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1. Introduction

A semigroup G is left [right] menble if there exists positive linear func-
tionM of norm one on the Bnch spce of bounded reM functions on G with
the sup. norm which is invrint under the left [right] translation operator
(see Section 2).

It is proved by I. S. Luther in [12] that commutative semigroup G hs a
unique inwrint mean if nd only if G contains finite ideM. It is proved
by M. M. Dy in [2] that infinite solvable groups or infinite menble nontor-
sion groups or infinite locally finite groups (see [2, p. 535]) hve more thn
one left invariant mean. It is also proved in [2] that if a left amenable group
G has a subgroup or a factor group with more than one left invariant mean,
then G has more than one left invariant mean.

It is the purpose of this paper to prove the following theorems"

THEOREM A. If G is a left amenable countable semigroup, then the linear

manifold spanned by the set of left invariant means has dimension n < o if and
only if G contains exactly n finite disjoint groups A A which are left
ideals with left cancellation (abbreviated (1.i.l.c.) i.e., ga gb, a, b A g e G
implies a b).

In the "if" prt, countability of G my be dropped. From the "only if"
prt it follows that ll the left inwrint means hve to be finite means.
The uthor ws not ble till now to drop entirely the countability condition

imposed on G (though one expects this theorem to be true without imposing
on G ny countability condition) but only to replace it by some weaker one
(see Section 5).

THEOREM B. If G is a left amenable group (not necessarily countable), then
the dimension of the linear manifold spanned by the left invariant means is either
one or not finite. It is one if and only if G is finite.
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The finite groups A re even isomorphic to one nother.
This mthor proved meanwhile: Let G be a semigroup with left cncellation.

Then the dimension of the linear mnifold spanned by the left invriant means is n,
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THEOREM C. If G is a left amenable semigroup, then G admits left invariant
countable means (i.e., means which belong to Q(ll(G) if and only if G contains

finite groups which are (1.i.l.c.).

If for each such finite group and (1.i.l.c.) A we define the left invariant mean

.(f) (1IN(A))iAf(gi),
where N(A) is the number of elements in A, and f is a bounded real function
on G, then it follows that the set {9} is a basis (topological) for the norm-
closed linear space of left invariant elements in Q(ll(G)).

THEOREM D. If G is a left amenable semigroup, then G admits only countable
left invariant means if and only "if G contains a finite number of finite groups
which are (1.i.l.c.

There are in this paper some lemmas and remarks which are interesting for
their own sake.

2. Definitions and notations

Let G be a semigroup, l(G) will be the space of all real-valued functions
on G such that o I(g) is finite.
re(G) will denote the space of real-valued bounded functions on G with

norm II f supoo If(g) I. By [3, p. 29],/I(G)* (the star means conjugate
space) is linearly isometric with m(G). We shall identify ll(G)* with m(G).
Q /I(G) -m(G)* will be the natural embedding (Qg)(f) o,9(g)f(g)

for fern(G).
Let la [re] be the left [right] translation operator in m(G)

(1J)(g) f(ag) [(raf)(g) f(ga)],
,

and let La l’a, Ra re, where (lag)f g(laf) and (r*a)f g(raf),
9 e m(G) * f em(G)
An element 9 e m(G)* is called a mean if 9 1 and 9(f) >- 0 for f e m(G)

such that f(g) -=> 0 for every g G. M(G) re(G)* will denote the set of
means. era(G)* is a left [right] invariant mean if it is a mean and
L 9 9 [R 9 9] for eery g G. Ml(G) [Mr(G)] will denote the set of
left [right] invariant means. M(G), MI(G), Mr(G) are w*-compact convex
sets in m(G)* (if nonvoid!). See M. M. Day [2].
A semigroup G is left [right] amenable if Ml(G) 0 [Mr(G) # 0]. G is

amenable if Ml(G) # 0 and Mr(G) # 0 (and it is shown in [2] that this
implies Ml(G) n Mr(G) # 0). eMl(G) n Mr(G) will be called an in-
variant mean.
An element 9 e l(G) is called a finite mean if Q9 is a mean and

{g;lg(g) l> 0} is finite. el(G) is a countable mean if Q is a mean

(or equivalently, if 9(g) >_- 0 for g e G and 9(g) 1). The set of finite
means when embedded in m(G)* is w*-dense in M(G) (see [2, p. 513]).
A net of means (for convergence of nets see [10]) 9 converges w* (strongly)



34 E. GRANIRER

to left [right] invariance if L x x [R, x x] converges w* (in norm) to
zero for each g e G. When no ambiguity arises, we shall drop Q and say that
the net of finite means x converges w* (strongly) to left invariance if
L qx qx converges w* (in norm) to zero for every g e G.

If A is a subset of G, then 1 will denote

If a G, then la will be

l(g)- 1 if g eA,

0 if geA.

la(g) 1 if g a,

=0 if ga.

