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Introduction
Suppose that fl, f is a sequence of numbers satisfying the two con-

ditions"

(ii) fn _>- 0, and the greatest common divisor of the indices/ such that
fk 0 is one.

We shall set
 7-,L ", u(t) u, t",

where

1.1 U(t) 1/(1 F(t)).

We are interested in the behavior of the ratio

r, Un+l/Un
as n - . It was shown in [2] that as n tends to infinity

un -- (FP(1))-I,
with the expression on the right being interpreted as zero when FP(1) is infi-
nite. We seek conditions on the fk which do not imply F(1) < but
insure

lim inf. r. limsupn_ r. 1.

The simplest condition we found was

lim SUpn- fn+l/fn - 1.

This condition has the serious drawback that it does not permit f 0 for
infinitely many k. We have found more satisfactory conditions which include
the above condition as a special case. Nevertheless this special case is of
special interest because the arguments then are simpler and more transparent.
We shall proceed with stating the above-mentioned conditions. Let

ul, u.,"" uu-1, h be real numbers, and supposeuu_l 0, h > 0. We
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shall say that the sequence fl, f., fn, satisfies condition

AN(I, ., tN-1 ;),)

if and only if the expression fi, -f- i.t f+
_

fn+- becomes greater
than zero for large n, and in addition

L+ + f+ + + -L+1.2 l..sup ;y. - :.5

_
W shall say tha th sequne f, f, satisfies condition B when
fisA(1,1,... ,1;1).
W can now sat mor precisely th rsults tha will b presented in this

paper. Firs of all w shall show that (i), (ii), and A(u,
imply tha as n , lira sup r, < and lim in r, > 0. In addition it will
b shown tha in any eas, given (i) and (ii) w have

1.3 lim sup, u,+a/u, (lim sup L+fff,) 1.

Finally, i will b sablishd ha (i), (ii), and B imply hat

1.4 lim sup,= u,+/u, 1.

The latter in,quality will b shown to imply th eonwrgenee of u,+/u,
on.
Th mthods dvloped in this paper haw bn used to dedue r, 1 using

only (i), (ii), and A(u, u, u- 1) whr u, u, u- ar to b
nonngativ. Howewr, th proof of this extension is somewhat technical
and will no b included.
In the Rmark at the end of Section 2 w show tha the condition

quivalen to each of two other conditions.
Two questions ar lef unanswered.
(1) Do (i), (ii), and condition A(u, u, u- X) imply th eon-

wrgene of u,+a/u, ? (In particular, dos lim supf,+fff, < imply

(2) Dos a resul of th typ 1.3 hold in gnral? In other words, do
(i), (ii), and A(u, u, u- ;k) imply at least

lim SUpn- Un+l/Un k 1 ?

We shall start by establishing a few identities and inequalities.

1.1. We observe that 1.1 implies that u0 1, and that

1.11 Un+I fl Un "l" f2 Un--i + Zt" fn+ UO.

We write a b for the maximum of a and b.
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By induction it is easy to show that

1.12 un =< 1.

On the other hand, (ii) implies that we can find p 1 natural numbers
No, ]1, k., kp with the following properties"

(a) fk O, i 1, 2, p;
(b) every natural number n >= No can be written in the form

1.13 n ]1 n ks n n,

where the n are nonnegative integers.

From 1.11 hen n N0 it is easily deduced that i.13 implies

1.1 

We thus conclude that Un 0 at least when n N0.
1.2. Given a set of constants , , -1 we shall set

M(t) ut+ut+ +u-
From 1.1 we get

1.21
1 -t- M(t)u(t)

1 --[(1 -t- M(t))F(t) M(t)]’
so that setting

1.22 F(t) _,=ft (1 q- M(t))F(t) M(t),

we shall have (for n > N 2)
M1.23 Un+ f Un -k _,=f+l Un--k

and also (for n > N- 1)

1.24 u, Ekn_.lUn_k.
For convenience of notation, N 1 shall mean M(t) O, so that when
N 1, thef in our formulas are to represent the old f.
We divide 1.24 by Un and manipulate to obtain (for n _>_ N

N1 M

k=1 rn-l rn-2 rn--k

provided onlyf _-> 0 for/ > N.
Let h be a real number greater than one. Multiplying 1.24 by h and sub-

tracting from 1.23 we get

1.26 Un+l---- (X + f)Un "- . (f+- f)Un-k.
Suppose now that

1.27 f+l- ,: =< 0 for k => N.
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Using this inequality in 1.26, dividing by un, and manipulating, we obtain
N1 M

1.28 r, k --f -- Z fl- hf
kl rn--1 rn--2 rn--k

when n NW N0 W N and N N.
1.3. To simplify the exposition we shall introduce a new term. Let

n < n < < n <
be integers. The set of numbers n, n, n, will be called a "de-
termining subsequence" if and only if, for a 0, 1, 2, etc., the
variable rn+a converges as k .
We set

1.31 lim r,+, R,.

