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1. Introduction

In this paper we shall determine all groups G of order a power of 2 which
possess automorphisms that permute their involutions cyclically. The de-
termination is complete, except that we do not exclude the possibility that two
or more of the groups that we list may be isomorphic. The investigation is
perhaps not without interest simply as an example of the use of linear methods
in p-group theory; but the main motivation for it is that some result along
these lines is needed by Suzuki in his classification [4] of ZT-groups. It is a
pleasure to acknowledge that this paper is, in a direct way, a fruit of the special
year in Group Theory organized by the Department of Mathematics at the
University of Chicago.
A 2-group with only one involution, that is, a eyelie or generalised quaternion

group obviously has the property under discussion; and an abelian group has
it if and only if it is a direct product of eyelie 2-groups all of the same order.
It is convenient to exclude these eases from the beginning, and define a
Suzulci 2-group as a non-abelian 2-group with more than one involution,
having a eyelie group of automorphisms which permutes its involutions transi-
tively.

Evidently, the involutions of a Suzuki 2-group G all belong to its center,
and so constitute, with the identity, an elementary abelian subgroup fh(G)
of order q 2", n > 1. We shall show that fI(G) Z(G) q(G) G’, so
that G is of exponent 4 and class 2. The automorphism ( which permutes
cyclically the q 1 involutions evidently has order divisible by q 1. We
shall show that can be taken to have order precisely q 1, and so to be
regular. The order of G is either q or qa.

In many ways, it would be more satisfactory to impose on G the simpler,
weaker condition that the involutions of G are permuted transitively by the
full automorphism group of G. Possibly such a relaxation would not bring
in any large class of new groups; but the condition seems to be very hard to
handle. However, a little of our argument extends to the general ease, and
this part has been stated for that ease.
The methods used are similar to those involving the associated Lie ring

(el. e.g. [2]), but we shall not construct this ring explicitly. The setup,
which we shall presuppose, is as follows. If H is a subgroup of the 2-group
G, and K a normal subgroup of H with elementary abelian factor group H/K,
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then H/K can be considered as a vector space over the field . of two ele-
ments. If Hi/Ki, i 1, 2, 3, are three such spaces, with [H1, H2] c
and [H1, K2], [H2, K1], [H, H2, Hi], and [H, H2, H2] all contained in K3,

hi h2 h h2 induces a bilinear map from thethen the map (h, h2) -- [hi, h2] -1 -1

spaces H/K, H2/K2 to H3/K3. If H H2, the map is skew-symmetric;
and, under conditions which we shall not specify precisely, triple products
formed in this way satisfy the Jacobi identity. In particular, for i _-> 1, let
Li H/H Hi+l, where H1, H2, is the lower central series of G; and
for any vector space V let 9i(V) be the component homogeneous of degree i
in the free Lie algebra generated by V. Then there is a linear map, induced
by commutation, from (L) to L. Because all these maps are linear,
they have natural extensions when the base field is extended. Moreover,
if X is a group of automorphisms of G, and the subgroups involved admit X,
then the vector spaces are all X-modules, and the linear mappings are module
homomorphisms.

Naturally, besides the commutator structure, we have also to consider the
power structure of G. Let H/K (i 1, 2) be elementary factors in G,
such that H c H2, K K2, and [H1 K1] C K2. Then the map h --+ h
induces map v -- v(2) of H1/K1 into H./K2. The identity g-lh-igh
g-2(gh-1)2h2 shows that [H, H] H2, so that the product [u, v] is defined
from H/K1 to H./K2, and furthermore (remembering that the characteristic
is 2) that

(u + v) () u() + v() + In, v].

Thus v - v(2) is not in general a linear map, so there need be no natural
extension of it if the base field is extended. The mapping is linear if
[Hi HI] c K2 in particular, if H is abelian. In any case, if all the groups
involved admit the automorphism group X, then for in X, (u)(2)

2. Detailed statement of results

As we have said, a Suzuki 2-group G has a central and elementary abelian
Frattini subgroup (G) I(G). It is easy to see that in this case the
isomorphism class of G is determined by the vector spaces G/,I,(G) and (P(G),
together with the map v --+ v (2) of G/,(G) onto (G). Indeed, if gl, g
are independent generators of G, and h. ,..., h of (P(G), an element of G
can be written uniquely in the form gl ym"O, h,, where the a and
arc 0 or 1. Since the hi are of order 2 and central, to multiply two such ex-
pressions we need only to know g for i 1, 2, m, and [g, g.] for
1 <= i < j <- m, both of which the map v -+ v(2) tells us. Moreover, it is clear
that any choice of g and [gi, g.] gives a group, from which it follows that in
generl the only conditions that the mp v --+ v (2) must satisfy are that
((, + ))(2) + U(2) + )(2) is biliner, and that t|e imnges v(2) spnn the wh_ole of
(I)(G). Similar considerations show that if p, z are linear mps of G/,I,(G) and
(G) onto themselves such that (up) (2) u , then there is an automorphism
of G which induces the map o on G/(G) and the map a on (G).



SUZUKI 2-GROUPS 81

In the case when G is a Suzuki 2-group, (G) contains q 2 elements, and
can be identified, with the additive group of the field q of q elements. We
use for the general element of q when it is identified with (G). When G
has order q2, G/(G) can also be identified with q. To distinguish G/(G)
from (G), elements of will be enclosed in brackets when they represent
elements of G/(D(G), and the general element will be written (a). in the
cases when G is of order q3, elements of G/(G) will be identified with pairs
(a, /3) of elements of q. The cases that arise are given in the following
table.

