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Introduction

A Pisot-Viiayaraghavan number (PV number) is an algebraic integer
0 greater than 1 all of whose conjugates, other than 0 itself, lie in the open
unit disc zl < 1. Viiayaraghavan [9] proved that there exist PV numbers
of all degrees, and Pisot [7] proved that in every real algebraic number field
there exist PV numbers which generate the field.
The PV numbers have the following basic property, as is easily seen by

considering the trace. If 0 is a PV number and )‘ is an algebraic integer in the
field generated by 0, then )‘0n goes (exponentially) to zero as n -- .
Here II )‘on II denotes the difference, taken positively, between )‘O and the
nearest integer.
On the other hand, this property of the PV numbers characterizes them to a

considerable extent, as the following two results show. Hardy [3] and Vijaya-
raghavan [9] proved that if 0 is an algebraic number greater than 1, if )‘ is a
nonzero real number, and if )‘0n -+ 0 as n -- -t- , then 0 is a PV number,
and )‘ is in the algebraic number field generated by 0. Secondly, Pisot [6]
proved that if 0 is a real number greater than 1, if )‘ is a nonzero real number,
and if --1 )‘0n converges, then 0 is algebraic and therefore a PV num-
ber. An exposition of these two results may be found in [1, Ch. 8]. A com-
prehensive bibliography is given in [8].

It is reasonable to conjecture that we can suppress the hypothesis that
is algebraic in the first of these two theorems or, equivalently, that we can
replace the hypothesis of the convergence of ’=1 )‘0 lJ in the second the-
orem by the assumption that limn+ ),O 0. In fact this is the prin-
cipal unsolved problem of the theory at the present time (cf. [10]).

In this paper we construct an analogous theory in the following parallel
situation (cf. [4]). In place of the rational integers we consider the ring
k[x] of polynomials in an indeterminate x with coefficients in a given field
In place of the field of rational numbers we consider the field k(x) of rational
functions in x with coefficients in/c. In place of the field of real numbers we
consider the field /c{x-1} of pole-like formal Laurent series about with
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coefficients in k, that is, series of the form
h h--1z= ax +a_x + _a_.

The field k(x) may be considered as a subfield of k{x-} by formally expand-
ing each rational function about . In place of the integral part of a real
number we consider that part of such a Laurent series involving only non-
negative powers of x, that is, we write

X
h h--1[z] ah -t- ah-1 x -t- + a0.

In place of the fractional part of a real number we consider that part of a
Laurent series involving only negative powers of x, that is, we consider

X--2((z)) a_I x- + a_2 -t-
In place of the ordinary absolute value of a real number we use the absolute
value defined by putting

provided a 0, where c is some fixed constant greater than 1. Thus if
z /{x-}, we have

z [zl + ((z)), [z] ((z)) < 1.

Note that the concepts of "integral part" and "nearest integer" coincide in
this context. In place of the field of complex numbers we consider the al-
gebraic closure K of k{x-l. Our absolute value has a unique extension to
K as follows. If w e K (so that w is algebraic over k{x-il ), if N denotes the
norm function for the extension klx-l (w) over l{x-l, and if n is the degree
of k{x-/(w) over k,{x-i}, then we have

The absolute value defined on K in this way is the one we shall use throughout
this paper. An element of k{x-l which is not in/ will be called a PV ele-
ment if and only if it is integral over k[x] and all of its conjugates with respect
to lc(x), other than itself, have absolute value less than one when regarded
as elements of K.

All of the theorems on PV numbers quoted above carry over to this new
context, although most of them require either a separability assumption or
the assumption that/c be perfect. Since our absolute value has the property

it will turn out that the conjecture mentioned in the fourth paragraph be-
comes trivially true in the present context, provided we have a perfect base
field (see Theorem 3.4 below). For here a series converges if and only if its
nth term approaches zero.
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Throughout, x will be an indeterminate over the ground field k, the
gebraic closure of/{x-1} will be denoted by K, and T will denote the trace
function for the extension k(x) () over k (x), where t is algebraic over k(x).

1. Existence of PV elements

DEFINITION. If t is a given field, an element of k{x-} is called a PV
element if and only if it is not in , it is integral over k[x], and all of its conju-
gates with respect to l(x have absolute value less than 1 (under the absolute value
defined earlier on the algebraic closure K of k{x-} ).

Note that a PV element is necessarily separable over k(x) and also has
absolute value greater than 1. Another immediate consequence of the defi-
nition is that a positive integral power of a PV element is a PV element.