If n, n, n, is a determining subsequence and 1.31 holds, passing
to the limit for n n a in 1.25 and (if 1.27 is valid) in 1.28, we obtain

N1 M

1.32 1 f
= R._R. :.. R._’

N1 M M

=1 R,_ R,-2 : ,-"
Notice now that since the left-hand side of 1.32 is independent of N, we must
also have

1.34 1 a Z
=1 R._R. :.. R._"

On the other hand, if 1.27 is valid, the tail of the sum in 1.33 can be estimated
by means of the tail of the series in 1.34. So we can also write

< + + Z= R,_ R,_ R,_ R,_

When N 1 (M(t) 0), this relation will be used in the form

= R._ R._

1.4. We can now deduce a few consequences of the inequalities that we
have established. For convenience, here and in the following we shall set

lim infn r m, lim sup r M.

LEMMA 1.41. If M < , then M >- 1, and

1.41 m >: F(1/M)M.
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Proof. The inequality in 1.34 for a - 1 can be written in the form

1.42

For M(t) 0 this relation yields

1.43 R, + +/M.
Since for any given a there are determining sequences such that R
1.43 yields 1.41.

LEMMA 1.42. If M 1, then r converges, and lim r 1.

Prog.

LEMMA

The assertion follows immediately from 1.41 and assumption (i).

1.43. If lim infn un+/u, O, then

lim supn Un+l/Un (lim sup fn+/fn) J 1.

If lira supn-.fn+l/f , there is nothing to prove. Suppose
then that

1.44 ’ (limsup-,f+l/fn)j 1 < .
Since 1.27 has to hold for each X > },’ and suitable N, 1.28 is valid
for M(t) O, and passing to the limit we obtain

M X W fl + fk+
We can thus pick a determining sequence such that R0 M.
We now observe that 1.36 will necessarily hold for each h > X’; therefore

we shall have also

R._ R._ :.. R_
For a 0 we obtain

f (M- R_) < (h’- M) 1-- f
R_R_ :.. R_ = R_R_ :.. R_

Since M R_, the assumption that h’ M (in view of 1.34 written for
M(t) 0) implies that R_ M for all k such that f 0, say for k a0.

Using this fact for a -a0 we get

o (x’- M)(1

Observe now that if M > 1, we necessarily hve _f/M < 1, and thus
we must conclude that

’>M.

The use of such a sequence was suggested by a new proof of the renewal theorem
due to W. Feller [3]. See also Choquet and Deny [1].
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We shall proceed to show that condition An(ttl #2, #N-1 X) is suffi-
cient to guarantee that m > 0 and M < .

2.1. We begin by establishing

LEMMA 2.1. Under the assumption (ii) (and therefore also (a), (b) of Section
1) for every k >= No there exists a constant C k

2.11 r_ r_ r_ C().

Proof. We observe first that by (b) there exist p and k,.., k such
that every N0 can be written in the form

2.12 k n ]c2 n2 n, (ni 0).

On the other hand, from 1.24 (M(t) 0) we obtain for each k < n

2.13 Un f Un--

ndfork k

2.14 rn- r_...r_ f for n N0 ki.

Using 2.12, 2.13, and 2.14 we get (by grouping terms)

r_r_...r_ > (h)’(h) ...
fork N0andn > k. Thus we get 2.11with

C() ()’(h)..-
2.2. To obtain a lower bound for r_ r_ r_ for small k it is necessary

to assume some condition in addition to (ii). In fact, it can be shown by
examples that if f 0, then m need not be greater than zero. We shall also
show that it is sufficient to assume condition A(I, , _
LEMMA 2.21. Iffor each k > No there exist n(k) and C(k) such that

2.21 rn--1 rn--2"’’rn--k C() > 0 for n n()

and condition A(
_

’) holds, then there exist constants C(k)
and n( k) such that 2.21 holds also for 1 k No. In addition we hae that

2.22 M lim SUpn U+/U

Proof. We shall proceed by reverse induction. We ssume that for each
k k0 > 1 there exist constants C(k) and n(k) (n(k) > k) so that 2.21 is
satisfied and shall deduce the same result for k k0 1.

Let h be a given number greater than h’. In view of the hypothesis, 1.27
will hold for a sufficiently large N. Thus 1.28 holds, and we get

N2 M M

2.23 rn X + f + f
k=l rn-1 rn-2 rn-k
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Dividing this inequality by rn rn+l"’’rn+ko-1, in view of the induction hy-
pothesis, we obtain that

2.24

at least when

r,+ rn+ko--1 C(]o)

M M+ lfi+, ,1
ffi C(o -t- )

2.25 n >__ max {No, n(ko), n(ko + N2)}.