Column I Column II Column III

A(n,O)

B(n, O, e)

C(n, e)

D(n, O, e)

(2) O/0+1
+I /0 +I(,)() ++

0+1 O1/2320 32(,)() + +
0+1 +1(, ) () + e00 + 30

z p--l + p

20 1, --1 20 +1

01,
--1 04 +0--1

Column IV

(o) (xo),

(o, ) (xo, x),

(, ts) -- (x,

(O/, 3) "--+ (kO/, k04--02+13)

Column V

(. )(. n) ( + . + , + .0)
(, 3, i’)(’, , ,) ( + 7, 3 + , + n + ,o + ea0 + 3a0)

(c, 3, )(7, , ,) (a +7,3 + ,+ , + -fl + eJ" + 3)

In this table, the first column contains a name for the group described.
The second column gives the map induced by squaring; here 0 is an auto-
morphism of q of odd order, which is subject to the conditions, if any, stated
in the third column; and is a nonzero element of q, which is subject to the
conditions stated in the third column. (e p-i + p0, for instance, means

--1 .pO.that there, is no elementpof forwhich e p + GroupsA(n, 0)
will exist whenever has a nontrivial automorphism of odd order, that is,
whenever n is not a power of 2. Groups B(n, O, e) exist for all n >= 2, since
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here, and in the remaining cases, a counting argument shows that e can always
be chosen to meet the requirements. Groups C(n,
automorphism 0 exists satisfying 20 1, that is, for odd n. 0 is then unique,
which is why it is not specified in the symbol naming the group. Groups
D(n, , e) exist whenever n is divisible by 5.

It is easy to check that, with the above specifications, (u
is bilinear and not identically zero, so that we have in each case genuinely
defined a group, and that group is not abelian. To verify that these are indeed
Suzuki 2-groups, we use the fourth column of the table. This specifies linear
transformations of G/q(G) and (G) onto themselves, which commute with
the square map, and so are induced by an automorphism of G. We note that,
since 0 is of odd order, the map X -- ),0+1 is invertible. For if 0h 1, k odd,
there is a map such that (0 + 1)b 0 -t- 1 2, and , X is certainly
invertible. Thus if h is a generator of the cyclic group *, so is hTM, and the
automorphism in question permutes cyclically the nonzero elements of (G).
Thus to verify that G is a Suzuki group, we only have to show that (G)
contains all involutions, that is, that (u)(2 0 implies u 0. We leave
this verification, and the verification that the maps in the fourth column
really do commute with the square mapping, to the reader.

All these groups have rather obvious representations as groups of triangular
matrices with elements in a, the relevant automorphisms being obtained by
transformation by diagonal matrices. For instance, the matrices

1 a

1

form a group isomorphic to A (n, 0), ghe relevang automorphism being induced
by

In this way, we can obgain a description of ghe elemengs of A (n, O) by pairs
(a, f) of elements of q, and of elements of the other groups by triples
(a, , ’), with the multiplication shown in the last column of the table.
Our main theorem is

THEOREM 1. Every Suzu]ci 2-group is isomorphic to one of the groups A n, 0),
B(n, O, ), C(n, ), and D(n, O, ).

It is not hard to see that A(n, O) is isomorphic to A(n, 0-1), B(n, 0, ) to
B(n, 0-1 ),andD(n, 0, ) toD(n, 0i, ) fori 2, 3, 4. We shall show
that A (n, ) is not isomorphic to A (n, 0) unless 01, but we shall not
attempt to determine when groups of the other three series are isomorphic.
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3. Involutions equivalent under the full automorphism group
In this section G is a non-abelian 2-group with more than one involution,

with an automorphism group X which permutes its involutions transitively.

LEMMA 1. An abelian X-subgroup A of G is a direct product of cyclic groups
of the same order 2e. The only X-subgroups of A are the groups A28, s O,
1,...,e.

If A were not a direct product of cyclic groups of the same order, it would
contain involutions of different heights, whereas the restriction of X to A
permutes the involutions transitively. If 2 is the exponent of A, the sub-
group A2e-1 of involutions is clearly an irreducible X-module; and since in an
abelian group the power mappings are linear, so is A28-1/A2, for all s. The
second part of the lemma follows immediately.

In what follows we shall be concerned with an abelian normal X-subgroup
A of G, and a normal X-subgroup C which covers A, in the lattice of normal
X-subgroups. Then A => (C) (A); and by Lemma 1, there are no
X-subgroups strictly between A and (A). Thus either (C) A or
(C) (I)(A). The first of these possibilities has to be deferred to a later

section; but the second can be dealt with under our present assumptions.

LEMMA 2. If A is an abelian normal X-subgroup of G, which is not 1, then
for no element u of G not in A is both u A2 and [u, A] A4.

Assume that both [u, A] A and u A By the first of these statements,
there is an automorphism a of A such that, for a in A, u-au a+, and
hence (au-)2 a2+4u-2. Because A is a 2-group, the endomorphism 1 - 2a
is invertible, so that a can be chosen so that a+ is any element of A2, in
particular u. Then (au-)2 1. But A contains all the involutions in G,
so that au- and therefore u, belongs to A

LEMMA 3. Let A be a normal abelian X-subgroup of G, and C a normal
X-subgroup covering A. If(C) (A ), then A has exponent at most 4.

