Let U = 3 .wu,and let fy = tywO. Then fou = fy,ue U;and fod = f(d)to,

2 The author is indebted to the referee for this observation, as well as for suggestions
which have made important simplifications of the proofs of some of the other theorems
in the paper.
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d e D, where f(d) €Q, and
tow =t + v E@) o0,
where the coeffictents £(v) depend only on the function f : D — Q.

Proof. For all u e U, we have Uu = U in the group algebra Q(SL(2, K));
therefore fou = f for all ueU. If deD, we have U* = U, and
hence Ud = dU. Then we have for d ¢ D,

fod = tywUd = tywdU = tod " w0 = f(d .
Finally the properties of » imply that
to ol = tou(1o(—1)u(1) Peex u(f)
= tov(—=1) 2eex u(f)
= tou(1)o(=1D)u(l) + Deatov(—1)u(f)
= o+ Dpatd(l —H 7 u((1—HHv(—(1— 87
= tho+ Dpaf(d(l — H Dtv(—(1 -5,

and the lemma is proved.

3. Equivalence of irreducible 2G-modules

In this section  denotes an arbitrary extension field of K, G a finite group
satisfying axioms (1.1)—(1.6) of §la, and M a finite-dimensional right
QG-module.

(3.1) DErFINITION. A maximal vector relative to G (or in §§3 and 4 simply
a maximal vector) is a nonzero element m of M such that mx = m for all
z ¢ X, and mh = f(h)m for h ¢ H, where f(h) € Q.

Remark. TFor our purposes it is enough to consider only QG-modules which
contain maximal vectors. If the group H is abelian (as it is if G is a group
@' defined in Chevalley’s paper [2]), and Q is an algebraically closed field,
we can prove that any right ©G-module M contains at least one maximal
vector. Indeed, let N be an irreducible Q(XH)-submodule of M. Since
X A XH, Clifford’s Theorem [3] implies that N is a completely reducible
QX-module. But X is a p-group and @ has characteristic p; therefore the
action of X on N is trivial. Thus N is in fact an irreducible Q(XH/X)-
module. Since H is abelian and Q is algebraically closed, it follows that N
is one-dimensional, say N = Qn. From what has been said, we deduce that
n is a maximal vector.

Before proceeding, we point out that if M is a right 2G-module, then each
of the homomorphisms ¢; : SL(2, K;) — G gives M the structure of an
Q(SL(2, K;))-module, the action of x ¢ SL(2, K;) on m ¢ M being given by

mx = moy(x), 1721
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The results of §2 can of course be applied to each of these SL(2, K;)-modules
associated with M. As in that section, we let

Xi = chxi x, ]. l.

(3.2) LEmMma. Let m be a maximal vector in a right QG-module M. For

eachi, 1 =1 =1, let h; = mw; X;. Then either h; = 0 or M, ts a maximal
vector, for 1 = ¢ = L.

AProof. ASuppose m; # 0, and let h ¢ H. By (1.3), h ¢ Ng(X;); hence

’I’f’li h = mw; X, h = muw; h Xq, = mh"’iwi X,’ = f(h"”)m, y

IIA

)

IIA

where f is the function on H — Q associated with m. It is also clear that
m;x = Mforallz e X;. Since X is generated by {X,, -- -, X4, it is sufficient
to prove that for x ¢ X;, j # ¢, we have h,z = ;. Since

wi = (1) y:(—1a:(1),
we have, for z ¢ X;,

mix = mw; Xix = ma(1)y(—Dai(1) (Dex, vi(E))z
= my(—1) (Dser; () = my(—1) a7 (Deex; xi(£) )z,

because m is a maximal vector and

(3.3)

myi(—1) = ma"y(—1) = my:(=1a”
by (1.4). Continuing we have, by (3.3),
e = my(—1) (Ceex, () + Lo my(—D ™28z — z:(8)]

= i+ e, mys(—D[(&7, 2:(8)) — 1aa(§)

= i+ D m{(27, 2:(8) " T =1y (= Di(9)

= 1M, R
since (27, 2:(£))*“ ¢ X by (1.5), and m(g — 1) = Ofor g ¢ X because m
is a maximal vector. This completes the proof of the lemma.

For any right QG-module M the set of maximal vectors in M generate an
Q-subspace of M which we shall denote by M .

(3.4) LEMMA. Let M be an irreducible right QG-module such that M = Qmq ,
my # O: Then M = mo QY = Qmy ® my rad QY, where rad QY <s the radical
of the group algebra QY.

Proof. The set X;u---u X, uY is a set of generators for G such that
Mmex; = Mg, ;e X;, 1 ¢ =1 Since M isirreducible, in order to prove that
M = m, QY, it is sufficient to prove that if y ¢ Y and z; ¢ X;, 1 = ¢ = [, then

mo yx; € mo QY
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First suppose that y = y; ¢ Y;. Then y; = y:(n), z; = 2;(§{) for some
£, n7¢K;. By (2.1) and (2.2) we have either

Yixi = di(w)ai(E)y(n') i 1+ & =0,
and mo y; x; = modi(w)x:(8)yi(n’) = f(di(w))moyi(n’) emoQY, or
Yi s = d(pw)ws yi(n’) i 14 & =0.

In the latter case we have by Lemma 2.3

mo yi i = F(di(w))[mow: Xiyi(n) + Drems Emoys(N + 7)), £ e

Since M, = Qm,, Lemma 3.2 implies that mo w; X; ¢ Qmo, and hence
mo Ys T; € my QY as required.

