ON THE MINKOWSKI-HLAWKA THEOREM

BY
Wolfgang M. Schmidt

1. Introduction

Let S be a bounded Borel set in $R_{n}, n \geqq 2$, of volume $V(S)$, not containing the origin O. Then $\Delta(S)$, the critical determinant of S, is defined as the greatest lowes bound of the determinants $d(\Lambda)$ of lattices Λ having no point in S. The Minkowski-Hlawka Theorem [3] asserts

$$
\begin{equation*}
Q(S) \equiv V(S) / \Delta(S) \geqq 1 \tag{1}
\end{equation*}
$$

This inequality was improved by Rogers [7], [8], and Schmidt [10], [12], [13]. The best results obtained were (i) $Q(S)>1$ for $n=2$ (see [13, Satz 7]), (ii) $Q(S) \geqq 2\left(1+2^{1-n}\right)^{-1}\left(1+3^{1-n}\right)^{-1} \quad$ (see [10]), and (iii) $Q(S) \geqq n r-2$ for $n \geqq n_{0}$, where $r \sim 0.278$ (see [13, Satz 11]).

In this note we improve (i) to

$$
\begin{equation*}
Q(S) \geqq \frac{16}{15}, \tag{2}
\end{equation*}
$$

and (iii) to

$$
\begin{equation*}
Q(S) \geqq n \log \sqrt{ } 2-c_{1} \quad \text { for } n \geqq c_{2} \quad(\log \sqrt{ } 2 \sim 0.346) \tag{3}
\end{equation*}
$$

Our proof of (3) will be much simpler than the proof of (iii) in [13].
Ollerenshaw [5] constructed a set S_{0} in R_{2} with $Q\left(S_{0}\right)=1.317 \cdots$, and no set with a smaller $Q(S)$ is known. Blichfeldt [1] proved

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty} \sqrt[n]{Q}\left(B_{n}\right) \leqq \sqrt{ } 2 \tag{4}
\end{equation*}
$$

for the unit ball B_{n} in R_{n} centered at O; and this is the best known upper estimate ${ }^{1}$ for large n.

2. Proof of (2)

Let p be a prime. Put $(x)_{p}$ for the image of the integer x under the homomorphism from the integers onto the field F_{p} of p elements. Put ϕ_{p} for the mapping

$$
\phi_{p}: g=\left(g^{(1)}, \cdots, g^{(n)}\right) \rightarrow\left(\left(g^{(1)}\right)_{p}, \cdots,\left(g^{(n)}\right)_{p}\right)
$$

from the fundamental lattice Λ_{0} onto the vector space V_{p} of dimension n over F_{p}.

It is easy to see that ϕ_{p} creates a $1-1$ correspondence between sublattices of Λ_{0} of index p and hyperplanes of V through the origin O. Clearly, a sublattice of determinant p is mapped into a linear subspace through O. The
${ }^{1}$ For a connected account of the subject see [2].
number of points of this subspace will be p^{n-1}; hence it will be a hyperplane. On the other hand, the set of points mapped into a given hyperplane through O will be a lattice with exactly p^{n-1} points in every cube

$$
c^{(i)} \leqq g^{(i)}<c^{(i)}+p \quad(i=1, \cdots, n)
$$

hence it will be a sublattice of index p.
We divide the lattice points of Λ_{0} into three classes as follows:

$$
\begin{array}{ll}
g \in T_{1} & \text { if } \\
g \notin 3 \Lambda_{0} ; \\
g \in T_{2} & \text { if } \\
g \in 3 \Lambda_{0} \text { but } g \notin 2 \Lambda_{0} ; & \text { if } \\
g \in 6 \Lambda_{0} .
\end{array}
$$

Put $\mu(g)=\frac{1}{4}, \frac{3}{4}, 1$ if g is in T_{1}, T_{2}, T_{3}, respectively.
In the end of this section we assume $n=2$.
Lemma. Assume

$$
\sum_{g \epsilon S \cap \Lambda_{0}} \mu(g)<1
$$

Then Λ_{0} has a sublattice of index 2 or 3 which has no point in S.
Proof. Every lattice point in S must be of type T_{1} or T_{2}. Assume some $g \epsilon T_{2}$ is in S. Since $\mu(g)=\frac{3}{4}, g$ is the only lattice point in $S . \quad \phi_{2}(g) \neq O$, and hence there is a line in V_{2} through O not containing $\phi_{2}(g)$. Thus there is a sublattice of index 2 not containing any point of S. Assume next that no point of T_{2} is in S. Assume g_{1}, g_{2}, g_{3} of T_{1} are in S. None of $\phi_{3}\left(g_{1}\right)$, $\phi_{3}\left(g_{2}\right), \phi_{3}\left(g_{3}\right)$ are O. Applying a linear nonsingular transformation in V_{3}, we may assume $\phi_{3}\left(g_{1}\right)=e_{1}, \phi_{3}\left(g_{2}\right)=e_{2}$, and $\phi_{3}\left(g_{3}\right)$ equals one or two times $e_{1}+e_{2}$ or $e_{1}+2 e_{2}$, where e_{1}, e_{2} are basis vectors in V_{3}. (The situation is still simpler if two of the $\phi_{3}\left(g_{i}\right)$'s are dependent.) Now the line $x_{1}+x_{2}=0$ (or $x_{1}+2 x_{2}=0$) meets no point $\phi_{3}\left(g_{i}\right)(i=1,2,3)$. Hence there is a sublattice of index 3 of Λ_{0} which does not meet S.