By assumption, [C, A] is contained in (A) A2, so that for u in C we
have u-lau a1-2’, where v v(u) is an endomorphism of A. Then

u-2au2 a(1-2v) al-4+4-.
Since u veA, andAisabelian, wehave4(v- 0. Let= (u) bethe
linear transformation of A/A induced by v. Then if A has exponent greater

-2than 4, we must have v, so that is idempotent.
If v is a second element of C, we have

1 2(uv) (1 2(u))(1 2v(v)),

whence (uv) (u) + (v). Since each of (uv), (u), and (v) is idem-
potent, this gives (u)(v) + (v)(u) O, which, the characteristic being 2,
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says that (u) and (v) commute. Thus the transformations (u) for u in C
form a set of commuting idempotents, and they have therefore a common
eigenvector. But X permutes the nonzero vectors of A/A transitively, and
permutes the transformations (u) among themselves; so that every vector
in A/A"is an eigenvector for all (u); that is, each (u) is either 0 or 1.
As we have seen, (uv) (u) + (v), so that is a homomorphism of C

into the additive group of the endomorphism ring of A/A. If u belongs to
the kernel of , [u, A] c A; and since we are assuming (C) (A), we
alsohaveu A:. By Lemma 2, u belongs to A. That is, the kernel of is
A. Since its image has order 2, C/A has order 2. Let u belong to C but not
to A. Then v v(u) does not depend on the choice of u, and so commutes
with the elements of X. For a in A, (ua) ua-’. If u e A2-2 we can
choose a so that (ua)2 1, whereas all involutions of G are in A. If u e A-’,
then B, the group generated by the squares of elements of C not in A, is cyclic
over A-’. B obviously admits X, and so does A-’, since v commutes with
the elements of X. Thus we have a contradiction to Lemma 1, and the
theorem is proved.

4. Some auxiliary lemmas
In this section we prove some lemmas about a non-abelian 2-group H with

an automorphism of odd order satisfying the following conditions. Let
H H1, H, H3, be the lower central series of H, and put

L H/H H+I.
Then we assume that transforms L1 irreducibly, and permutes transitively
the vectors of L:. We shall assume also that L. has q 2" elements, n _>_ 2.
Suppose that L has order 2m. If is an eigenvalue of the transformation of
L induced by , then L is isomorphic to (},), the field of 2 elements,
because it is irreducible. The eigenvalues of on L are the conjugates

X2, i 0, 1, , m 1. In the vector space L (R) obtained from L1 by
extending the base field to , we can choose a basis u0, u, U-l, such
that u h"u and we can furthermore suppose that u0, u, u_ are
conjugate over :, so that the elements of L are precisely the elements

a u, for a in . We shall have frequent occasion to choose a basis in
this sort of way in what follows; we shall describe the process as "choosing
a conjugate basis for L adapted to ." If u0, u_ is a coniugate basis
for L1 adapted to , the products [u, Ua: ,’", Ua] span L (R) ,
i 2, 3,-.-.

LEMMA 4 (Gorenstein-Thompson, of. Gorenstein [1]).
-isomorphic.

L and L are not

Assume the contrary. Then m n, and }, is a primitive (2 1)-st root
of unity. L (R) isspannedbytheelements[u,u.],0 -<_ i <j =< n- 1,
and [u, u.] }$+[u, u.]. Thus the eigenvalues of on L are found among
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the numbers X2+2, 0 =< i < j =< n 1. If L1 and L2 are -isomorphic, , is
among these eigenvalues, so that for some i, j in 0 -< i < j <- n 1,

),+. Since 2’ + 2 1 < 1, this contradicts the fact that , is a
primitive (2" 1)-st root of unity.

COROLLARY. If is any extension field of L: @ has no --subspace
-isomorphic to L.

If it had, the transformations induced by on L and L would have a
common eigenvalue, and L and L, being both irreducible, would be iso-
morphic.

LEMMA 5. If H H the map of L into L induced by squaring is

21Ui) 2i +2i

The square map sagsfies

(u) u,
(u + v) u + v + [u, v],

and these equations characterize it among mappings of L into L @ , for
any extension field of . For if the map u u* satisfies similar conditions,
by subtraction the map u u u* is a -homomorphism. Since L is
irreducible, it is either an isomorphism or the zero map, and it cannot be an
isomorphism by the corollary to Lemma 4. Thus u* u as required. That
is, it is only necessary to verify that the proposed map has these properties,
which is straightforward.

LEMMA 6. If H H hen L is no$ -isomorpMc o L
Assume that it is. The first step is to show that the order of on L is the

same as its order on L or L. Suppose indeed that n is a power of which
induces the identity on L and on L. Then for x in L and y in L, we have

Ix, y] [x,y] [x,yy] [xy, y],

sothat[x(1 n),y] 0, thatis,[L(1 n),L] 0. ButL(1 n) is
a $-subspace of L, and cannot be the whole of L, since that would imply
L [L, L] 0, which is not so. Thus L(1 n) 0, so that n induces
the identity on L also, as asserted.. Thus we again have m n, and a
primitive (2 1)-st root of unity. Since L and L both have order 2,
n is at least 3. We may furthermore assume that n is odd, since otherwise
2 1 is divisible by 3, and a suitable power of induces a fixed-point-free
automorphism of order 3 in the group H/H of class 3, which is impossible
(Neumann [3]).
The eigenvalues of on L are found among the numbers +, 0 i <

j n 1, and since L is irreducible, they form a single conjugate class
over , that is, they are the numbers X’+ for some fixed r, and for
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s 0, 1, n 1. It follows that [ui, u.] 0 unless i j =i=r (mod n).
L3 (R) is spanned by the products [[ui, u.], uk], and

[[u u], u] x +’+true, u], u].