AsetA c Gisaleft[right]idealifGA cA [AG c A]. A G is a left
ideal with left cancellation (1.i.l.c.) [right ideal with right cancellation (r.i.r.c.)]
if it is a left [right] ideal and ga gb for geG, a, beA implies
a b fag bg for g e G, a, b e A implies a b]. If A G is a finite (1.i.l.c.),
then e will denote the left invariant mean whose value on f e re(G) is

e(f) (1IN(A))

Here N(A) denotes the number of elements in A, and this convention will be
used throughout this paper. (In other words, e Q[(1/N(A)).I].) qx is
obviously a mean, and since for finite ideals to be (1.i.l.c.) is equivalent to the
condition gA A for every g G, is also left invariant.

(If A is a finite (r.i.r.c.), then will be a right invariant mean.)
If K re(G)* (or K l(G), or K re(G)) is a nonvoid set, then the

meaning of dim K n, n < , will be throughout this paper that the linear
manifold (in the algebraic sense) spanned by K is finite-dimensional and its
dimension is n. dim K will mean that the linear manifold spanned by
K (in the algebraic sense) is not finite-dimensional.

3. Semigroups with n (0 < n < ) finite groups which are
left ideals with left cancellation

It is the purpose of this section to prove

THEOREM 3.1. If G is a semigroup with exactly n finite groups (0 < n < oo

which are (1.i.l.c.), A1, A, then G is left amenable, and

(3.1) MI(G) {; n__laa,a >_- 0, a 1}.
We need first a lemma which is proved partly in [1] by Clifford.

LEMMA_ 3.1. If G is a semigroup with exactly n finite groups A A,
which are (1.i.l.c.), then A U A is a finite minimal right ideal.

Proof. Let g G be arbitrary. Clearly A g is a finite left ideal. It is
even a minimal left ideal. For let I A g be a left ideal, and let ag e I,
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aeAi. Then Aiag c I. But Aa A since Ais a group, and thus
Ag Aiag I.

Consequently the left ideal A gag A g must equal A g which shows
that c, d e A g, c d implies

(3.2) cag dag.

Moreover if h is any element of G, then hA A since A is a finite (1.i.l.c.).
In other words, hA g contains as many elements as A g, and thus if c d,
c, d e Ag, one must have hc hd. Thus Ag is a finite (1.i.l.c.). From
(3.2) it follows that A g is also a group (since it is a finite semigroup in which
right and left cancellation hold) and by the conditions of the lemma

Ag Ai U Ak=l k

for some j. So far we have that U [A is a finite right ideal. It is a minimal
right ideal. To see this, let I U [A be a right ideal, and let a e I. With-
out loss of generality we may assume al A. Let a A, and let e be the
unit element of the group A. Then al e A, and if (al e)- is its inverse
in A, then

a ea (ae)(ae)-la a[e(ae)-a] ealG IG I.

Hence A I for all i which shows that U [A I.
Remar 3.1. In fact it is proved above that if {A} is the set of all finite

groups in G which are (1.i.l.c.), then A U A is a right minima] ideal.
Proof of Theorem 3.1. Every e is a left invariant mean; thus G is left

amenable. MI(G), and since Ml(G) is convex, it follows that

LetnoweeMl(G) andaeA ==IA. Thene(f) =e(lf) forfem(G).
Let h(g) (laf)(g) f(ag) and A g,..., g}. For the above fixed
a e A let

B {g eG; ag g}, i 1, N.

Then B B , i # j, andU B G because A is a right ideal by Lemma
3.1. But h(g) f(ag) f(g) for g ebb. It follows that

and thus
 (EI

Now l(g) lo(ag), because if g B, then ag g and l,(ag) 1. And
if g B, then ag g and lo(ag) 0. Therefore

(3.3) (1) (l 1) (1) (l lo).

Let i be fixed, and let g e A, nd denote by e the identity of A. Then
l(gg) l(g) for every g G. (If g e, the sides are equal, nd if
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g ek, then the right side is zero while the left side is nonnegative). We get

(3.4) (gi Xgi - ( ]e/) ((lgi--1 le),

where g-(1 e Ak g-/lg e gi g-(. However (/g:_ le) (g) lek(g-lg)
lg(g) for every g e G (because if g g the sides are equal, and if g g
the right side is zero while the left is nonnegative). Thus

(3.5)

and (3.3), (3.4), (3.5) imply

for every g A.
We can now write

(f) f(g)(1.)=

=1(I)N(Ak)[(1/N(A)). f(g)] =q(l)N(A)c(f).