Let now $d A$ be the invariant measure in the space of transformations A of determinant 1, first used by Siegel, normalized so that

$$
\int_{F} d A=1
$$

where F is a fundamental domain with regard to the subgroup of unimodular transformations. It was shown in [14] that

$$
\int_{F} \sum_{g \neq o \rho} \rho(A g) d A=V(S)
$$

where $\rho(X)$ is the characteristic function of S.
Assume now $\Delta(S)>3$. Let A be a linear transformation of determinant 1. Then one will have $\sum_{g} \mu(g) \geqq 1$, where the sum is over those $g \in \Lambda_{0}$ where $A g \in S$.

Put differently, we have

$$
\frac{1}{4} \sum_{g \epsilon \Lambda_{0}} \rho(A g)+\frac{1}{2} \sum_{g \epsilon 3 \Lambda_{0}} \rho(A g)+\frac{1}{4} \sum_{g \epsilon 6 \Lambda_{0}} \rho(A g) \geqq 1
$$

By integration over F we find

$$
V\left(\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{9}+\frac{1}{4} \cdot \frac{1}{36}\right) \geqq 1 ;
$$

hence $V \geqq \frac{16}{5}$. Since $\Delta(S)>3$ was our only assumption, we proved (2).

3. Proof of (3)

We may assume $V \geqq 1$. Let σ be a subset of Λ_{0} whose points are linearly independent mod 2. After applying a nonsingular linear transformation in V_{2}, we may assume that $\phi_{2}(\sigma)$ consists of basis vectors e_{1}, \cdots, e_{k}. Now the hyperplane $x_{1}+\cdots+x_{k}=0$ of V_{2} does not meet $\phi_{2}(\sigma)$, and hence there is a sublattice of Λ_{0} of index 2 not meeting σ.

Assume now that S is a set with $\Delta(S)>2$. Given any linear transformation A of determinant 1 , there will be a set of lattice points g_{1}, \cdots, g_{d}, dependent $\bmod 2$, such that $A g_{i} \in S(i=1, \cdots, d)$. In fact there will be a minimal dependent set of this kind, that is, a set of points dependent mod 2 such that every subset is independent mod 2. There will be a minimal dependent set of at least three lattice points, since every minimal dependent set mod 2 of two points consists of two identical points mod 2 . There will either be at least $3 n / 4$ lattice points $g_{i}, A g_{i} \in S$, or there will be a minimal set with $3 \leqq d \leqq 3 n / 4$. By integration over F we obtain

$$
(4 / 3 n) \int_{F} \sum_{g} \rho(A g) d A+\sum_{d=3}^{3 n / 4} \frac{1}{d!} \int_{F} \sum_{\substack{g_{1}, \ldots, g_{d}, g_{d} \\ \min . \operatorname{dep} . \bmod 2}} \rho\left(A g_{1}\right) \cdots \rho\left(A g_{d}\right) d A \geqq 1 .
$$

Denote the two terms to the left by I_{1}, I_{2}. Clearly, $I_{1}=(4 / 3 n) V$. In the next section we will show

$$
\begin{equation*}
I_{2} \leqq 2^{12-n} e^{V}+c_{3}(7 / 8)^{n / 2} V^{c_{4}} \tag{5}
\end{equation*}
$$

Hence either $(4 / 3 n) V \geqq(4 / 3) \log 2=c_{5}$, or $c_{3}(7 / 8)^{n / 2} V^{c_{4}} \geqq\left(1-c_{5}\right) / 2$, or $2^{12-n} e^{V} \geqq\left(1-c_{5}\right) / 2$. Each of these inequalities yields

$$
V \geqq n \log 2-c_{6} \quad \text { for } n \geqq c_{7} .
$$

Since this holds for any S with $\Delta(S)>2$, (3) is proved.