If i, j, are distinct numbers between 0 and n 1, 2 2 W 2 is not con-
gruent (mod 2 1) to any number 2 2, and so +i+ is not an eigen-
value of on L, and hence not on the isomorphic space La either. It follows
that [[u, u], u] 0. There remain products [[u, u], u]. Some of these,
also, are eigenvectors for multipliers which are not eigenvalues, and so are
zero. But the possible eigenwlue X+i will arise, in general, from two such
products, [[u, u_], u_] and [[u, ui_], U_l], where if necessary subscripts
are taken mod n, though there will be only one such product if i j 1.
If there are two products, at most one of them is nonzero. For [Ua, u] O,
0 a < b n-- 1, impliesb-- a rorb- a n-- r. Thusifj> i,
[[u, u_], u_] and [[u, u_], U_l] are both nonzero only if j i 1 and
j i 1 are, in either order, r and n r. But this would imply
n 2(j i), whereas n is odd.
We use finally the fact that [u(), u] 0 for any u in L Taking u u,

and using Lemma 5, we obtain

< [[u, u], ] 0.

Since eigenspaces belonging to different eigenvalues are independent, we can
pick ou of his sum he erms belonging o ,he eigenwtue A =., equate
hem ,o zero. In case j i 1, here is Only one such erm, and his mus
,herefore be zero. In general, we obtain

[[u,, u_], u_] + [[u, u_], u_] O,

and since we have already seen that at least one of these products is zero, both
must be.
Thus the assumption that La is isomorphic to L leads to the conclusion

that La 0, a contradiction.

5. App]icaion o Szki 2-groups
If G is a Suzuki 2-group, and A is an abelian normal -subgroup of G, then

as H of the previous section we may take any non-abelian normal -subgroup
C of G covering A.

LEMMA 7. Let A be a normal abelian -subgroup of G, and C a normal -sub-
group which covers A. If A (C), but C’ A, then C is abelian.

The -composition factors of C in A are all isomorphic under a power
mapping, and so are those in C/C’, since C/(C) is irreducible. Under the
hypotheses of the lemma, these sets overlap, so that all -composition factors
of C are isomorphic. If C is non-abelian, this contradicts Lemma 4.
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LEMMA 8. Let A be a normal abelian -subgroup of G, and C a normal -sub-
group which covers A. If C’ A, then A has exponent at most 2.

Suppose not. Since C/C’ has exponent 2, the same is true of all the factors
of the lower central series of C. By Lemma 1, the lower central series can
only be C, A, A2, A4, But then the factors L2 A/A and L3 A/A
are isomorphic under a power mapping, which contradicts Lemma 6.

LEMMA 9. If A is a maximal normal abelian }-subgroup of G, then A has
exponent at most 4, and contains D(G).

Since G is non-abelian, there exists a normal -subgroup C which covers A.
The hypotheses of Lemmas 3, 7, and 8 together include all possibilities, so
the conclusion of one or other must apply. It cannot be that C is abelian,
since A is maximal, so A has exponent at most 4.

If A does not contain (G), we can take C AB, where B c (G). By
Lemma 1, the proper -subgroup [G, A] of A is contained in A. Thus
[g, A] c A, whence [g2, A] A. Since the squares generate (G), we have
[b, A] A for any b in (G), in particular, for b in B but not in A. By
Lemma 2, b A2, so that (C) A. By Lemma 7, C’ < A implies C abelian,
so that C’ A, and by Lemma 8, A is of exponent 2, whence A ftl(G).
Since A is a maximal abelian normal -subgroup, it is the only nontrivial
abelian normal -subgroup. Thus A Z(G), and G has class 2 (since a
group of greater class has two distinct nontrivial abelian terms in its lower
central series). Thus G is its own second center, and since Z(G) has exponent
2, so has G/Z(G) G/A. That is, A contains (G) after all.

6. Concluding computations

It follows immediately from Lemma 9 that G has exponent not exceeding 8
and class not exceeding 3. To obtain the precise results stated in Section 1,
and the complete list of groups in Section 2, we have to resort to computation.
We shall obtain the groups in order of increasing -length (= length of
-composition series).
As always, we denote the order of ill(G) by q. The order of the auto-

morphism must necessarily be divisible by q 1, and it is no loss of generality
to assume that its order is divisible only by primes dividing q 1. In what
follows we shall make this assumption. In the case of -length 2, the main
burden of the proof is to show that this implies that E has order precisely
q 1. We begin with a lemma that isolates the necessary field theory.

IEMMA 10. Let be a field of characteristic 2, a proper extension of odd
degree. For any integer r and for any in , there exists a 0 in such that
the trace of a+rs in is zero.