Now let y ¢ Y be arbitrary. Then we can write y = y; (H ki yj)g, where
y;eY;, 1=j=1l and §e(Y,Y). Then we have

Mo YXi = Mo Yi X4 (Hj,‘i yj)xflgxi emy QY

by what has been proved together with the facts that 27'y;x; = y;, ¢ # 7,
by (1.4), and 27'7z; ¢ ¥, by (1.5).

For the last statement of the lemma, we use the fact that since Y is a
p-group, and @ has characteristic p, QY = Q-1 @ rad @Y, and rad QY has a
basis over @ consisting of the elements y — 1, y ¢ Y, y # 1. From these
remarks, together with the first part of the lemma, it is clear that
M = Qmo ® my rad QY, and the lemma is proved.

Let M be an irreducible QG-module satisfying the hypotheses of the pre-
ceding lemma. Then there exists a function f: G — @ such that for all
z eG,

(3.5) mox = f(x)me (mod m, rad QY).

The main theorem of this section asserts that this function determines the
module M up to isomorphism. For our purposes, it is necessary to prove a
more general theorem. Let G be another finite group satisfying the axioms
(1.1)—(1.6), where the field K, the subfields K, and the number ! are the
sameasforG. Lety, - - -, ¢; be the given homomorphisms of SL(2, K;) — G,
and let £:(&),5:(£),d:(£), w; be defined as the corresponding elements were
defined for G.

(3.6) THEOREM. Let G and G be finite groups satisfying the axioms (1.1)-
(1.6), with respect to the same field K, the same subfields K, , and with the same
number of homomorphisms in (1.1) of SL(2, K,) into G or G. Suppose there
exists an isomorphism 6 of Y onto Y such that 6(y.(§)) = §:(§), 1 S 1 =1,
teK,,and such that for z:(§) eXi,andy e (Y, V), 0(y"®) = 60(y)*®. Let
Q be an extension field of K, and let M and M be irreducible QG- and QG-modules
such that M, = Qmq, My = Qifig. Let f and f be the functions on G and G
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to @ defined by (3.5), and suppose that

f(di(w)) = F(di(w)), 195, wekKi,
and

flwi) = f(wy), 1<i<l
Then there exists an Q-isomorphism S of M onto M such that for all m ¢ M,
(mzi(£)S = (m8)Z:(8),  (my«(£))8 = (mS)Fu(¥),
forteK,and1 £ ¢ = 1.

Proof. let Z=X;,u---uX,uY,u---u’Y,. Then Z is a set of
generators of G, and Z = X, u ---uX;uY,u --- u ¥, is a set of genera-
tors for G. Every element of M can be expressed as a linear combination of
elements of the form

Mo 21"+ 25, zieZ, s=0,

which is irredundant in the sense that if two adjacent elements 2; z;,; belong
to the same X; or Y;, then 2,2, is replaced by z = 2;2,45 . Corresponding
to each such expression we have an irredundant expression 7 2, - - - 3 in M,
where if z; = z;(§) or y;(§), Z; = £;(§) or F;(¢) respectively. Define
flz1, -+, 2s) €@ by the formula

Moz - 2= f(21, +++, 2)mo (mod mgrad QY)
and f(3, -+, Z) €Q by setting
Mo 2y« 2 = f(él y "y 23)’”’)4) (mod o rad QY).

We shall prove first that

(37) f(z17"';zs) =f(§1""728)
for all irredundant expressions moz; « -« 2, and Mo 2; « -+ 2, .

We use induction on the number ¢ of factors z; which belong to
X;u .-+ uX;, the result being obvious if ¢{= 0, since in that case
flzr, ~++y2) =f(&, -+, %) =0. We may assume ¢ > 0, and that the
result is valid for expressions with less than ¢ factors from X;u --- u X,

If 21 e X;, then by the induction hypothesis and the fact that moz, = me,
f(zli "')28) =f<22, "'7z8) =.f(22, ""28) =f-('§11 "')28)'

For fixed ¢, we may now assume that (3.7) holds for expressions moz; - - - 2q
in which the index of the first z,’ eX;U -+ U X;is less than the index of the
first zzeX;u ---uX; in a given expression mgz; -+ 2,. Next suppose
znneYi,zneXy. Then f(za1, -,2) = flea, 21, " ,2) if 7%k and we
are back to the first case. If j =k, let 2; = y;(n) and 22 = z;(§), & ne K;.
Then by (2.1) and (2.2) we have either of two cases. Suppose first that

a2 = di(w)xi(8)yi(n);
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then
fon, - o2) = fdi(w)fyi(n'), -5 2) = Fdi(w) F(@i(n"), -, &)
= f(&, -, %)
by the induction hypothesis. Now let
a2y = di(m)w;yi(n’).
Then by the proof of Lemma 2.3 and the hypothesis of the theorem we have
mow; = Mmow; X; 4+ Donerjro Emoy;(N)
= (£ 4+ 2 b)me (mod mg rad QY),
where mow; X; = £*my by Lemma 3.2,a{1d & = f(dj(—=N\)), MeK;. Since
f(w;) = J(w;), it follows that if i w; X; = £, ,then £* = £*. Then by
Lemma, 2.3,
Moz - 2e = [i(di(u)E Moy (n)zs « -+ 2
+ 20 f(di(=N)mo yi(n' + Nas -+ 2.)],