Since B are N disjoint sets such that U B G, we get that

and (I)N(A) __> 0. If we denote a (I)N(A), then we have proved
that every e Ml(G) is of the form a x, and thus that

MZ(a) {; 2;, => 0, 2 }.
Remarlc 3.2. A as minimal left ideals (left ideals and groups!) are dis-

joint, and therefore qx, i 1,..., n, are linearly independent. (If
Sx 0, then 0 (’ )(1) .) Therefore we get that
q, i 1, n, is the set of vertices of the convex set Ml(G).
Remark 3.3. Theorem 3.1 obviously remains true if we replace "left" by

"right" and (].i.l.c.) by (r.i.r.c.).

4. Amenable semigroups with countable left invariant means

THEOREM 4.1. Let G be a left amenable semigroup which admits countable left
invariant means. Then for each such mean there is in G a sequence
(not necessarily infinite but not empty) of finite groups which are (1.i.l.c.) and
such that 0 i=10liA and ai >= O, a 1.

Proof. Let 0 el(G) be such that Q0 q. Then 0(g) (1) 0
and 0 Xo 0(g) g 1. Thus

l; 0() > 01
is countable and nonvoid. If a e I and b go a e Ga, then

If {A,} is the set of all finite groups and (1.i.l.c.) in G, such that e. is the unit of
A,, then for g A, (g) ge is an isomorphism of A, onto A, such that q. is the
identity mapping and oqs . This was communicgted to the author by M.
Perles and can be directly proved.
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o(b) ;(lb) q;(lg lb) (lgo 1o).
Since for every g e G, l lo(g) loa(gog) >= la(g), we get

o(b) (o ) ->_- (o) o(a) > 0.

Thus for every b Ga, a I,
(4.1) 0(b) ->_ 0(a) > 0,

and therefore Ga I. We proved actually more. Since o(g) => 0 and
Eo(g) 1, we have Ga Ig; qo(g) >- o(a)}, which is a finite set if
a I. Thus for every a e I, Ga is a finite left ideal.

Let now H Ga be a minimal left ideal, H (bl, b) say. Hbi H
is a left ideal, and since H is minimal, Hbi H for each bi e H. Thus for
each b, b e H there is a b. e H such that bb b. It follows that
o(b) => o(b) because b Gbi, bi I, and (4.1) holds. But interchanging
i and l we get that o(b) o(b) for every b, b H, in other words, that
o is constant on H. However H is a left ideal with left cancellation. Were
this not so, then there would exist go G, b, b. e H such that

(4.2) go bi go b b bi b
But o(b) g(l) g(1,o 1), and by (4.2)

(lo l)(g) l(gog) _-> l(g) + l(g) for every g e G.

Thus o(b) g(l) g(lgo 1) -> g(l + 1.) o(b) -o(b.). It
follows that

0(b) _>- 0(bi) + 0(b.) 20(b) > 0

because o is constant on H and b e I. This is a contradiction, and conse-
.quently H is a (1.i.l.c.). But then for b H, bH H, and from the above
also Hb H. Thus H is a finite group which is a (1.i.l.c.).
We prove now that H Ga. It is sufficient to prove that a e H because

then Ga H, but H was a minimal left ideal in Ga; thus H Ga. If a H,
then letbl ga ell. Since H is a group,

(4.3) b (gl b)(g b)-b g[b(g b)-ib] gl bj,

whereb b(g b)-b eH. Thusb g b g aandaeH. Butqo(b)
.’o(1) (l 1), and by (4.3), (l l)(g) l(g g) _-> la(g) + l.(g)
for every g e G, so that

o(bl) g(l 1) >__ g(la -- 1) o(a) + o(b) o(a) + o(b),

.and this contradicts the assumption that a e I (or o(a) > 0).
We conclude that for each a e I, Ga I is a finite group and (1.i.l.c.) on

which o is constant (Ga is also a minimal left ideal). Thus if a, b I, then
either Ga Gb, or Ga Gb 0. Let

.(4.4) I [J Ga
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be a decomposition of I into disjoint finite groups which are (1.i.l.e.). I is
countable and I Ur Gb; therefore there are {a} I which satisfy (4.4).
Let Ga A. We proved above that 0(g) is constant on A and a e A.
Thus

(4.5) 0(g) 0(a) if g A.
But

1 ]]ol] o(g)= o(g)= N(A)o(a).
Let a o(a)N(A);then a 0, a 1. Since (4.5) can be written
Co(g) 0(a)l(g) (l(g) e l(G) because A is finite, and since
the A’s are disjoint for each g e G, only one element of this sum is not zero),
we get

0 0(a)1
o(a)N(A)[(1/N(A))I] a[(1/N(A))I].

Thus g Q0 Qa[(1/N(A))I] aQ[(1/N(A))I]
a, because the convergence of 0(a)l is in l(G) norm and

Q is isometric. And this finishes the proof of Theorem 4.1.
Remarl 4.1. The above theorem can be paraphrased in the following way"

If G is a left amenable semigroup, and Ml(G) Q(ll(G)) , then G has
finite groups which are (1.i.l.c.). The converse holds ulso because if G con-
tains at least one finite group and (1.i.l.c.) A, then Ml(G) Q(l(G)).
Thus we can state

THEOREM 4.2. G is a semigroup such that Ml(G) Ql(G) if and only
if G contains at least one finite group which is a (1.i.l.c.).