We denote the trace by tr(al+rs). Let have order 2m, and let have
order 2, so that m is an odd multiple of n. The multiplicative group * of
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is cyclic of order 2 1, so that as a runs through *, the values taken by
1-2a are the same as those taken by a, where u is the highest common factor

(1 2r, 2 1). Now if (r,m) r0, (1 + 2r,2- 1) is 1if misan
odd multiple of r0, and is 1 2TM if m is an even multiple of r0. In the first
case, a1+2", and therefore al+2"s can be any element of *, and the lemma is
trivial. Thus we may suppose we are in the second case, and also that
r r0 that is, we may suppose that 2r divides m.
Next we write s sl 2, where the multiplicative order of sl is prime to

2 - 1, and the multiplicative order of is divisible only by prime factors
of 2 + 1. Then is of the form flr+, so that the set of elements a’+s is
the same as the set of elements a+v2. Thus we may suppose , so
that e is a product of pa-th roots of unity, for various primes p dividing 2 1,
and exponents a. For such a prime p, a p-th root of unity belongs to the
field of 22r elements, and a pa-th root to an extension of this field of odd degree.
Thus if o is the greatest subfield of which is an extension of odd degree of
the field of 2 elements, we may assume that belongs to 0.

Let 00 be the subfield of 0 such that the degree of 0 over 00 is 2. Then
00 is an extension of odd degree of the field of 2 elements, so that the map

2rl
a --* a is an automorphism of it of odd order, and the map a -- a restricted
to it is invertible. That is, among the elements a+e are to be found all
elements r, for , in oo. The map , -- tr(/e) maps 00 into 0 a 0 say;
and it is linear over 00 n 00. Now the degree of over is odd, whereas
its degree over o0 is a power of 2. It follows that the degree of 00 over 00 is
the same as the degree of over , and so is at least 3. But the degree of
0 over 00 is at most 2. Hence the 00-1inear map , -- tr(/e) must have a
kernel; that is, we can choose a, even in 00, so that a 0 but tr(2+r) 0,
as required.

LEMMA 1 1. A Suzuki 2-group of -length 2 is isomorphic to some A (n, 0).

The sole composition series of G is G > (G) > 1. Let , be an eigenvalue
of on G/(G). By assumption, is an a(q 1)-st root of unity, where
primes dividing a also divide 1, and it is a corollary that 2() is an
extension of odd degree of , the field of q elements. Let the order of be 2,
and let u0, u, u be a conjugate basis adapted to , with u0 u0.
Because the products [u, u.] span (G) (R) , and [u, u] is conjugate to
[u0, u._], there is an r such that [u0, u] 0. Then k2r+ is an eigenvalue of
on (G), and so is a primitive (q 1)-st root of unity. We observe that it

cannot happen that m 2r. For then 2+ would belong to the field of 2
elements, and so (X) would be of even degree over 2(2+).
We next show that [u, u.] 0 unless i j +/-r (mod m). Indeed, if

[u, u] 0, 2+2’ is an eigenvalue of on (G), and so is ,1+2 for some s.
Thus 2(1 -t- 2r) 2 2 is divisible by the order of , and in particu-
lar by 2 1. This implies that, perhaps after interchanging i and j,
i---- r W s(modn) and j--- s(modn). Now+2isa (2- 1)-strootof
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unity, so that if s (mod n), 28(1+2,) 2(1+2r). Thus we may assume
that in fact i r + s. But then ),8(1+.r) ),+." gives * , and since, generates the field of 2 elements, j --- s (rood m). Thus i j r (rood m),
(possibly after interchanging i and j), as required.

It follows that a conjugate base Vo, vl, Vn-1 can be chosen for (G) so
that, for some e in , [u u+r] v, nd [u, u.] 0, i -j +/-r (modm),
where, as in what follows, subscripts on u’s are taken rood m, and on v’s,
rood n. We are now in a position to compute the effect of the square mapping
on the general element a u of G/B(G), using Lemma 5. The result is

where , tr(al+2ra), using the fact that v v+ If is a proper
extension of , then by Lemmu 10 we can choose a 0 in so that 7 0;
that is, we can choose u 0 in G/(G) such that u() 0. This means that
there are involutions in G not in (G), and G is not a Suzuki 2-group. We
conclude that , that is, that the order of is exactly q 1. Moreover,
in this case the symbol "tr" is superfluous; and by choice of v, we can take

1. The square map becomes .(’ a2u) (2) Z a(l+)v. If we
identify a u with (a)and v with i’, this is the square map ap-
propriate to A (n, 0), with 0 the automorphism a --+ a This automorphism
must be of odd order, because 1+" must be a primitive (q 1)-st root of
unity. Thus G is isomorphic to some A (n, 0), as asserted.

If now G is any Suzuki 2-group, and X is a -subgroup of -length 2, X is
either a Suzuki 2-group, in which case it is isomorphic to some A(n, 0), by
Lemma 11, or it is abelian, in which case it is a direct sum of n cyclic groups
of order 4. Clearly, we can unify the two cases by writing A (n, 1) for this
latter group; this is indeed the group that we get if we take 0 1 in the
definition of A (n, 0); the only reason why the stipulation 0 1 was made in
the definition ws that Suzuki 2-groups are assumed non-abelian. Thus in
:any case we can choose a conjugate basis x0, xl, x_t for X/(X),
.adapted to , and a conjugate basis v0, vt, v_t for (X) 21.(G) such
that the square map from X/(X) to (X) is (E a2’x) () E "v where
." a We notice that in fact the basis v0, v._l can be chosen first,
and then the basis x0, x_l to satisfy these requirements. Indeed if the
given bases satisfy our requirement, so do },x0 2x 2n-1

Xn--1 and
hi+two, v, Vn--1 for any choice of ) and and since is then

arbitrary, v0, v_ is an arbitrary conjugate basis of (X) adapted
to . In particular, if Y is a second -subgroup of G of -length 2, we can
choose a basis yo, Yn-- for Y/((Y), so that the square mapping in Y is
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also in the normal form. Lastly, since the square mapping determines the
commutator map, we see, comparing X with the group constructed in the
proof of Lemma 11, that if 0 is a -- a then [xi, xi+r] u, and [x, x.] 0
ifj i +/- r, assuming 0 1.