and a similar expression holds for %fzo 2 -+ 25, with £ = E*. Then
flaa, -y 2) = fd(w)ES(ys(n), 2, -+, 2)
+ Do (=N (ws(n’ + N2, -+, 20)]
= Jdi(w)EF(@i(n), 2y -+, 2)
+ Do J(di (=N F(@i(n" +N), 2, -+, 2)]
= f(gl, T és)
by the induction hypothesis. Finally suppose that z,eY,u---uY,
for 1 £ q¢=<¢—1 for some 7= 3, and let 2z, e X;. If 2;; €Y, for k # j,
then )
f(zly "',Zs) "_'f(zl y Ty Ri2, %0, %1, "'7'28) = f(él’ "',23)
by the induction hypothesis. If on the other hand, z; ¢ X;, 2.1 ¢ Y;, and
2i—2 € Yk , k= j, then by (1.5),
(z%:, zi_g)“_l =2 ... z(‘), 2P eYiu---u Y,, 1=r=st
and by the hypothesis of the theorem

—1 = z;—1 s (1)
(2«5..1,21'_2)1 =2 cee 2.

’

. —1 =1 =1
Then since z;_s 2,1 2; = 2i1 2:(2i , 2i-2)** 252, we have

f(zl ’ "',Zg) = f(zl, "'yzi—?nzi—l;zi)z(l)’ ) z(t)a Zi—2, )
= f(él, crey Zigy B, B, 2(1)7 ] z(t)y Zia, )
= f(&, -, &)

by the induction hypothesis. This completes the proof of (3.7).
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Now consider the set NV of all elements in 3,

Ea(i1,~~,z's)mo éh"'éi,, a(i;,'“,ia)eﬂ,
for which the corresponding expression
Doalin, )Moz e 2, =0
in M. Then N is a submodule of M, and since M is irreducible, N is either
zero or N = M. We prove? N = {0} by showing that 7, ¢ N. If on the
contrary i, ¢ NV, then we have
o = Ea(i] ) "',ig)moéil 25‘,
while
Za(i] , ...,is)mozil gy, = 0

in M. By (3.7), upon taking congruences mod 7, rad QY and m, rad QY
we obtain the contradiction

1= 2o, i) iz, -, &)
= > alir, - 0)f(2i, -, 2,) = 0.
Thus N = 0. It follows that the mapping
St D ally, ooy t)Moziy v 2i,—> D ally, < vy 1) Ziy ++* 2,
is an Q-homomorphism for M onto M. Since M is irreducible, the kernel is
zero, and S is an Q-isomorphism. The fact that S intertwines the generators

of G and G in the required way is clear from the definition of 8. This com-
pletes the proof of the theorem.

(3.8) COROLLARY. @et G, G M, M satisfy the hypotheses of the previous
theorem. If M and M are faithful G- and G-modules, respectively, then G
and G are tsomorphic.

Proof. Consider the mapping
p:z] ...zs__)él o 28
of G onto G. } Ifz, --- 2, = _1, it follows fronl the theorem that mz, --- 2, =
for all 7 e M, and since M is a faithful G-module, we have 2, --- 3, =

Similarly, % --- 2 =1 implies 2 ---2 = 1. From these remarks it
clear that p is an isomorphism of G onto G.

a3

4. The isomorphism theorem

We shall combine the theorem of the preceding section with Steinberg’s
result [12] on the construction of irreducible modules for finite groups satis-
fying (1.14)—(1.26) to obtain an isomorphism theorem for finite groups
satisfying (1.1)—(1.13). Asin §3, @ denotes an arbitrary extension field of K.

3 This argument is similar to the well-known proof of E. Cartan and H. Weyl that an

irreducible representation of a semisimple Lie algebra is determined by its highest
weight.
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(4.1) Lemma. Let G be a finite group satisfying the axioms (1.1)~(1.13).
Then there exists an irreducible QG-module M with the following properties.
(1) M, = Qmyq for some my %= 0 in M.
(i) meh = mo for all h ¢ H.
(iii) mow; e mo rad QY.
(iv) M 4s a faithful G-module if Co(X) n H = {1}.

Proof. By §1b, G satisfies (1.14)-(1.26). Moreover, we shall prove
that X is a p-Sylow subgroup of G. If X is not a p-Sylow subgroup, then
there exists a p-group X’ € Ng(X) such that X’ properly contains X, and
this contradicts (1.7). By Theorem 2 of Steinberg [12], there exists an
irreducible right ©G-module M constructed in the following way. In the
group algebra QG, let

X = Zzex x, H = ZheH h,

and let {w} be a complete set of coset representatives of H in W. In QG
form the element

e = Xﬁz e(w™ w,

the summation being over all coset representatives of H in W. Then let
M = eQX.

In [12, Theorem 2(i)], it is shown that M viewed as a right @X-module is
isomorphic to the right 2X-module QX itself. Since X is a p-group, @X is
indecomposable, and has a unique minimal submodule, ‘which is a one-
dimensional space on which X acts trivially. Therefore the space M, is at
most one-dimensional.

