ON THE MINKOWSKI-HLAWKA THEOREM

BY

WOLFGANG M. SCHMIDT

1. Introduction

Let S be a bounded Borel set in R_n , $n \ge 2$, of volume V(S), not containing the origin O. Then $\Delta(S)$, the *critical determinant* of S, is defined as the greatest lowes bound of the determinants $d(\Lambda)$ of lattices Λ having no point in S. The Minkowski-Hlawka Theorem [3] asserts

(1)
$$Q(S) \equiv V(S)/\Delta(S) \ge 1.$$

This inequality was improved by Rogers [7], [8], and Schmidt [10], [12], [13]. The best results obtained were (i) Q(S) > 1 for n = 2 (see [13, Satz 7]), (ii) $Q(S) \ge 2(1 + 2^{1-n})^{-1}(1 + 3^{1-n})^{-1}$ (see [10]), and (iii) $Q(S) \ge nr - 2$ for $n \ge n_0$, where $r \sim 0.278$ (see [13, Satz 11]).

In this note we improve (i) to

$$(2) Q(S) \ge \frac{16}{15},$$

and (iii) to

(3)
$$Q(S) \ge n \log \sqrt{2} - c_1 \text{ for } n \ge c_2 \qquad (\log \sqrt{2} \sim 0.346).$$

Our proof of (3) will be much simpler than the proof of (iii) in [13].

Ollerenshaw [5] constructed a set S_0 in R_2 with $Q(S_0) = 1.317 \cdots$, and no set with a smaller Q(S) is known. Blichfeldt [1] proved

(4)
$$\limsup_{n \to \infty} \sqrt[n]{Q(B_n)} \leq \sqrt{2}$$

for the unit ball B_n in R_n centered at O; and this is the best known upper estimate¹ for large n.

2. Proof of (2)

Let p be a prime. Put $(x)_p$ for the image of the integer x under the homomorphism from the integers onto the field F_p of p elements. Put ϕ_p for the mapping

$$\phi_p: g = (g^{(1)}, \cdots, g^{(n)}) \to ((g^{(1)})_p, \cdots, (g^{(n)})_p)$$

from the fundamental lattice Λ_0 onto the vector space V_p of dimension n over F_p .

It is easy to see that ϕ_p creates a 1-1 correspondence between sublattices of Λ_0 of index p and hyperplanes of V through the origin O. Clearly, a sublattice of determinant p is mapped into a linear subspace through O. The

Received April 2, 1962.

¹ For a connected account of the subject see [2].

number of points of this subspace will be p^{n-1} ; hence it will be a hyperplane. On the other hand, the set of points mapped into a given hyperplane through O will be a lattice with exactly p^{n-1} points in every cube

$$c^{(i)} \leq g^{(i)} < c^{(i)} + p$$
 $(i = 1, \dots, n);$

hence it will be a sublattice of index p.

We divide the lattice points of Λ_0 into three classes as follows:

$$g \in T_1 \quad \text{if} \quad g \notin 3\Lambda_0 ;$$

$$g \in T_2 \quad \text{if} \quad g \in 3\Lambda_0 \text{ but } g \notin 2\Lambda_0 ;$$

$$g \in T_3 \quad \text{if} \quad g \in 6\Lambda_0 .$$

Put $\mu(g) = \frac{1}{4}, \frac{3}{4}, 1$ if g is in T_1, T_2, T_3 , respectively.

In the end of this section we assume n = 2.

LEMMA. Assume

$$\sum_{g \in S \bigcap \Lambda_0} \mu(g) < 1.$$

Then Λ_0 has a sublattice of index 2 or 3 which has no point in S.

Proof. Every lattice point in S must be of type T_1 or T_2 . Assume some $g \in T_2$ is in S. Since $\mu(g) = \frac{3}{4}$, g is the only lattice point in S. $\phi_2(g) \neq O$, and hence there is a line in V_2 through O not containing $\phi_2(g)$. Thus there is a sublattice of index 2 not containing any point of S. Assume next that no point of T_2 is in S. Assume g_1, g_2, g_3 of T_1 are in S. None of $\phi_3(g_1)$, $\phi_3(g_2), \phi_3(g_3)$ are O. Applying a linear nonsingular transformation in V_3 , we may assume $\phi_3(g_1) = e_1, \phi_3(g_2) = e_2$, and $\phi_3(g_3)$ equals one or two times $e_1 + e_2$ or $e_1 + 2e_2$, where e_1, e_2 are basis vectors in V_3 . (The situation is still simpler if two of the $\phi_3(g_i)$'s are dependent.) Now the line $x_1 + x_2 = 0$ (or $x_1 + 2x_2 = 0$) meets no point $\phi_3(g_i)$ (i = 1, 2, 3). Hence there is a sublattice of index 3 of Λ_0 which does not meet S.