IEMMA 12. A Suzuki 2-group of -length 3 is isomorphic to some B(n, 0, e),
C(n, ), or D(n, O, ).

If G is such a group, we observe first that (G) is elementary abelian. For
it is abelian by Lemma 9, and if it contains two steps of the -composition
series of G, G covers it. Then Lemmas 7 and 8 show that either (G) is of
exponent 2 or G is abelian, neither of which is true.
Thus the factor G/(G) contains two steps of the -composition series, so

that G XY, where ech of X, Y is of -length 2. Let X be isomorphic to:
A (n, 0), and Y to A (n, q), where it may or may not be the case that
We choose conjugate bases Xo Xn-1 for X/B(G), yo Yn-- for Y/(G)
and Vo, v,_ for (G) so that the square mappings in X and Y are given
by

0+1where a To complete the description of G, we have to deter-
mine the products [x, y]. These products cannot all be zero. For that
would mean that X and Y commute elementwise. However, for any g 1 in
@(G) we can choose x in X, yin Ysothatx y g. Ifx, ycommute,
this means that (xy-1) 1, whereas all involutions are in @(G). On the
other hand, if x0 Xx0, and y0 y0, [x, y] can be nonzero only if
X’ is an eigenvalue of on @(G). We play these facts off against one
another, to find out which pairs (0, ) can occur, and what the structure of G
then is. It is convenient to proceed by cases.

Suppose first that 0 1. Then X/@(G), Y/@(G), and @(G) are
all -isomorphic. From the fact that the square mapping takes the form
( ax) () +v, and similarly in Y, it follows that if x

2then y y, and v v. Thus [x, y] 0 if i j, since+ is
not conjugate to X, but [x, y] v, for some v not 0 in q, since [x, y],
like v, belongs to the eigenvalue :+1. The formula

(u + v) ( u + v( + [u, v]

enables us now to show that

(E
where a2 W a W . We cannot have v p W p-i, for any p 0 i
q, since this would imply 0 if a p, so there would be involutions out-
side (G). Thus G is isomorphic to B(n, 1, ) for a permitted .
Take next the case 0 1. Here X/(G) and Y/(G) are -isomorphic

to one another, but not to (G). We may assume the conjugate bases chosen
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so that x0 x0, y0 ky0. If 0 is a--+ a then [xi xi+r] [xi+r, x]
and [x, x] 0 otherwise; so that the eigenwlue corresponding to is
(+). It follows that X(+’) is an eigenwlue of on (G) only if s r,
and hence that [x, y] 0 if j i r. Wenow note that, whenever
the groups X, Y are not uniquely determined; we can, in fact replac9 y0 by

2suituble multiple of pXo + yo, for any p in q, and, of course, y by p x + y.
Since [x, x0] 0, we can choose p so that [x pXo + y0] 0. That is, we
may assume that [x, y_] 0, so that the only nonzero products [x, y] re

for some in q. We can now compute thegiven by [x, y+]
square mapping, and obtain

+ y)
12 12where,= a a If= p Wp,then= 0whena= p,

so that G is not a Suzuki 2-group. Thus G is a group B(n, , ) with 0 the

Thirdly, suppose that 0 is a a r 0, but is the identity. We note
that since A (n, ) and A (n, 0-) are isomorphic, we my suppose that
0 r n. For some primitive (2 1)-st root of unity , we have
x k:x, y ’-’(+)y," and v (+)v. There exists a sub-
script s such that [x0, y,] 0, from which it follows that +’-(+) is an
eigenvalue of on (G), and so is (+) for some t. Now 2
2 2(mod2 1) has only the trivial solution a b d 1,
c e (rood n), nd the solutions obtained from it by permuting a, b, and c,
and d and e. Of the six solutions of the congruence 1
2(1 2) obtuined in this way, two give an immediate contradiction (e.g.,
0 s 1 1, s 1 r r (modn) is contradictory), and two
imply r 0 (mod n), which is not so. The remaining cuses are s r W 2,

1,2r 1 0(modn),ands 1, r, 2r- 1 0(modn). The
second conflicts with the requirement that 0 < r n, leaving only the first.
We see at once that n is odd, und that 0 a a satisfies 2 1. The only
nonzero products [x, y] are given by [x, y++] v v+ for some v in q.
We can compute the square mpping ( x y)() v,
where ai+ W + . The usual argument shows that
p- p++i, and so G is a group C(n, ).

Finully, we must consider the cse when X, Y ure nonisomorphic and non-
ubelian. This requires 0, to be a a and a a were r, s, r W s, and

2
r-- sarenonzeromodn. Thenx x,y y,andv :v,

l+2rwhere is primitive (2 1)-st root of unity, and We
can choose i, j so that [x, y] is a nonzero multiple of v0, which implies that
k ,or2(1 + 2’) + 2(1 + 2) (1 + 2)(1 + 2) (rood2 1).
The right-hand side is the sum of the powers 2, 2, 2, 2r+ whose exponents
are distinct mod n, hence the exponents on the left must be equal to them, in
some order. If, for instance, i 0, and so i + s s, we find that j, j + r
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are congruent, in either order, to r, r -t- s, so that r 4-s, which is impossible.
Similar arguments exclude all possibilities except

and
i s, i-t- s r, j r+ s, j-t-r 0,

i=r-s, i-s= O, j=r, j-r= s.