From what has been said we have eX 5 0, and clearly eXz = eX for all
zeX. NowletheH. Since HC Ng(X), we have Xh = hX, and

eXh = ehX = XA(D e(w*)wh) X
XA h'e(w*)w)X
XA e(w™w)X = eX

since Ah® = A. This proves that mo = eX is a maximal vector, and we
have established parts (i) and (ii) of the lemma.
Now consider w;, 1 <4 < 1. Since X; C Xu;, we have Xy« {1}.
By (1.17) and the fact that X,,« n Xy,+ = {1} we have
X = X;‘* XZ,,-* .
Then by (i) of Lemma 1, [12, p. 348], ew;" = — ¢, and

—1 . —1 o/ -/ —1
mo w; = eXw; = eXuy;+ Xop,» Wi

= ewi (X, 0) " (Xoe) ™
— —e(X,',,i*)"”'(Xﬁi*)w‘.
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We have )
(Xo)™ = 252" = 201+ (2" = 1)] (% € Xu;)
= > . (2" — 1) erad QY,
since "¢ ¢ Y for x € Xy, , and since X4+ 5 {1}, so that

>.1=0 (% € Xu;e).
We have shown that

mo wi e M rad QY C m, rad QY,

since M = Qmo ® mo rad QY by Lemma 3.4. Since hw; = w;" for some
h ¢ H, we have
Mo Wi = mo hw; = mo w; e Mo rad QY,
and (iii) is proved.
It remains to prove (iv). Let g e @ be expressed uniquely according to
(1.20) as
g = hawat/, teX, heH, o' eXue, g+# 1,

If mog = my, then from what has been proved we have mow = mqo, but if
w¢H, we have w ¢ No(X), and hence X, 5 {1}. By the proof of part
(iii) we obtain also mgemo rad Y, which is a contradiction. Therefore
mo(g — 1) #0 if weH. If weH, we may assume that w = 1; then
X = {1}, and we have g = zh. If x 5% 1, then zh = ha' for some z’ ¢ X,
z' # 1, and we have

exh = ehx' = ex’ #~ e

since eh = e and because the elements ex, x ¢ X, are linearly independent.
It remains to consider the case ¢ = he H. If C¢(X) n H = {1}, then for
some xeX, xvh =hx' for 2’ eX, 2’ # 2. Then erh = ehx’ = ex’ # ex.
This completes the proof of the lemma.

Finally we can state our main theorem.

(4.2) TaEoREM. Let G and G be finite groups satisfying the axioms (1.1)—
(1.13). Suppose that both G and G satisfy the condition Ce(X) n H= {1}.
Suppose that the field K and the subfields K; , are the same in both cases, and that
{61, -+, 04 and {¢1, - - -, i} are the given homomorphisms of SL(2, K;) into
G and G respectively. Let

zi(§) = ¢i(u(®)),  Tu(§) = ¢u(u(¥)), e

Finally suppose there exists an isomorphism 0 of the p-Sylow subgroup Y of G
onto the p-Sylow subgroup ¥ of G such that 6(y:«(£)) = §:(£), and for ail
ye(Y,Y), 28 eX:, 1 <4 =1, we have 0(4"®) = 0(y)*®. Then the
mapping

zi(8) = &i()),  yi(§) — g8, 115,

can be extended to an isomorphism of G onto G.
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The proof is immediate by Lemma, 4.1, Theorem 3.6, and Corollary 3.8.

We prove finally that for a group G satisfying (1.1)—(1.13), Co¢(X) n H
is contained in the center of G, so that the hypothesis of Theorem 4.2 is
satisfied for the simple groups constructed by Chevalley [2] and Steinberg
[13]. Let h eCe(X) n H. Then by the proof of part (iv) of Lemma 4.1,
M(h — 1) = 0. Since the set of all g e @ such that M(¢g — 1) =0 is a
normal subgroup of G contained in C4(X) n H, we have wp hwo e Co(X),
and hence & e Cg(wo Xwy') = Co(Y). Since X uY isa set of generators for
G, it follows that h belongs to the center of G, and our assertion is proved.

5. Irreducible modules of dimension p™ for Lie algebras of
classical type

We shall prove first that if G is the subgroup defined in [6] of the group of
invariant automorphisms of a Lie algebra of classical type € associated with
a complex semisimple Lie algebra &°, then @ satisfies the axioms (1.1)—(1.13).
Therefore, by Steinberg’s result [12], G has an irreducible module M of dimen-
sion p™, where m is the number of positive roots of & with respect to a Cartan
subalgebra. The purpose of this section is to prove, as an application of
Theorem 3.6, that this module is isomorphic to an 2G-module constructed
from an irreducible restricted £-module by the methods of [5] and [6].

Changing the notation of [2, p. 32] slightly, we let £° be a complex semi-
simple Lie algebra, and (X, ---, X,) the basis of & defined in [2, p. 32],
containing the root elements X, of ¥ relative to a Cartan subalgebra $°.
Let © be an algebraically closed field of characteristic p = 5, and let K be
the prime field in ©. Let £, be the Lie algebra over the integers with basis
(X1, -+, X)), and let =2 ® ¥,. Then ¢ is a Lie algebra over @ with
basis elements (XF, ---, X)), where X =1® X;,1 <47 < », and the
constants of structure of & relative to this basis all belong to K. Among the
X¥ appear the elements K, corresponding to the root elements X, of g,
and the remaining basis elements generate an abelian subalgebra £ of 2
which is easily seen to be a Cartan subalgebra of . Then & has a Cartan
decomposition

L=9+ ) QF,,

where we may view each element E, as a root element belonging to a nonzero
root « of € with respect to . We shall assume in this section that £ satisfies
the axioms (i)—(v) of Mills and Seligman [9, p. 520]. The question of which
Lie algebras of classical type can be obtained from complex semisimple Lie
algebras by reduction modulo p has been settled by Seligman [10]. (See
also [4] for the case of Lie algebras with nondegenerate Killing forms.)