4. An estimate

We start by listing some needed formulas. As mentioned by Siegel and proved explicitly by Rogers [6] and Macbeath and Rogers [4],

$$
\begin{align*}
& \int_{F} \sum_{\substack{g_{1}, ., q_{m} \in A_{0} \\
\text { inn. indep. }}} \rho\left(A g_{1}, \cdots, A g_{m}\right) d A \tag{6}\\
&=\int \cdots \int \rho\left(X_{1}, \cdots, X_{m}\right) d X_{1} \cdots d X_{m}
\end{align*}
$$

Here Λ_{0} is n-dimensional, $m<n$, and ρ is a Borel-measurable function in $n \times m$ variables. Next, let $k \neq 0, k_{1}, \cdots, k_{m}$ be relatively prime integers. Then for $m<n$

$$
\begin{align*}
& =k^{-n} \int \cdots \int \rho\left(X_{1}, \cdots, X_{m}\right) d X_{1} \cdots d X_{m} . \tag{7}
\end{align*}
$$

This was first shown ${ }^{2}$ in [6].
Let now $\rho_{1}, \cdots, \rho_{m+1}$ be characteristic functions of compact Borel sets in R_{n}, and $\rho_{1}^{*}, \cdots, \rho_{m+1}^{*}$ the characteristic functions of balls in R_{n}, centered at O, such that

$$
\int \rho_{i}(X) d X=\int \rho_{i}^{*}(X) d X \quad(i=1, \cdots, m+1)
$$

Then an inequality of Rogers [9] implies

$$
\begin{align*}
& \int \cdots \int \rho_{1}\left(X_{1}\right) \cdots \rho_{m}\left(X_{m}\right) \rho_{m+1}\left(\sum \alpha_{i} X_{i}\right) d X_{1} \cdots d X_{m} \\
& \quad \leqq \int \cdots \int \rho_{1}^{*}\left(X_{1}\right) \cdots \rho_{m}^{*}\left(X_{m}\right) \rho_{m+1}^{*}\left(\sum \alpha_{i} X_{i}\right) d X_{1} \cdots d X_{m} \tag{8}
\end{align*}
$$

Finally, let $\rho^{*}(X)$ be the characteristic function of a ball of volume V in R_{n}. Then it was shown in [13, Lemma 21] that for integers $k>0$ and $k_{i} \neq 0(i=1, \cdots, m)$, for $\varepsilon>0$ and $n>n(k, m, \varepsilon)$
(9) $\int \cdots \int \rho^{*}\left(X_{1}\right) \cdots \rho^{*}\left(X_{m}\right) \rho^{*}\left(k^{-1} \sum k_{i} x_{i}\right) d X_{1} \cdots d X_{m}$

$$
\leqq\left((m+1)^{m-1} m^{-m} k^{2}+\varepsilon\right)^{n / 2} V^{m}
$$

We mention

$$
(m+1)^{m-1} m^{-m} \leqq \frac{3}{4}<\frac{7}{8} \quad(m \geqq 2)
$$

and

$$
\begin{equation*}
(m+1)^{m-1} m^{-m} \leqq e m^{-1} \tag{11}
\end{equation*}
$$

Now we are ready to estimate

$$
I(d)=\frac{1}{d!} \int_{F} \sum_{\substack{g_{1}, \cdots, g_{d} \\ \min \text {. dep. mod } 2}} \rho\left(A g_{1}\right) \cdots \rho\left(A g_{d}\right) d A
$$

At first we take the part of the sum where g_{1}, \cdots, g_{d} are independent over the rationals. We have $g_{d}=g_{1}+\cdots+g_{d-1}+2 h$, where $g_{1}, \cdots, g_{d-1}, h$

[^0]are independent over the rationals, and using (6) we obtain
\[

$$
\begin{array}{r}
\frac{1}{d!} \int \cdots \int \rho\left(X_{1}\right) \cdots \rho\left(X_{d-1}\right) \rho\left(X_{1}+\cdots+X_{d-1}+2 Y\right) d X_{1} \cdots d X_{d-1} d Y \\
\\
=2^{-n} V^{d} / d!
\end{array}
$$
\]

Next, we take the part of the sum where g_{1}, \cdots, g_{d} are dependent over the rationals, say,

$$
k_{1} g_{1}+\cdots+k_{d} g_{d}=0 \quad\left(k_{i} \text { integral }\right)
$$

We may assume that at least one k_{i} is odd, but then this implies that all of k_{1}, \cdots, k_{d} are odd, since g_{1}, \cdots, g_{d} is a minimal dependent set mod 2. By multiplying our estimates by d, we may assume $k_{d}=\max \left(\left|k_{1}\right|, \cdots,\left|k_{d}\right|\right)$. We obtain the bound

$$
\begin{aligned}
& =\frac{d}{d!} \sum_{\substack{k>0 \\
k \text { odd odd, }, \overrightarrow{k_{1}} k_{i} \leqq \leqq k}} \sum_{\substack{k_{d}-1}} k^{-n} \int \cdots \int \rho\left(X_{1}\right) \cdots \rho\left(X_{d-1}\right) \\
& \cdot \rho\left(k^{-1} \sum_{i=1}^{d-1} k_{i} X_{i}\right) d X_{1} \cdots d X_{d-1} .
\end{aligned}
$$