Let now dA be the invariant measure in the space of transformations A of determinant 1, first used by Siegel, normalized so that

$$\int_F dA = 1,$$

where F is a fundamental domain with regard to the subgroup of unimodular transformations. It was shown in [14] that

$$\int_{F} \sum_{g \neq 0} \rho(Ag) \, dA = V(S),$$

where $\rho(X)$ is the characteristic function of S.

Assume now $\Delta(S) > 3$. Let A be a linear transformation of determinant 1. Then one will have $\sum_{g} \mu(g) \geq 1$, where the sum is over those $g \in \Lambda_0$ where $Ag \in S$.

Put differently, we have

$$\frac{1}{4}\sum_{g\in\Lambda_0}\rho(Ag) + \frac{1}{2}\sum_{g\in\delta\Lambda_0}\rho(Ag) + \frac{1}{4}\sum_{g\in\delta\Lambda_0}\rho(Ag) \ge 1.$$

By integration over F we find

$$V(\frac{1}{4} + \frac{1}{2} \cdot \frac{1}{9} + \frac{1}{4} \cdot \frac{1}{36}) \ge 1;$$

hence $V \ge \frac{16}{5}$. Since $\Delta(S) > 3$ was our only assumption, we proved (2).

3. Proof of (3)

We may assume $V \ge 1$. Let σ be a subset of Λ_0 whose points are linearly independent mod 2. After applying a nonsingular linear transformation in V_2 , we may assume that $\phi_2(\sigma)$ consists of basis vectors e_1, \dots, e_k . Now the hyperplane $x_1 + \dots + x_k = 0$ of V_2 does not meet $\phi_2(\sigma)$, and hence there is a sublattice of Λ_0 of index 2 not meeting σ .

Assume now that S is a set with $\Delta(S) > 2$. Given any linear transformation A of determinant 1, there will be a set of lattice points g_1, \dots, g_d , dependent mod 2, such that $Ag_i \in S$ $(i = 1, \dots, d)$. In fact there will be a minimal dependent set of this kind, that is, a set of points dependent mod 2 such that every subset is independent mod 2. There will be a minimal dependent set of at least three lattice points, since every minimal dependent set mod 2 of two points consists of two identical points mod 2. There will either be at least 3n/4 lattice points g_i , $Ag_i \in S$, or there will be a minimal set with $3 \leq d \leq 3n/4$. By integration over F we obtain

$$(4/3n) \int_{F} \sum_{g} \rho(Ag) \, dA + \sum_{d=3}^{3n/4} \frac{1}{d!} \int_{F} \sum_{\substack{g_1, \dots, g_d \\ \min . \text{ dep. mod } 2}} \rho(Ag_1) \, \cdots \, \rho(Ag_d) \, dA \geq 1.$$

Denote the two terms to the left by I_1 , I_2 . Clearly, $I_1 = (4/3n)V$. In the next section we will show

(5)
$$I_2 \leq 2^{12-n} e^{\nu} + c_3 (7/8)^{n/2} V^{c_4}$$

Hence either $(4/3n) V \ge (4/3) \log 2 = c_5$, or $c_3 (7/8)^{n/2} V^{c_4} \ge (1 - c_5)/2$, or $2^{12-n} e^{V} \ge (1 - c_5)/2$. Each of these inequalities yields

$$V \ge n \log 2 - c_6 \quad ext{for } n \ge c_7$$
 .

Since this holds for any S with $\Delta(S) > 2$, (3) is proved.

4. An estimate

We start by listing some needed formulas. As mentioned by Siegel and proved explicitly by Rogers [6] and Macbeath and Rogers [4],

(6)
$$\int_{F} \sum_{\substack{g_1, \cdots, g_m \in \Lambda_0 \\ \text{lin. indep.}}} \rho(Ag_1, \cdots, Ag_m) \, dA = \int \cdots \int \rho(X_1, \cdots, X_m) \, dX_1 \cdots dX_m.$$

Here Λ_0 is *n*-dimensional, m < n, and ρ is a Borel-measurable function in $n \times m$ variables. Next, let $k \neq 0, k_1, \dots, k_m$ be relatively prime integers. Then for m < n

(7)
$$\int_{F} \sum_{\substack{g_1, \dots, g_m \\ \text{indep., such that} \\ k^{-1}\Sigma k_i g_i \text{ is also in } \Lambda_0}} \rho(Ag_1, \dots, Ag_m) \, dA$$
$$= k^{-n} \int \dots \int \rho(X_1, \dots, X_m) \, dX_1 \dots dX_m.$$

This was first shown² in [6].