There is a one-to-one mapping of the set of roots of £° onto the roots of £
which preserves additive relations in the sense that if a sum of two nonzero
roots is a nonzero root of ¥°, the same holds for the corresponding roots in &.
Let o, -+, a; be the roots of & corresponding to a fundamental system
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(= maximal simple system) of roots of €. Then a; — a;, 7 ¥ j, is not a
root of &, otherwise (K., , E,,] # 0 by [9, (xiii), p. 524], and this is impossible
since [Xo;, Xo;] = 0 in &. Therefore {ay, -+ -, aj} is a simple system of
roots, and it is clear that {cy, - - -, @;} is a maximal simple system of roots in
the sense of [4]. Moreover the roots {a;, -+, a;} are linearly independent,
for if they were not, there would exist H ¢ , H # 0, such that «(H) = 0
for all roots @, and H would belong to the center of &, contrary to [9, axiom
(ii)]. Letting H, be a generator of the one-dimensional space [2_,, %.] for
a root « # 0, a computation shows easily that if «, 8, « + 8 are nonzero
roots, then H,,g is a linear combination of H, and Hg. Therefore every H,
is a linear combination of the elements H; € [R_.,; , Ra;], 1 = 7 = [, such that
a;(H;) = 2. Since the elements H, generate $ by [9, (viii)], and since $
has dimension [, it follows that H; , - - -, H; is a basis of § over Q.
Now let G be the group of automorphisms of € generated by the auto-
morphisms
2o(E) = exp ad ¢E,, teK,

where « is a root # 0. From the discussion in [2, pp. 32-36] it follows that
@ is isomorphic to the group @’ defined in [2] relative to the complex semi-
simple Lie algebra £° and the field K. If we let
zi(§) = expad (B, yi(§) =expadéf_,,, 11
then the mapping ¢, : SL(2, K) — G given by
pi(u(8)) = 2:(8),  ¢i(v(§)) = yi(¥), teK,

defines a homomorphism of SL(2, K) into G for 1 =7 =< 1I. With this
interpretation of the homomorphisms {¢;, - - -, ¢}, the results of §lc imply
that G satisfies the axioms (1.1)—(1.13) of §1a.

Let M be the irreducible restricted right 2-module whose maximal weight
\ satisfies N(H:) =p — 1, 1 £7 =1 (see [5, Theorem 2, p. 315]). We
summarize some of the properties of M in the following lemma.

IIA

L, fekK,

(5.1) Lemma. The irreducible restricted right R-module M whose maximal
weight is X : N(H;) = p — 1, 1 = 7 = 1, has the following properties.

(i) If o is a maximal vector (see [5, p. 312]) in M, then for 1 < i <1,
the elements {7g , o B—a; , -+ -, o E22)} are linearly independent, and span an
irreducible L;-submodule V; of M, where &; is the three-dimensional simple
subalgebra of ® with basis {E_.; , Eo, , Hi.

(ii) There exists an irreducible projective representation F : G — GL(M)
of G by linear transformations F(g), g € G, such that for all m e M,A €8, and
g € G, we have

(mA)F(g) = mF(g)A’,

where A — A° is the automorphism g of &.
(iii)  The restrictions F | X and F | Y of F to the subgroups X and Y of G
are ordinary representations of these subgroups.
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(iv) A wvector m e M satisfies mF(x) = m for all x ¢ X if and only if
m e 9’)%0 .

Proof. (i) We may assume that [E_,,, Ey) = H;, and o;(H;) = 2.
Let #7ig EZo; # 0 for 0 £ v = k — 1, and i, Efw = 0. In order to prove (i)
it is sufficient to prove that k = p, because of the well known classification
of the irreducible restricted modules for the three-dimensional simple Lie
algebra.

The subspace V; = D o Qi EZ,, is invariant relative to &; , and we have

moEiaiH¢=('—1—2V)'fﬁoEiai, 0=v=k-—1,

since Mo H; = — My, and [E_., ,H;] = —2E_,, . Thencomputing the trace
of H; on the space V; we have, since H; = [E_,, , E.,],

0= 20 (=1—20) = —k —2(k(k —1)/2) = —F.

Therefore k = p, and (i) is proved.

(ii) follows from the definition of the projective representation F given
in [5, $§I1.2], and the theorem of [6, p. 856].

(iii) We prove first that F | X is an ordinary representation. We refer
to the construction of the representation F in [5, pp. 317 and 318]. By the
discussion there, it follows that for any x ¢ X (not necessarily a generator),
we may define F(z) by

(5.2) F(z) : o By, -+ By, > o By, -+ By, ,

and obtain an invertible linear transformation of M such that (5) of [5, p. 318]
is satisfied, namely

(5.3) (mA)F(z) = mF(x)A", Ae®, meM.

Because of (5.3) and the fact that M is an irreducible £-module, any two
determinations of F(x) satisfying (5.3) differ by a sealar factor, so that the
definition (5.2) is consistent with the rest of the discussion in [5] and [6).
Since F is a projective representation we have

(54) F(ZL’) $2) = F(xl)F(xg)a(ml ) :ch), a(xl s 932) €.