COnOLLAnY 4.1. If G is an infinite left amenable group, then

Ml(G) n Ql( G) O.

Otherwise G would hve to contain finite left ideals. This corollary cn
be proved much more esily directly.

It is proved in [7, p. 9], nd formerly sserted in [13], that if G is n menble
group and re(G)* is a left invariant element (L, for every g G),
then there exist , e Ml(G) and a 0, 0 such that a 2.

+In fact aCx and of Jordan’s decomposition theorem (see [5,
p. 98]) for bounded additive real set functions, and it is proved in [7] that
+ are also left invariant if is left invariant. In this direction we prove

the following"

LEMMA 4.1. If G is a left amenable semigroup and ’ e Ql(G) is
a left invariant element (L,’ ’ for every g G), then there exist
1, 2 Ml(G) n Q(l(G) and a O, 0 such that ’ a 2 and
; ’1 () > 0} n ; ’ (.) > o} .
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Proof. Let ell(G), Q ’, and

A /g; (g) > 0}, B (g; (g) < 0}.

Let l(g) (g)l(g), (g) --(g)l,(g). Then , e l(G) and

f re(G) and go e G, then

(4.6) ’(f) (g)f(g): ’(lof): (g)f(gog).

If/= la,then’(l)= (g)l(g)= (g)= (g)l(gog).
Let now A {g; gog e A}; then l(gog) l(g). We get

()(o) .()()= ()

becuse(g) 0forgAuB. But(g) < 0forg B,nd(g) > 0for
g A. Thus

plies

(4.7) A AnA nd BnA
(thus A A {g; go g e A} which implies go A A nd A is left ideal).
Let now f e m(G).

E..(a)/(a) E.(a)l(a)/(a)=
But

.(a)l(a)f(a) .(a)(aoa)f(aoa)
because of (4.6) when we look t l(g)f(g) &s belonging to m(G). And.(a) l(ao a)f(ao a) .. (a)f(o a)

E.n. <()f(ao a) + E.n. (a)f(o a)

bec&use l(gog) l,(g) nd(g) 0, g A uB, A n B . Butby
(4.7) we get th&t

Thus

..(a)/(a) .(a)f(aoa)= E,.(a)(a)f(aoa)

We hve proved that, for every g e G, (g) stisfies L,(Q) Q. Since
(g) -(g)l(g) &nd B {g; -(g) > 0}, the sme proof holds for
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the left invariance of 2(g). By their definition i(g) >= 0 for every g G.
Let now

o,
0 if 0, i 1,2.

Then Qi (if not zero) are countable left invariant means, and

Remarl 4.2. Let I(G) {; re(G)*, Lo for every g GI. Since
Lo l*, I(G) is a w*-closed subspace of m(G)* and a fortiori norm-closed.
If we denote II(G) I(G) n Q(ll(G)), then II(G) is a norm-closed (since
Q is isometric) linear space, and Lemma 4.1 implies that II(G) is the linear
manifold spanned by Ml(G) n Q(ll(G)). If IA,/ is the set of finite groups.
which are (1.i.l.c.), then each Ml(G)
for some sequence AI A,}. Thus we get that the norm-closed linear
space spanned by the lq./ equals Ix(G). Moreover, the lq.} form a gen-
erMized basis for II(G) because every q II(G) can be represented as
]a for some sequence Ail /A,I, and the assumption

lim_ a 0
in re(G)* norm implies

0 limv (a .,) (1

(since 9(1) tii). And now it can be easily seen that the {9.} are the
vertices of the norm-closed convex set Ml(G) QII(G), and Ml(G) n Qll(G)
is the norm closure of the convex set spanned by 9A.. We have proved

LEMMA 4.2. I(G) is the norm-closed linear space spanned by {.}, and
the set {.} is a generalized basis in It(G).

COROLLARY 4.2. For any semigroup G, dim II(G) n, 0 < n < , if
and only if G contains exactly n finite groups A1, A, which are (1.i.l.c.).

If dim 11(G) n > 0, then Lemma 4.1 implies the existence of countable
left invariant means, and by Theorem 4.1 we get that G contains finite groups
which are (1.i.l.c.) (let all of them be {A,} ). By Lemma 4.2 the {.1 are
a basis for I(G), so that G has exactly n finite groups which are (1.i.l.c.).
Conversely, let A1, A be the finite groups and (1.i.l.c.) in G; then

I(G), i 1, n, and by Lemma 4.2 the are a basis for II(G),
and therefore dim 11(G) n. (This result will be needed in the following
section.)