For the terms where $k>2^{11}$, say, we estimate the integral over X_{1}, \cdots, X_{d-1} by V^{d-1}. Thus we obtain

$$
d k^{-n}(k+1)^{d-1} V^{d-1} / d!\leqq d 2^{d-1} k^{d-1-n} V^{d-1} / d!\leqq n 2^{3 n / 4} k^{d-1-n} V^{d-1} / d!
$$

Summing over $k>2^{11}$ we obtain

$$
n 2^{3 n / 4} 2^{-11 n / 4} V^{d-1} / d!<2^{-n} V^{d} / d!
$$

Next, let $k \leqq 2^{11}, d>3 \cdot 2^{28}=c_{4}$. Using (8) we obtain

$$
\begin{aligned}
& \int \cdots \int \rho\left(X_{1}\right) \cdots \rho\left(X_{c_{4}}\right) \rho\left(k^{-1} \sum_{i=1}^{d-1} k_{i} X_{i}\right) d X_{1} \cdots d X_{c_{4}} \\
& \leqq \int \cdots \int \rho^{*}\left(X_{1}\right) \cdots \rho^{*}\left(X_{c_{4}}\right) \rho^{*}\left(k^{-1} \sum_{i=1}^{c_{4}} k_{i} X_{i}\right) d X_{1} \cdots d X_{c_{4}}
\end{aligned}
$$

This last integral is for large n at most $V^{c_{4}}\left(3 k^{2} c_{4}^{-1}\right)^{n / 2}$ by (9) and (11). Integration over $X_{c_{4}+1}, \cdots, X_{d-1}$ gives a factor $V^{d-1-c_{4}} \leqq V^{d-c_{4}}$. We therefore find the bound

$$
n(k+1)^{d-1}\left(3 c_{4}^{-1}\right)^{n / 2} V^{d} / d!\leqq n 2^{12 n} 2^{-14 n} V^{d} / d!\leqq 2^{-n} V^{d} / d!
$$

for our part of $I(d)$, and summation over $k \leqq 2^{11}$ gives $2^{11-n} V^{d} / d!$.
Finally for $k \leqq 2^{11}, d \leqq c_{4}$ we use (8), (9), and (10) and find the bound

$$
(d / d!) V^{c_{4}} 2^{12 c_{4}}\left(\frac{7}{8}\right)^{n / 2}
$$

Putting our estimates together we see that

$$
\sum_{3 \leqq d \leqq 3 n / 4} I(d) \leqq 2^{12-n} e^{V}+c_{3}\left(\frac{7}{8}\right)^{n / 2} V^{c_{4}} .
$$

References

1. H. F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres, Math. Ann., vol. 101 (1929), pp. 605-608.
2. J. W. S. Cassels, An introduction to the geometry of numbers, Berlin, Springer, 1959 (Grundlehren, Bd. 99).
3. E. Hlawka, Zur Geometrie der Zahlen, Math. Zeitschrift, vol. 49 (1943/44), pp. 285-312.
4. A. M. Macbeath and C. A. Rogers, Siegel's mean value theorem in the geometry of numbers, Proc. Cambridge Philos. Soc., vol. 54 (1958), pp. 139-151.
5. K. Ollerenshaw, An irreducible non-convex region, Proc. Cambridge Philos. Soc., vol. 49 (1953), pp. 194-200.
6. C. A. Rogers, Mean values over the space of lattices, Acta Math., vol. 94 (1955), pp. 249-287.
7. ——, The number of lattice points in a set, Proc. London Math. Soc. (3), vol. 6 (1956), pp. 305-320.
8. -_, Lattice covering of space: the Minkowski-Hlawka theorem, Proc. London Math. Soc. (3), vol. 8 (1958), pp. 447-465.
9. -_, A single integral inequality, J. London Math. Soc., vol. 32 (1957), pp. 102-108.
10. W. Schmidt, Eine Verschärfung des Satzes von Minkowski-Hlawka, Monatsh. Math., vol. 60 (1956), pp. 110-113.
11. ——, Mittelwerte über Gitter, Monatsh. Math., vol. 61 (1957), pp. 269-276.
12. -, The measure of the set of admissible lattices, Proc. Amer. Math. Soc., vol. 9 (1958), pp. 390-403.
13. -_, Masstheorie in der Geometrie der Zahlen, Acta Math., vol. 102 (1959), pp. 159-224.
14. C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. (2), vol. 46 (1945), pp. 340-347.

Columbia University
New York, New York

[^0]: ${ }^{2}$ The best way to arrive at (7) is to prove (6) as in [4], and then to apply the method at the end of [11] to derive (7) from it.