Since my F(z) = my for all z ¢ X, (5.4) implies that a(x;,2;) = 1 for all
21,22 € X,and F | X is an ordinary representation. A similar discussion applies
to F|Y.

Finally (iv) follows from [6, Lemma 1.7, p. 856], and Lemma 5.1 is proved.

(5.5) LemMma. Let G be the group of linear transformations on M generated by
T:(8) = F(z(8),  §:(8) = F(y«(¥), tEeK, 12721

Then the following statements hold.
(i) Forl =il mogu(f) eVi= D220 Qo Ela, .
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(ii)  The mapping
¢t u(d) > Zu(E), v(E) —Fd)

can be extended to a homomorphism é: of SL(2, K) into G.
(iii)  Letting d;(£) = ¢:(d(£)), w; = ¢:(w;), we have

Mo di(§) = o, teK, 1511,
and
7o W; € g rad QY , 1si=1

Proof. By the proof of Lemma 1.6 in [6, p. 855], we have
(5.6) o Gi(£) = o + &My + Emig + -+,

where if po i_s the rank of o, 7i; has rank py + &;, My has rank po + 2¢;,
ete. Since M has a basis consisting of rank vectors of the form

o B_a, B

which has rank po + & + &, + -+ ,and since vectors of different ranks
are linearly independent, it follows that , is a multiple of 7 E q;
forv=1,2, ---,and (5.6) implies (i).

(ii) Consider the space V; of M defined in (i). By the definition of
F(z:(£)), and by (i) of Lemma 5.5, we have o Z.(£) ¢ V., and o §:(£) € Vi,
(e K. Then we have by (5.3),

(5.7) Mo Ba, 8(8) = Mo(BZSD), o Blay §:(8) = Moi(§) (BLL)",
for v=0,1,2,---. From these formulas it is clear that V, is invariant
relative to &;(£) and #.(¢), £ e K.

Since the elements u(£) and v(£), ¢ e K, generate SL(2, K), it follows by
(ii) of Lemma 5.1 that the mappings

u(§) —xi(§) = F(xi(§)) = 2:(8),  v(&) —7:(8)

define a projective representation ¢; of SL(2, K) on M, with V; as an invariant
subspace. (For later use we remark that since V; is an irreducible £;-module,
and because of (5.7), it follows by the theorem of [6, p. 856] that V', is an
irreducible invariant subspace.) We have

(5.8) ¢i(g9’) = i(9)bi(9") (g, 9"), a(g, 9') €2, g9,9' e SL(2,K)

Since dety, ¢:(g) = 1for all g e SL(2, K) by (iii) of Lemma 5.1, (5.8) implies
that «(g,¢’)” = 1, and hence «(g,g’) = 1. Therefore ¢; is an ordinary
representation of SL(2, K), and (ii) is proved.

(iii) We have shownthat ¢, | V;isanirreduciblerepresentationof SL(2, K)
on the space V,; of dimension p. From the classification of the irreducible
modular representations of SL(2, K) (see [1, p. 588]), it follows that ¢; | V;
is equivalent to the representation of SL(2, K) afforded by the space W of
homogeneous polynomials of degree p — 1 in two variables «, y such that

aiz...’
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w(f) = z, w(§) = &x+y,
zd(£) = &, yd(§) = £'y.

The maximal vector in W relative to SL(2, K) is y* ", and we have
yrdE) = ENTYT =y
since £ = 1forall e K, £ 0. Alsosince w = u(1)v(—1)u(1), we obtain
y o=y o(=Du(l) = (=z+ )" uw(l) = (—z—y+y)* =",

which belongs to y* 'rad QV. Transferring these results to V,, we obtain
(iii), and Lemma 5.5 is proved. _
Now let p be the mapping of ¢ — G defined by

(5.9) p(Z:(8) = z:(8),  p(7.(8) = yi(®), EeK, 1021

Let 2, ---, 2, be generators of G (as in §3) such that 2, --- %, = 1
For all m e M, A €8, we have by (5.3), letting (2) = 2;, - - - 2;,,

MmAZ;y -+ 2, = mA = mZ;, -+ 5, AD = mA®,

Therefore M(A — A®) = 0, and since M is a faithful L-module, we have
(2) = 2i, -+ 2;, = 1. Therefore p is a well-defined mapping of G onto G,
and is clearly a homomorphism. The kernel of p is -1- n G, by (5.3) and
Schur’s Lemma.

(5.10) LeMMA. The group G satisfies the axioms (1.1)—(1.6) of §la, with
the definition of 1, - -+ , ¢; given tn Lemma 5.5. M oreover the homomorphism
p defined by (5.9) is an isomorphism of Y onto Y such that p(7:(£)) = yi(¥),
andif g e (¥, Y),

(5.11) p(77®) = p(9)™®, 1<i=1, ¢eK.

Proof. (1.1) follows from (ii) of Lemma 5.5, and the definition of G. By
the definition of p, we have

(5.12) p(F(x)) = x, zeX.

Since F | X is an ordinary representation by (iii) of Lemma 5.1, (5.12) im-
plies that p is an isomorphism of X upon X, and hence X isa p-group. Simi-
larly p | ¥ isanisomorphism of ¥ upon Y, and hence ¥ is a p-group. Moreover
(5.11) follows from the definition of p, as soon as the fact that (¥, ¥)* c ¥
is established.