Remarlc 4.3. If G contains an infinite number of finite groups {A,} which
are (1.i.l.c.), then . e Ml(’G) Q(lt(G) ), and so Ml(G) n Q(ll(G)) .
Moreover Ml(G) f Q(ll(G)) MI(G), and the sides are not equal (in other
words, G admits also left invariant means which are not in Q(ll(G)). For
let {A} be an infinite sequence of finite groups in G which are (1.i.l.c.).
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For every f e m(G) let Tf e m(Z) (Z are the natural numbers with addition)
be defined as follows:

(4.8) (Tf)(i) (1/N(A)) g;,xf(g).
It follows easily that (Tlo)(i) lz(i), and if f e m(G) and f(g) >= 0 for
every g G, then (Tf)(i) >= 0 for every i Z. Moreover

T(laf)(i)-- (1/N(Ai)) gixi (laf)(gj)---- (1/N(A)) .f(ag)
(1/N(A))4f(g)= (Tf)(i)

since A is a (1.i.l.c.). Thus T(f) T(laf) for every a e G. Let now q

be a mean in re(Z)* which has the property that (1,) 0 for every finite
set B c Z (for the existence of such means see [9, p. 80]). Let now 0 be
defined for f e re(G):

o(f) ,,( Tf).

It follows from above that 0(lo) (Tlo) (lz) 1 since is a mean
in re(Z)*. Now if fem(G) is such that f(g) >= 0 for every geG, then
(Tf) (i) ->_ 0 for every i Z, and therefore o(f) (Tf) >= O. This implies
also that 0 m(G)*, as is easily seen. But T(laf) T(f) for a G; thus

O(laf) ,’(Tlaf) ,(Tf) o(f),

which implies that 0 e Ml(G). If go e G, then since

(Tlgo)(i) (1/N(A)) gA l,0(g),

we get that (Tl0)(i) 1/N(A) Oil go eA, and (Tlg0)(i) 0if goeA.
Anyway TI is either the function (1/N(Ai)) 14 for some i e Z or identically
zero. Since the choice of implies (1) 0 for every i e Z, we get that
0(lg0 (Tl0 0 for every go e G. Thus 0 e Q(ll(G)), but0 Ml(G).
We can now state

COrOLLarY 4.3. If G is a left amenable semigroup, then Ml(G)=
Ml(G) n Q(II(G) if and only if G contains a finite number (at least one!) of
finite groups which are (1.i.l.c.).

The "if" part is Theorem 3.1. For the "only if" part, since G admits
left invariant countable means, then by Theorem 4.1, G contains finite groups
which are (1.i.l.c.). If their number were infinite, then by Remark 4.3, G
would admit left invariant means which are not countable means, which
contradicts Ml(G) Ml(G) n Q(l(G) ).

5. Left amenable semigroups with a finite-dimensiona] set
of left invariant means

In this section we prove the main result of this paper, i.e.,

THEOREM 5.1. If G is a left amenable denumerable semigroup such that
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dim Ml(G) n < , then Ml(G) c Q(ll(G)), and G contains exactly n
finite groups which are (1.i.l.c.).

In fact some stronger result will be proved in which the denumerability
condition on G will be replaced by" G has a denumerable subsemigroup Go c G
such that the set of left cosets of G with respect to Go is denumerable.
From Theorem 5.1 we get, using a result of Day in [2], that for left amenable

infinite groups (not necessarily denumerable) dim Ml(G) . After the
proof of the main theorem, we give some corollaries which may be interesting
for their own sake.

For the proofs we need the following lemmas and remarks"

LEMMA 5.1. Let G be a left amenable semigroup, and I,l a net of finite
means converging strongly to left invariance. If A G is a denumerable set,
then there exists a sequence } } such that

lim Laa a 0 for every a A.

Proof. Let A {a} 7, and let D be the directed index set of the net
{.}. Byassumptionlim.]]Lo, 0. There is then a eD such
that La . . < 1. There also exist a, a in D such that

and

Let a D be such that a a and a a. Then Lai a < ,
i 1, 2. If a,... a_ have been chosen so that

]]Lai.i --.i] < 15, i 1,2,...,j, j= 1,2, ,k--1,
kthen a will be chosen in the following way" There exist a, a such

that a aimplies ]]L. ,]] < 1/. Let a afor 1 i k.
Then La . . < ]/, 1 i k. The sequence {a}, k 1, 2,
satisfies the requirements because if a A, then a ai for some i0, and
hence

L , . < 1/j forj > i0

so that limo La, . 0, which proves the lemma.

DEINITION (see [4, p. 215]). Let G be a semigroup, and G0 G a sub-
semigroup; then for a, b e G we write a b if there exist g’, g e G0 such that
ag’ bg. For c, d e G we write c d if there exist a finite set a, a
of elementsinGsuchthutc a a a d. The relation
is an equivalence relation, and the decomposition of G into the disjoint equiv-
alence classes with respect to this relation are the left cosets of G with respect
to Go.