The first case comes from the second by interchanging r and s, and i and j;
that is, by interchanging X and Y, so it does not yield a different group. The.
second gives 5r 0, s 2r, i 3r, j r. The nonzero products are
given .Y [X+ar, Yi+r] e2Vi, f.or some e in 12; The square mapping is
(-: a x - Z 2"Yi)(2) Z 2vi, with i" a _}_ ea.8,fl2 _}_ 1+22 The
range of e is limited as usual, so that G is a group D(n, O, e).

LEMMA 13. There exists no Suzuki 2-group of -length greater than 3.

We note that it is sufficient to exclude -length 4. For a group of length
greater than 4 contains a normal -subgroup of length 4, which cannot be
abelian, by Lemma 9, and so is a Suzuki 2-group.

If the length is 4, there are two a priori possibilities, according as (G) has
exponent 4 or exponent 2. We take the first case first. Since (G) then
accounts for two steps of the -composition series, there are two in G/(G),
so that G XY, where X, Y are of -length 3. Each of X, Y contains (G),
which is of type A(n, 1), and so is either of type B(n, 1, e) or C(n, ).
We choose conjugate bases, adapted to , x0,..., xn-1 in X/(G),

YO,’’’, Yn-1 in Y/(G), Uo,.’., un-1 in (G)/2(G), and v0, vn_l in
(G). We note that (X) (Y) 2(G), so that products [x, x-] and

[y, y-], evaluated in (G)/2(G), are to be reckoned zero. Thus the Jacobi
identity gives [[yk, x], x.] [[yk, x], xd, if double products are evaluated in
(G)/2(G), and triple products in (G), and similarly with x’s and y’s

interchanged. We shall use these relations to show that [x, y.] 0 for all
i, j. This disposes of this case, for it shows that [X, Y] 2(G), which com-
bined with (X) (Y) 2(G), gives )(G) (G), a contradiction.

First, if X, Y are both groups2. B(n, 1, !, then for some2 primitive (2 l!-st
root of unity X, x( X x, y(.= X y, u X u, and v X:+ vi;

2’ud V v for some nonzero e and v. The usualand [x, ud e v, [y,
eigenvalue argument shows that [x, y.] 0 if i j, and that [x, Yd is a.
multiple of U+l. But then [x, Yd 0 implies [[xi, Yd, y+l] 0, whereas
[[x, y+l], Yd 0.
Next suppose that Z is a C(n, e), but Y is a B(n, 1, e.). Then n 2r + 1

and for a suitable (2 1)-st root of unity X, x } X’-x y } X21(1-t-2r)-
Yi

2iu h2(i+mu and v} 2+’(l+mv and [u, x+] vi+, and
[u, Yd Vv for nonzero e, v. The only products [x, y.] which can be non-
zero are products such as [x, yi_], which is a multiple of ui+. Then if
[x, y_] 0, we have [[y_, x], xi_] 0, whereas [[y_, x_], xd 0.
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Finally, if X and Y are both C(n, e), the bases satisfy
yi ,Yi U k(+")u and )i k., v; and [u, x+] and
[u, Y+r] are nonzero multiples of V--r. The only products [x, y.] which can
be nonzero are products such as [x, yi+] and [y, X+r], which are multiples
of ui. Then [x, y+] 0 implies [[yi+, xi], x+] 0, whereas
[[y+, x+], xi] 0; and similarly with x’s and y’s interchanged.
This disposes of the possibility that (G) has exponent 4. If (G) hs

exponent 2, then G XYW, where ech of X, Y, W is of -length 2, nd so
is isomorphic to A (n, 0) for some 0. We observe first that it is not possible
for X, Y, W to be all nonisomorphic. Indeed, each of XW, YW is one of
the groups listed in Lemma 12, and it is merely a matter of checking through
the list to see that, if X, Y, W are all nonisomorphic, this implies that W is
A (5, 0) where 0 is a -- a. Since the argument is symmetric, X, Y are also
isomorphic to A (5, 0), and we have a contradiction.
Assume, then, that X, Y are isomorphic, and choose conjugate bases adapted

to , x0, x_ in X/((G), yo,’", Yn-- in Y/((G), Wo,"’, w,_ in
W/((G), and Vo,..., Vn-- in (G). Exclude, for the moment, the case
when X, Y, W are all isomorphic nd non-abelian. Then it is, again, a matter
of checking through the list of possible groups XW to see that there is in each
cse precisely one vlue of i for which Ix0, w] or [y0, w] is nonzero, and that,
for this vulue, Ix0, w] and [y0, w] are multiples of the same v.. Thus we
cun choose u0 ax0 -t- ty0, with a, not both zero, so that [u0, w] 0, and
so [u0, w.] 0 for all j. Then u0 and its conjugates span a -invariant sub-
space of G/((G), corresponding to a -invariant subgroup U of -length 2,
which commutes elementwise with W. Since U W, we obtain an element
of order 2 outside (G), which is a contradiction.