Let H = p '(H);then D; c H forl < ¢ < 1. Bytheargument of [2, p. 48],
H is generated by the set D; u --- u D;. Therefore H is generated by
Dyu ---uD,up (1), where p_'(1) is the kernel of p. In order to prove that
H c Ng(X)), it is sufficient to prove that D; € Nz(X,). Let d; ¢ D;,
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% e X;. Then there exists an element #; ¢ X; and £ e p—l(l) such that
di2d;" = @ &

Applying both sides of this relation to the maximal vector 7, , and using (iii)

of Lemma 5.5, we obtain £ = 1, and hence d; ¢ N5(X;) as required. This

completes the proof of axiom (1.3)_. )

By a similar argument, if Z; ¢ X,, §; ¢ Y;, ¢ # 7, then
(5.13) Tig; =i Tim el
Now consider the actions of &; and §; on ;. We have

Mo T i = MoGieV;.

If mog; = 2 a7 E2a,, a, € Q, then by (5.3)

o §; B = D, @ Mo(BZs,)”
But

E¥,, = E_, expad ¢ B,, = E_;

since —a; + a; is not a root if ¢ # j. Therefore

Mo §5 T = Mo Jj = Mo Ty §j .
Comparing this equation with (5.13), we obtain u = 1 in (5.13), and (1.4)
is proved. )

We have already shown that p is an isomorphism of Y onto Y such that
0(7:(8)) = yi(§), 1 £ 1 = I, £ e K. From §le, it follows that (Y, Y)
is generated by the elements z_.(£), £ ¢ K, where o« is a positive root
# a;, - ,a;. By letting

T_a(f) = F(z_a(¥)),
the facts that F is a homomorphism of ¥ onto ¥ and p(F(y)) = yfory e Y,
imply that p(£_.(£)) = 2_o(£). Then for z; ¢ X,;, we have
E_a(£)™ = gn
for some n ¢ @ and §7 ¢ Y. In order to show that n = 1, it is sufficient to

prove that if m_ is a minimal vector in M, then m_ &_,(£)* = m_. Aswe
have pointed out before, the methods of [6] show that

Eo= D bm_ Ky, .
Then
M_ & Ta(E) = 2 & m_(Ey, expad £ E_,).
We shall now prove by induction that
m_(Ey, expad ¢ E_,) = m_Ey; .
Suppose the result is valid for ». Then by the induction hypothesis,
m_(Ex expad £ B_o) = m_ Eu,(Bo; + HEa;, E_o) + 3By, E_alE_d]- ),
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The commutators [[E.,, E_.]- - -] are multiples of E,,_ ;. , and the roots o; — ja
are all < 0, since «; is a fundamental root and « is not. For j > 0, we have
for some a, b, - - in Q,

m— El:x,, Ea,;—ja = am— Eai—ja El:x,, + bm._ E2ai~ja Ez_il + oo =0

since all the roots ka; — ja are < 0, and m_ is a minimal vector. Returning
to our original formula we have

Mo & Eo(E)F " = m_,

and Z_.(§)" = gy implies » = 1. We have now proved the first half of
axiom (1.5) ; a similar argument proves the second half.

Tinally let A ¢ H. Then for 1 < ¢ < I, p(w;) = w;, and

p(h™) = p(h)"* e H

by (1.6) for @. Since H = p "(H), h® ¢ H, and (1.6) holds for &. We have
already proved (5.11), so that Lemma 5.10 is established.

We come now to the main theorem of this section. Because G satisfies the
conditions (1.14)—(1.26), either by the results of §1b or by the argument in

Steinberg’s paper [12], the construction of Steinberg can be applied to G to

construet an irreducible 2G-module of dimension p™, where p™ is the order of
X.

(5.14) TueorEM. Let R be a Lie algebra of classical type, which is obtained
from a complex semisimple Lie algebra by reduction modulo p, over Q@ of char-
acteristic p = 5. Let M be the irreducible restricted {-module whose mazimal
weight N satisfies N\(H;) = p — 1,1 = ¢ = I. Let G be the group of auto-
morphisms of & generated by x;(£) and y;(§) for t e Kand 1 = ¢ £ I, where K
1s the prime field in Q. Let F be the irreducible projective representation of G on
M. Let M be the irreducible right QG-module of dimension p™ defined by Stein-
berg. Then F is an ordinary representation of G, and is equivalent to the repre-
sentation of G afforded by the module M of Steinberg.

Proof. Because of Lemma 5.10, it is possible to apply Theorem 3.6 to G
and G, M and M. The homomorphism p : ¥ — Y has the properties re-
quired of the isomorphism § in Theorem 3.6. By Lemma 4.1, M has a one-
dimensional space of maximal vectors relative to @. By (iv) of Lemma 5.1,
the space of maximal vectors of M is at most one-dimensional. We shall
prove that 7, is a maximal vector in M. It is sufficient to prove that
o h € Qg for all 7o ¢ H. Since H is generated by Dyu - -+ u D, u p7'(1), this
result is clear by (iii) of Lemma 5.5. By (iii) of Lemma 5.5 and (ii) and (iii)
of Lemma 4.1, the functions f and f associated with mo and 77, satisfy the
conditions ) o

f(wy) = flw),  J(di(%)) = f(di(E)),
for1 <7 = land £ e K. By Theorem 3.6, there exists a vector-space iso-
morphism S of M onto M such that for all 7% ¢ M and generators {z.}, {Z;} of
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G and G respectively, we have
(5.15) WF(2) - F(2)8 = (m8)zy -+ 2, .