LEMMA 5.2. Let G be a semigroup, and Go G a subsemigroup. Let
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q e m(G) * satisfy L if g Go. Iffor some a G, La , then L q

for every g in the left coset containing a.

Proof. Let b c; then bgl cg. for some gl, g. Go.
i 1, 2, andLsLt Lstifs, eG, weget

Since L

Lb Lb(L,lq) LI Lc., Lc(L2) L,.

In other words, b c implies L L. Let now b be in the left coset
containing a. Then there exist al, ak e G such that

and by assumption La . Consequently

COROLLARY 5.1. If Go G is as in Lemma 5.2, and if g,} is a set of repre-
sentatives of the left cosets of G with respect to Go, then left invariance of q m G) *

by the elements of the set Go t (g,l implies left invariance by every g e G. (In
other words, L, q for g e Go ,J {g.} implies Lg q for every g e G.)

We shall further use the following known facts"

(5.1)* If is a w*-cluster point of the sequence l-n} of Lemma 5.1
( e l:= {,, .+ ,. "’l, and the bar means w*-closure), then La
for each a e A. (This is a trivial generalization of [2, p. 520, (B)].) Let

,f m(G);then

But there is an n such that ItL n]] ]]f] < /3whenevern __> n,
and an n >- nl such that n. e l;I ( )lafi < /3;[ ( )f[ < /3}.
Thus La q for each a e A. Since La L Lab, one even has L
for every c which is in the semigroup generated by A.

(5.2)* The set of finite means is w*-dense in the w*-compact convex set
of means on m(G) (see M. M. Day [2, p. 513, (C)]).

(5.3)* It is well known that if is a sequence of means on m(G) with
exactly one w*-cluster point q0, then limn_ q(f) 0(f) for every f re(G).
Otherwise there would exist fo era(G) and a sequence n such that
I( 0)f01 > for some > 0 But by (5.2)* has a w*-cluster
point which Has to belong to the w*-closed set
Thus 0 0. Since 0 is also a w*-cluster point of , we get a contradic-
tion to the uniqueness of 0.

(5.4)* If Y is a linear topological space (1.t.s.) and X c Y is a finite-
dimensional linear manifold, then X is closed (see [3, p. 14, Corollary 4 (a)].
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(5.5)* If Y is a finite-dimensional (1.t.s.) with two topologies , .
(both make Y a (1.t.s.)), then and r: are equivalent (see [3, p. 14, Corollary
4

(5.6)* If Y is a (1.t.s.) and X c Y is a linear manifold, then the induced
topology from Y in X makes X a (1.t.s.) (and if Y is convex, so is X).

(5.7)* If X is a separable Banach space with a Schauder basis x, then
there exist ii > 0 such that each sequence yi X for which x y <
is also a Schauder basis for X. (See [11]. We use only the case where X
has a finite Schauder basis which is entirely trivial.)

(5.8)* If G is a left amenable semigroup and 0 e MI(G), and if {,} is a
net of finite means converging w* to 0, then {,I is converging w* to left
invariance (see [2, p. 520, (A)]). But by [2, p. 524, Theorem 1], there is a
net of finite averages far out in , (for definition see [2, p. 523, Definition
5])--let it be Cs--which converges in norm to left invariance, and by [2, p.
523, Lemma 3], the net {I also converges w* to 0.

(5.9)* ll(G)is *w -sequentially complete (see [5, p. 374]).

We are now ready to prove Theorem 5.1..

THEOREM 5.1. Let G be a left amenable semigroup with Go c G a denumerable
subsemigroup such that the set of lej’t cosets (of G with respect to Go) is denumer-
able.

If dimMl(G) n < , then Ml(G) Q(ll(G)), and G has exactly n

finite disjoint groups which are (1.i.l.c.).

(Remark. If G has a denumerable left ideal, then the condition of the
theorem holds.)

Proof. Let E be the linear manifold spanned by Ml(G). Let, Ml(G) be a basis for E. If 1 (n are chosen as in (5.7)*,
then ti min_<i_<n ti satisfies: Each seti eE, i 1, ,n, - ,
is also a basis for E. We shall prove that-there are such ’s which are in
Q(II(G)). It will then follow that Ml(G) Q(ll(G)), i.e., E is the linear
manifold spanned by Ml(G) Q(l(G)); in other words, E is exactly I(G)
of Remark 4.2. Hence by the assumption of the theorem, dim I(G) n,
und Corollary 4.2 implies then the existence of exactly n finite groups which
are (1.i.l.c.).

Let now q0 be one of (,-.- q), and S(x0,8) Ix; x x0 I.
E is finite-dimensional and by (5.4)* is closed in both the w* and norm
topology of re(G)*. By (5.6)* both topologies induce in E topologies which
make E a linear topological space, nd by (5.5)* they are equivalent. There-
fore there exists a w*-neighborhood No of 0 such that

o e No n E S(o,) n E,
This author is very grateful to Professor Day for kindly pointing out an error in

the original proof of this theorem.