We then define [C(k0 1)]--1 to be equal to the right-hand side of 2.24, and
n(k0 1) to be equal to the right-hand side of 2.25 plus k0.
To prove the last assertion of the lemma, we observe that from 2.23 we

obtain
N2 -/ Mf+l
= C()

2.3. We can now combine the results in Lemmas 1.41, 1.42, 1.43, and 2.21
to obtain the following-

THEOREM 2.3. If (i) and (ii) hold and

1 lim SUpnfn+lffn < ,
we have

hF(l/h) lim infn Un+ffUn lim sup Un+lfUn .
If, in addition 1, then U+ffUn is convergent, and

lim Un+I/U 1.

Remark. The work of the last section.makes evident that r 1 if and only
if equality always holds in 1.34. Each of these conditions is equivalent to

Clearly r, 1 implies he ruh of his condition. Conversely if he eon-
digion holds, we can pass go he limig in 1.24 along [ + (wih M() 0)
and obtain equality in 1.4.

In ghis seegion we shall be eoneerned wigh he proof of he following:

To . If he eueece f, f,..., f,... ie (i), (ii),
coediioe B, hen

lim+/ 1.

.1. Before proceeding wigh ourargumengs we need go esgablish an auxiliary
resulg which is of some ingrinsie ingeresg.
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THEOREM 3.1. Under the assumptions (i), (ii), and M < we shall have

3.11 lim SUpn-. U+/Un <-- 1

for some N >- 1 only if
3.12 limn_. Un+/U, 1.

Proof. For N i the theorem follows from Lemma 1.41. Suppose N __> 2,
and let n be a determining subsequence such that R0 M. The assumption
in 3.11 implies that

3.13, R,-1R,-2 R,-N _-< 1, c 0, =i=l, 2, ....
Suppose we set

3.14 r, R,_2 R,_N R,_. R,_N -{- W R,_ W 1.

The inequality 3.13,_1 can also be written in the form

3.15, F, Ra-N-1 Fa-1

A repeated application of 3.15 yields

3.16

We thus have that

3.17 E fk_ F,_>_ 7fk 1.

On the other hand, in view of 1.34 written for M(t) 0 and with a j W 1
in place of a we shall have

3.18
fR,__ R,__ f

= R,_ : ,-i+-
and this implies that

Z <r.= R,__ R,__

Therefore equality must hold in 3.17 and 3.18. Since a is arbitrary, we
shall have

1 for a 0, 1, 2,= R,_ R,_
thus also

Z= R,_ R,_

By assumption R0 M, and of course R, M for all other a. We deduce
that R_ M for each k such that f 0. And by (ii) for a suitable a0,

The theorem remains true even if 3.11 is weakened to lim sup u(+)/Un 1 as
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we shall have
for all

On the other hand, 3.19 written for a a0 gives

M = -fk/M
but because of (i) this equality can only hold for M 1.

3.2. We proceed with the proof of Theorem 3. Since condition B guaran-
tees (by Lemmas 2.1 and 2.21) that M < , in view of Theorem 3.1 we need
only establish that

3.21 lim SUpn--,oo Un+r/Un <= 1.

We shall thus pick a determining subsequence nl, n, nk, such that

3.22 R0 R1 R_I lim SUpn-, Un+/Un M*,
and suppose M*> 1. We let M(t) + -t--’" A-- -1. Condition
B guarantees that 1.35 will be satisfied for any ), > 1. We shall therefore
have also

=Ro_ R._"

This inequality can be written for a 1 in the form

3.23
1

1_<
M M

From 1.22 an easy calculation yields
M Mf + 1 fl, f f ft., f;;- f;;-2 fr-i

-f;_,=f+ ,
and for k _> 1

M Mf;+--I fk.
Substituting in 3.23 we obtain

Ra_l Ra-N
Observe now that for each k we can write

Ra-1 Ra-k

so that 3.24 can be given the more suggestive form
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For convenience we shall set R._I R._ R_N P, so that we get

3.25 P.- 1 _< E f- (P._,- 1).
: R.__ R.__

The assumptions imply that P. M* and P M*. From 3.25 we obtain
that if, for some ao, P-o M*, then necessarily P-o- M* for all k such that
f 0. In addition we must have

k Ro-N- R,o--
In view of (ii) we deduce that there is an a0 such that for all a a0

(e) P. M*, and (ee) 1.
= R._ R._

From (e) we deduce that R. R._ for all a < a0. On the other hand
(ee) for a W 1 in place of can be written in the form

R._ R._

Let R max (R.o-, R._, R.o-). For a < ao we have also

Consequently if R R for some a, we have R._ R for all k such that
f 0. This implies (in view of (ii)) that

R. R for all

Writing (e) and (ee) for such an a we obtain

M*, 1,

and this, in view of (i), gives the desired contradiction.
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