From this it follows that dim M = p™. Moreover by (iii) of Lemma 5.1, we
have

det F(g) =1, geQ.
Therefore, as we saw earlier in the case of SL(2, K),
F(gg') = F(g)F(g9") (g, "), a(g, 9') €@,

implies (g, ¢')*" = 1, and hence a(g, g¢’) = 1. Therefore F is an ordinary
representation of G, G = @G, and (5.15) asserts that F is equivalent to the
representation afforded by the module M of Steinberg. This completes the
proof of the theorem.

Remark 1. Theorem 5.14 agserts that ® has an irreducible restricted
module M of dimension p™, where m is the number of positive roots of & with
respect to 9. This result complements Theorem 2 of [7], in which it was
was proved that dim M =< p™ for all irreducible restricted 2-modules.

Remark 2. If we assume that & has a nondegenerate Killing form, then
with M we have an associated €-module V in the sense of [7, p. 137], where
€° is the complex semisimple Lie algebra belonging to .  The maximal weight
A of V satisfies

AH) =p—1, 1=7=1L
Applying the Weyl formula for the dimension of V' we obtain
(5.16) dmV = [ (A + p)(He) _ "

ar>0  p(Har)

To prove (5.16), let Har = D p; Hi, pi ¢ Q. Then
(A+p)(Ho) = (2 1D,

since p(H;) = 1,1 = 7 = I. Therefore each factor

(A + p)(Ho) _
P(Ha'> ’

and dim V = p™. From the results of [7] it follows that the -module V
obtained from V by reduction modulo p is irreducible, and isomorphic to M.

Remark 3. We shall apply Theorem 5.14 to construct a minimal right ideal
of dimension p™ in the u-algebra Ul of . The u-algebra of £ has a basis over
Q consisting of the standard monomials

uw(P,Q,R) = E% ... EE~H{* ... H} ™%, --- E™™,

—ay,

where 0 < p;, ¢i, ¢ = p — 1. For a vector exponent P, we write
|P|= D p:. Let U be the nilpotent subalgebra of U consisting of all
standard monomials u(P, 0, 0), [ P | £ 0, U_ the nilpotent subalgebra con-
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sisting of all u(0, 0, RB), | R | ¢ 0, and € the subalgebra of 11 generated by
1and {H,, ---,Hj.

(5.17) LemMA.  There exists an element ug € U € such that uo # 0, uo E, =0,
a > O, and uoHi = '—uofOT 1 § 7 é l.

Proof. Since U, is a nilpotent algebra, there exists an element ug 5 0 in
1, such thatue E, = Oforall @ > 0. Let HY denote the right multiplication
x — zH; in the subalgebra Q[H ;] of €. Since the powers H;,0 < s <p — 1,
are linearly independent and H? = H,, the minimum polynomial of HY is
A? — X, which has N\ + 1 as a factor. Therefore there is an element ¢; e Q[H ]
such that ¢, H; = —¢;, 1 = 7 = I. Since € = QH,|® --- ® Q[H)),
¢ = [Iieiei # 0. Moreover cH; = —cfor1 < ¢ < 1. Now let uo = ug c.
Because the standard monomials u( P, @, 0) are linearly independent, it follows
that ue % 0. Moreover, uoH; = uo(cH;) = —uo,1 <4 = I. For all roots
a>0,uk, = wocBy = ugBoc = 0, for some ¢’ ¢ € depending on ¢ and E,, .
This completes the proof of the lemma.

(5.18) LEMMA. & = Quo + uo U_ s a right ideal in 1.
Proof. & is clearly a subspace of 1l such that JU_ c & If H ¢ 9, then
uow(0,0, RYH = [—1 — X r; as(H)Juo u(0, 0, R) €.

For a > 0, we show that ue u(0, 0, R) E, e 3 by induction on [R|. If |R| > 0,
write

u(0,0, R) = u(0,0,R)E_s, |R'| <|R|, 8>0,
and obtain

wu(0, 0, R)Eqs = uou(0, 0, R)Eo E_s + uou(0, 0, R)[E_s, E,

where [E_g, E,] is either 0, in §, or a multiple of E_g,, for a root —8 + o # 0.
In all cases both summands are in & by the induction hypothesis, and the
lemma is proved.

(5.19) LEMMA. The elements uo and uo u(0, 0, R), |R| # 0, form a basis of
& over Q.

Proof. By Lemma 5.18, the indicated elements generate & over Q. Since
uo e U4 €, ug is a linear combination of standard monomials (P, @,0). We
have u(P, @, 0)u(0,0, R) = u(P, @, R) for all R, and since the standard
monomials u(P, @, R) are linearly independent, the conclusion of the lemma
follows.

(5.20) CorOLLARY. The dimension of & over @ s p™, wherem s the number
of positive roots of & with respect to 9.

(5.21) TueorEM. The right ideal S constructed in Lemma 5.18 15 a minimal
right ideal 1n 0.
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Proof. By Lemma 5.17, u, is a maximal vector in & of weight A such that

MH;) = —1, 1 24 = 1. Then & has an irreducible homomorphic image
31 = J/M such that the maximal weight of 3y is . By [5, Theorem 1, p.
312], & = M where M is the irreducible 2-module appearing in Theorem

5.

14. By Theorem 5.14, dim &, = p™, hence N = {0}, and & is an irreducible

right U-module.

10.

11.

12.

13.
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