ON AMENABLE SEMIGROUPS I 45

and we can assume that No is w*-closed and convex. (If N1
N(9o,f, ,fn, e) {9;[ (9 90)f < , 1 =<_ i =< n, f em(G)} satisfies
o e N1 n E c S(90, ) n E, then No {9;I (9 0)f =< e/2, 1 =< i =< nl
is a w*-closed and convex neighborhood of 0 and satisfies

oN0nE S(0,) uE.)

By (5.2)* we can choose for each w*-neighborhood W of 0 a finite mean
9w e No n W. {gw} is a net of finite means defined on the directed set of
w*-neighborhoods of 9o (directed by inclusion) which converges w* to
By (5.8)* there is a net {} of finite averages far out in {9} which con-
verges in norm to left invariance, and {ba} converges w* to 90. But 9 e No
and No is convex; thus a as a finite average of the finite means 9v is also
finite mean, and ka e No. By the assumption of the theorem there exists
a countable set {g} of representatives of the left cosets of G with respect to
G, and also Go is countable.
By Lemma 5.1 there exists a sequence {$} {$} such that

limn_[]L II 0 for every a e G0o {gn}.

But by (5.2)* the sequence 6, has some w*-cluster point 6o e No (because. e No nd No is w*-closed). By (5.1)*, $0 satisfies La b0 bo for every
a Go o {g,} hence by Corollary 5.1, Lo o tPo for every g G. But
w*-cluster point of finite means is by (5.2)* a mean. Thus we have con-
structed a 6o which is a left invariant mean, and 0 No n E c S(0,6) n E.
We shall show that 60 e Q(l(G)) and thus finish the proof of the theorem.
We shall construct a sequence 6 of finite means such that lim_. $(f)
So(f) for f e m(G), and it will follow by (5.9)* that 0 Q(l(G)).
There are w*-neighborhoods V, of b0 such that o e V, n E S(60,1In) n E,

and we can assume that V, are w*-closed (as we did for No). Let W,
V n n V,,. W, is a w*-closed neighborhood of 60, such that 0 W
V,nE S(6o, l/n) nEandW W,+,n 1,2, .... From now on,
let 6, k, Since 6o is a w*-cluster point of we can choose a sequence
nx < nz < < n < such that, eWe. {Vn} asasubsequenceof
$ satisfies also lim_ L tp !nk 0 for every a Go u {g.}. But, as a sequence of finite means has by (5.2)* some w*-cluster point 6 (which
by (5.2)* is a mean). By (5.1)*, also satisfies La lP for every
a e Go o {g}, and by Corollary 5.1, Lo 6 6 for every g G, i.e.,
left invariant mean and b E. But e W Wo for k >= /Co, and W
is w*-closed; therefore 6 Wo for each k0, and therefore W n E for
/ 1, 2,.... We can now write$ eWnE S($o, 1//c) nE;inother
words, $ k0 < 1 for every/, and thus 6 $0. We have proved
that k has exactly one w*-cluster point which is 0. It follows by (5.3)*
that lim_ k(f) 0(f) for every f re(G). But the Cn are finite means.
Let e ll(G) be such that Q n. Then k is a wek Cauchy sequence
in l(G), because if f m (G), lim_, y(;) limo ]nk(f) o(f), and
therefore f() is a Cauchy sequence of reals. But by (5.9)*, l (G) is weakly
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sequentially complete, and therefore there exists a e ll(G) such that
limk_.f() f(b) for f e m(G). However b0(f) limk_bn(f)
lim_f() f(), so that Q 0. Thus 0 e Q(ll(G) ), which com-
pletes the proof.

COIOLLAI 5.2. If G is a denumerable semigroup with dim Ml(G) n,
0 < n < , then Ml(G) Q(ll(G)), and G contains exactly n finite groups
which are (1.i.l.c.

Remar]c 5.1. We remark here that dim Ml(G) 1 is equivalent to G
having unique left invariant mean, as is easily seen.

COROLLARY 5.3. If G is an infinite left amenable group (not necessarily
denumerable), then dim Ml(G) .

Proof. If Go is a denumerable left amenable group, and if dim Ml(Go) < ,
then Corollary 5.2 implies the existence of finite left ideals in Go, which can-
not be.