Let now $\rho_1, \dots, \rho_{m+1}$ be characteristic functions of compact Borel sets in R_n , and $\rho_1^*, \dots, \rho_{m+1}^*$ the characteristic functions of balls in R_n , centered at O, such that

$$\int \rho_i(X) \, dX = \int \rho_i^*(X) \, dX \qquad (i = 1, \cdots, m+1).$$

Then an inequality of Rogers [9] implies

(8)
$$\int \cdots \int \rho_1(X_1) \cdots \rho_m(X_m) \rho_{m+1}(\sum \alpha_i X_i) dX_1 \cdots dX_m$$
$$\leq \int \cdots \int \rho_1^*(X_1) \cdots \rho_m^*(X_m) \rho_{m+1}^*(\sum \alpha_i X_i) dX_1 \cdots dX_m.$$

Finally, let $\rho^*(X)$ be the characteristic function of a ball of volume V in R_n . Then it was shown in [13, Lemma 21] that for integers k > 0 and $k_i \neq 0$ $(i = 1, \dots, m)$, for $\varepsilon > 0$ and $n > n(k, m, \varepsilon)$

(9)
$$\int \cdots \int \rho^*(X_1) \cdots \rho^*(X_m) \rho^*(k^{-1} \sum k_i x_i) dX_1 \cdots dX_m \leq ((m+1)^{m-1} m^{-m} k^2 + \varepsilon)^{n/2} V^m.$$

We mention

(10)
$$(m+1)^{m-1}m^{-m} \leq \frac{3}{4} < \frac{7}{8}$$
 $(m \geq 2)$

and

(11)
$$(m+1)^{m-1}m^{-m} \leq em^{-1}.$$

Now we are ready to estimate

$$I(d) = \frac{1}{d!} \int_{F} \sum_{\substack{g_1, \dots, g_d \\ \min . dep. \ mod \ 2}} \rho(Ag_1) \ \cdots \ \rho(Ag_d) \ dA.$$

At first we take the part of the sum where g_1, \dots, g_d are independent over the rationals. We have $g_d = g_1 + \dots + g_{d-1} + 2h$, where g_1, \dots, g_{d-1} , h

² The best way to arrive at (7) is to prove (6) as in [4], and then to apply the method at the end of [11] to derive (7) from it.

are independent over the rationals, and using (6) we obtain

$$\frac{1}{d!} \int \cdots \int \rho(X_1) \cdots \rho(X_{d-1}) \rho(X_1 + \cdots + X_{d-1} + 2Y) \, dX_1 \cdots dX_{d-1} \, dY$$

= $2^{-n} V^d / d!$.

Next, we take the part of the sum where g_1, \dots, g_d are dependent over the rationals, say,

$$k_1g_1 + \cdots + k_dg_d = 0 \qquad (k_i \text{ integral})$$

We may assume that at least one k_i is odd, but then this implies that all of k_1, \dots, k_d are odd, since g_1, \dots, g_d is a minimal dependent set mod 2. By multiplying our estimates by d, we may assume $k_d = \max(|k_1|, \cdots, |k_d|)$. We obtain the bound

$$\frac{d}{d!} \sum_{\substack{k>0\\k \text{ odd odd, } |k_i| \leq k}} \sum_{\substack{k_1, \cdots, k_{d-1}\\k \in A_0}} \int_F \sum_{\substack{g_1, \cdots, g_{d-1}\\such \text{ that also}\\k^{-12k_ig_i \in A_0}}} \rho(Ag_1) \cdots \rho(Ag_{d-1})\rho(Ak^{-1}\sum_{i=1}^{d-1}k_ig_i) dA$$

$$= \frac{d}{d!} \sum_{\substack{k>0\\k \text{ odd odd, } |k_i| \leq k}} \sum_{\substack{k_1, \cdots, k_{d-1}\\k \text{ odd odd, } |k_i| \leq k}} k^{-n} \int \cdots \int \rho(X_1) \cdots \rho(X_{d-1})$$

$$\cdot \rho(k^{-1}\sum_{i=1}^{d-1}k_iX_i) dX_1 \cdots dX_{d-1},$$

For the terms where $k > 2^{11}$, say, we estimate the integral over X_1, \dots, X_{d-1} by V^{d-1} . Thus we obtain

$$dk^{-n}(k+1)^{d-1}V^{d-1}/d! \leq d2^{d-1}k^{d-1-n}V^{d-1}/d! \leq n2^{3n/4}k^{d-1-n}V^{d-1}/d!$$