In the case when X, Y, W are all isomorphic and non-abelian, there is an
integer r such that the possible nonzero products Ix0, w] or [y0, wi] are
[x0, w] and [y0, Wr], which are multiples of v0, and Ix0, w_] nd Ix0, w_],
which are multiples of v_. In this cse [w0, w] is u nonzero multiple of v0,
and [w0, w_] of V--r, and all other products [w0, w] are zero. Then we can
choose a, , , with a, not both zero, so that if u0 aXo -t- yo -t- ,wo,
[u0, w] [u0, w_] 0, and hence [u0, wi] 0 for all i, from which point
the proof is completed as before.
Thus Lemma 13 is proved, and with it, the main theorem.

7. Loose ends
In this final section, we del with two mtters left over. They are not,

perhaps, of major importance, and proofs will be given in outline only.
First, as we have said, we do not intend to deal with possible isomorphisms

between groups B(n, O, ), C(n, ), and D(n, O, ); but we do want to deal
in this way with the groups A(n, 0). We abundon the restrictions that
0 1, and thut 0 is of odd order, and prove the following theorem.
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TI-IEOREM 2. A n, O) is isomorphic to A n, only if 0-1.

A (n, 0) is abelian only if 0 1, and contains involutions outside its Frattini
subgroup if 0 is of even order, but not if it is of odd order. Thus we may
assume that neither 0 nor q is 1, and that both have odd, or both have even
order. Interchanging 0 and if necessary, and supposing that q 01, it
follows that we may suppose the order of 0 to be at least 4.

Let 0be a-a2" and let be a -+ a2’. It is clear that ifG A(n, 0)
is isomorphic to A(n, ), there is an automorphism v of G, of order 2" 1,
which induces a transformation of G/(G) with an eigenvalue g, and a trans-
formation of (G) with an eigenvalue g2,+1. The automorphism of G which
gives it its A(n, O) structure has eigenvalue h on G/,(G) and },2r+1 on if(G),
and ,+1 is not a conjugate of X.r+l, since s :t:r (rood n). It follows that
v cannot induce the same transformation on G/,(G) as does, and similarly,
that it cannot induce the same transformation as any power of . Thus to
prove the theorem, it is sufficient to show that if X is the group of transforma-
tions of G/((G) induced by automorphisms of G, X has only one cyclic sub-
group of order 2" 1.

If we choose a conjugate basis u0, ul, un-1 for G/(G), adapted to ,
the only nonzero products [ui, uj] are v [ui, u+r], i 0, n 1, and
these are linearly independent. It is clear that if we put V G/(G) (R) 9q,
[u, V] has dimension 2. But if u i u, it is not hard to see that the
matrix of coefficients of the forms [u, ui], can be transformed, by a permutation
of rows and columns, into a diagonal sum of blocks

g0 --g. 0 0 0
0 gl -g3 0 0

0 0 0 g-2

--gl 0 0 0 gk--1

where g0, g-i are a selection of h0, h_, and k is the additive
order of r (rood n). This is the same as the multiplicative order of 0, and
so, by assumption, is at least 4, from which, again, it is not hard to see that
if two or more of h0, h_x are different from zero, the rank of the co-
efficient matrix is at least 3, that is, the dimension of [u, V] is at least 3. Trans-
formations in X clearly preserve the dimension of [u, V], and so they must act
monomially on u0, ui,.", u_l. Since they must also map conjugate
vectors into conjugate vectors, X is generated by the elements g us --+ u+i,

and h u -- hu, }, a primitive (2 1)-st root.
h2=-1 h.Clearly, g 1, g-hg In any cyclic subgroup Z of X we

can choose a generator g/ah, where d is a divisor of n. Then Z has order
dividing d(2/ 1), which is less than 2" 1, unless d 1, which implies
Z h}. That is, X has only one cyclic subgroup of order 2" 1, as asserted.

Finally, the main theorem raises rather obviously the question of what can
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be said about p-groups satisfying similar conditions, for p odd. Here both the
answer and the arguments leading to it are simpler.

THEOREM 3. If p is odd, a p-group with an automorphism permuting its sub-
groups of order p cyclically is abelian.

Let G be such a group, and the automorphism. Evidently, a maximal
abelian -invariant normal subgroup A of G is a direct product of cyclic
gro.ups of the same order, and its only -invariant subgroups are its powers
Ap. We may, without loss of generality, assume that G covers A, in arguing
by contradiction.

First, we prove that if g e A, gP e Ap. Since [G, A] is a proper -invariant
subgroup of A, [G, A] c A", so that for g in G, g-lag a+, where a is an
endomorphism of A. Then (ag) ga, where

b 1 - (1 --pa) + (1 --pa)-- -- (1 -pa)-= p(1 --for some endomorphism of A, p being odd. If, for g outside A, g belongs
to A", then we can choose a in A so that (ag) 1, for 1 + p is invertible.
This is a contradiction.
Now the map from G/A to A/A induced by g -+ g" is linear, since

(xy) x’y (mod (G’)H),

where H is the p-th term of the lower central series, and both (G’) and Hp
are contained in AP; and it is therefore a $-homomorphism. The fact that
g" e Ap implies g e A shows that it is an isomorphism, and since A/A is, as
always, irreducible, the image must be the whole of A/A. Thus G/A is
-isomorphic to A/A, and since power mappings in an abelian group are
always linear, the -composition factors of G are all isomorphic.

This contradicts the fact that G is non-abelian, by an argument of the type
used in proving Lemma 4. Indeed, has order a multiple of

p- - p- -- -- 1,

the number of cyclic subgroups of an elementary abelian group of order p’,
whereas if G/A were -isomorphic to any submodule of G’/(G’)H, could
not have order greater than p- -- p- 1.
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