If G is the group of our theorem, since 0 < n, G is left amenable. If Go c G
is a subgroup, then Go is left amenable (see [2, p. 513]. There exists by [2,
p. 534] an isometric linear operator from the space/; e m(Go)*, Lg
forg G0} into{; m(G)* Lg forg G}
But/; e re(G)*, L for g G} is by [13, pp. 280-281] (see also

[7, p. 9]) the linear manifold spanned by Ml(G). Thus if dim Ml(G)
n < , then dim Ml(Go) <= n for each subgroup Go G. Now since G is
infinite, we can find a sequence {g} of different elements in G. Let Go be
the countable group generated by {g}; then dim Ml(Go) <= n, which is a
contradiction (since Go is infinite and denumerable, and therefore
dim Ml Go ).
Remar 5.2. If G is a finite group, then it is known that it has a unique

left [right] invariant mean. We can now rephrase Corollary 5.3 as follows"
G is a left amenable group with unique left invariant mean if and only if
G is finite (see Remark 5.1). We have proved thus

THEOREM 5.2. If G is a left amenable group, then dim Ml(G) is either one
or not finite. It is one if and only if G is finite.

ConoLAl 5.4. If G is a commutative countable semigroup, then

dimMl(G) 1. or dimMl(G)

A commutative semigroup has at most one minimal ideal. We get thus
a partial result of a more general result of I. S. Luthar in [12].

Co1oL 5.5. Let G be a countable semigroup which is left amenable and
right amenable. /f dim Ml( G) n < then n 1 and Ml(G) Mr(G).

L’a (l’)* and (l’af)(g) f(ag) forfem(G0) anda, geG0.
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(In other words, G has a unique right invariant mean which coincides with the
left invariant one.)7

Proof. By Corollary 5.2, G has n finite groups A1,..., A which are
(1.i.l.c.), and by Lernrna 3.1, A [J A is a right minimal ideal. But if
n > 1, then A1, A. are different left minimal ideals and therefore disjoint.
Let now oMr(G) (Mr(G)0 by assumption). For any goG,
(r0 1Gg0)(g) lg0(gg0) la(g), and thus 1 0(1G) 0(1,0). Let
nowg A,i 1, 2. ThenA Gg,andthus

(.) 2 0(1A1) -t-0(1A2) 0(11-- 1.).
But A, As are disjoint, and thus

l(g) -t- l(g) __< le(g),

so that 0(1 -- 1A2) <= 0(la) 1, which contradicts (.), and therefore
n 1. In other words A A, and A is a finite group and (1.i.l.c.) and
also a right minimal ideal. But A is also a (r.i.r.c.) because for g G, Ag A
is a left ideal. But A is a minimal left ideal so that A Ag for g G, which
implies that A is also a (r.i.r.c.). Moreover, A is the only group which is
(r i.r.c.), for if B were another one, then A, B would be different right min-
imal ideals and therefore disjoint. If a e A, b B,’ then

1 (1) :l(lbG) 1(

1 (10) I(1.G) (1).

where , Ml(G).

As before however la(g) -- 1,(g) <__ la(g), so that

1 (1) >= (1) -t- q(1.) 2,

which is again a contradiction. Therefore G has exactly one finite group
and (1.i.l.c.) which coincides with the only finite group which is (r.i.r.c.).
Remark 3.3 implies now that G has a unique right invariant mean and a
unique leftinvariant mean both of which coincide with .

Remarlc 5.3. The above corollaries are true also for left amenable semi-
groups G which have a countable subsernigroup Go c G such that the set of
left cosets of G with respect to Go is countable (for instance, if G has some
countable left ideal).

Remarlc 5.4. All the results in this paper are true if left is replaced by
right and (1.i.l.c.) by (r.i.r.c.).

And G contains a unique finite group and (1.i.l.c.) which coincides with the unique
finite group and (r.i.r.c.) of G.

Please note also the following result which in this author’s opinion is of considerable
interest: If G is a countable semigroup with right cancellation, then dim Ml(G) n,
0< n < , implies that G is a finite group and that n 1. (If A1 is some finite group
and (1.i.l.c.) of G (see Corollary 5.2) with identity e and g G, then ge ge. But
the right cancellation implies that gel g, and since AI is a left ideal, we
get that G A .)
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Added September 12, 1962. In a recent pper, The second conjugate space
of a Banach algebra as an algebra (Pacific J. Math., vol. 11 (1961), pp. 847-
870), P. Civin and B. Yood conjecture (p. 853) that for any infinite com-
mutative group G, the radical of the second conjugate algebra re(G)* is in-
finite-dimensional This is proved there (p. 853) only for the additive
group of integers.

In our paper here we prove much more than this conjecture, namely"
The rdical of the second conjugate algebra re(G)*, for any infinite amenable
group G, is infinite-dimensional.

In order to see this we have only to remark the following: By the paper
cited above (pp. 849-850),

J { re(G)*; (la) 0 and L for each g G}

satisfies J {0} and hence is included in the radical of m(G)*. We choose
nowafixed0 eMl(G). For each eMl(G) we have ( 0) -t- 0
and 0 e J, which implies that Ml(G) J A- o. The assumption
that dim J < would imply that dim Ml(G) < wbich contradicts
Corollary 5.3 of our paper. (In this connection see also the last page of
the next paper in this journal.)
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