Summing over $k > 2^{11}$ we obtain

$$n2^{3n/4}2^{-11n/4}V^{d-1}/d! < 2^{-n}V^d/d!$$

Next, let $k \leq 2^{11}$, $d > 3 \cdot 2^{28} = c_4$. Using (8) we obtain

$$\int \cdots \int \rho(X_1) \cdots \rho(X_{c_4}) \rho(k^{-1} \sum_{i=1}^{d-1} k_i X_i) dX_1 \cdots dX_{c_4}$$
$$\leq \int \cdots \int \rho^*(X_1) \cdots \rho^*(X_{c_4}) \rho^*(k^{-1} \sum_{i=1}^{c_4} k_i X_i) dX_1 \cdots dX_{c_4}.$$

This last integral is for large n at most $V^{c_4}(3k^2c_4^{-1})^{n/2}$ by (9) and (11). Integration over $X_{c_4+1}, \dots, X_{d-1}$ gives a factor $V^{d-1-c_4} \leq V^{d-c_4}$. We therefore find the bound

$$n(k + 1)^{d-1} (3c_4^{-1})^{n/2} V^d / d! \le n 2^{12n} 2^{-14n} V^d / d! \le 2^{-n} V^d / d!$$

for our part of I(d), and summation over $k \leq 2^{11}$ gives $2^{11-n}V^d/d!$. Finally for $k \leq 2^{11}$, $d \leq c_4$ we use (8), (9), and (10) and find the bound 10.

$$(d/d!) V^{c_4} 2^{12c_4} \left(\frac{7}{8}\right)^{n/2}$$

Putting our estimates together we see that

$$\sum_{3 \leq d \leq 3n/4} I(d) \leq 2^{12-n} e^{v} + c_3 \left(\frac{7}{8}\right)^{n/2} V^{c_4}.$$

References

- 1. H. F. BLICHFELDT, The minimum value of quadratic forms, and the closest packing of spheres, Math. Ann., vol. 101 (1929), pp. 605–608.
- 2. J. W. S. CASSELS, An introduction to the geometry of numbers, Berlin, Springer, 1959 (Grundlehren, Bd. 99).
- 3. E. HLAWKA, Zur Geometrie der Zahlen, Math. Zeitschrift, vol. 49 (1943/44), pp. 285-312.
- 4. A. M. MACBEATH AND C. A. ROGERS, Siegel's mean value theorem in the geometry of numbers, Proc. Cambridge Philos. Soc., vol. 54 (1958), pp. 139-151.
- K. OLLERENSHAW, An irreducible non-convex region, Proc. Cambridge Philos. Soc., vol. 49 (1953), pp. 194–200.
- C. A. ROGERS, Mean values over the space of lattices, Acta Math., vol. 94 (1955), pp. 249-287.
- 7. ——, The number of lattice points in a set, Proc. London Math. Soc. (3), vol. 6 (1956), pp. 305-320.
- —, Lattice covering of space: the Minkowski-Hlawka theorem, Proc. London Math. Soc. (3), vol. 8 (1958), pp. 447-465.
- 9. A single integral inequality, J. London Math. Soc., vol. 32 (1957), pp. 102-108.
- W. SCHMIDT, Eine Verschärfung des Satzes von Minkowski-Hlawka, Monatsh. Math., vol. 60 (1956), pp. 110-113.
- 11. ——, Mittelwerte über Gitter, Monatsh. Math., vol. 61 (1957), pp. 269–276.
- 12. ——, The measure of the set of admissible lattices, Proc. Amer. Math. Soc., vol. 9 (1958), pp. 390-403.
- ——, Masstheorie in der Geometrie der Zahlen, Acta Math., vol. 102 (1959), pp. 159-224.
- 14. C. L. SIEGEL, A mean value theorem in geometry of numbers, Ann. of Math. (2), vol. 46 (1945), pp. 340-347.

COLUMBIA UNIVERSITY NEW YORK, NEW YORK