THEOREM 1.1. Suppose t is an arbitrary field. Then the field k{x-1} con-
tains PV elements of all degrees over l(x).

Proof. Suppose r is a given positive integer. We shall prove that the
algebraic equation

(1) xtr- 1 0

has a root to in k/x-/which is a PV element of degree r. Since every element
of k[x] which is not in/ is a PV element, this is of course trivial when r 1.
We begin by proving that the polynomial r- xtr-l- 1 is irreducible

over/c(x). If not, by Gauss’s lemma (see [12, pp. 32-33]) it could be fac-
tored nontrivially over k[x]. But since --xtr-- 1 is linear in x, any
such factorization must be of the form {f(t)x g(t)lh(t), where f(t), g(t),
and h(t) are polynomials in with coefficients in k. Hence f(t)h(t) -t-1

and g(t)h(t) 1 , so that

{tf(t) g(t)}h(t) --1.

Thus h(t) is of degree zero, so that xt- 1 is irreducible over k(x).
Hence any root of (1) is of degree n over ]c(x).
Next we prove that (1) has a root to in k{x-} such that [to[ > 1.

fact it is easy to see that (1) has a root of the form

x--r --2rto x(1 + al -t- a2 x -t- "’).
For

In

tro xt-1 1 (to x tro- 1

Zj=0 aj+l x-} {1 + )-’. a x-rJ} r-1 1

--{al- 1} -t-{a2-t-f(a)}x -’"
+ {a+ -t- fi(a,..., a)lx-r + ...,

where fi(ai,’’’, ai) is a polynomial in a,..., ai of degree at most r.
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Thus a, a, can be determined in turn in such a way that

to xto- 1 O.

For example a 1 and a2 1-r.
Now the conjugates of to with respect to ](x) are zeros of the polynomial

xt- 1 t_ ._ (to z)t- -- to(to- x)t- --(2) t-- to -- to-( to x)t -- to-( to x),
which has coefficients in k{x-X}. But the polynomial (2) is irreducible over
lc{x-}. For the subring R of k{x-} consisting of those Laurent series con-
raining only nonpositive powers of x is a unique factorization domain with
the single prime element x-1, and the polynomial (2) has coefficients in R and
satisfies the conditions of the Eisenstein irreducibility criterion (see [11,
Ch. IV]). In fact

to-(to x) x’- - (j r)x’- -- (1 __< j =< r- 1).

Finally, since the polynomial (2) is irreducible over klx-}, any of its zeros
in K has absolute value equal to

t-(to x)11/r Ix-- x-- -- /= c-1 < 1,

in view of the definition of absolute value in K. Thus to is a PV element of
degree r. This completes the proof of Theorem 1.1.

TnOUEM 1.2. Suppose k is an arbitrary field. Then any separable ex-
tension of k(x) of finite degree which is contained in k{x-} can be generated by a
PV element.

Proof. Since any separable field extension of finite degree is simple (cf.
[12, pp. 84-86]), we may restrict attention to extensions of k(x) of the form
k(x)(), where is an element of k{x-1} which is algebraic and separable over
k(x). Suppose is of degree s -t- 1 over k(x) and its conjugates in K are
t/0 , x, . Let 0, be a k[x]-basis for the integral closure
of k[x] in k(x)() (cf. [12, pp. 264-266]). Let 00(), ) be the conjugate
basis for k(x)() (r 1,..., s). Any element of k(x)() which is in-
tegral over lc[x] then has the form

=o X,,
where X0, X8 are in k[x].

If f(t) is the minimal polynomial for over k(x), we must consider how
f(t) factors in ]{x-1}. Suppose

f(t) (t- )g,(t) g,(t),

where g,(t) is an irreducible polynomial of degree s, with coefficients in
k{x-} (1 <= <- v) and s -- -I- s, s. Suppose the notation is chosen
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so that
i,’", 81 are zeros of gl,

81+1,’", ,1+8. are zeros of g2,

8+...+_+, are zeros of g.

For 1 < < v andsW s_W 1 < h < s Wsletka)
k() be a field basis for k{x-} () over k{x-} where we assume that for fixed
the respective bases for k{x-1}(,+...+,_+), .--, k{x-}(,+...+,) e
conjugate over k{x-}. Thus for 1 v and sW Ws_W 1
h sW Wswehave

=1 A (0 < i < s)

where ()
a is in k{x-i}. Thus

for 1 v and s+ + s_i+ 1 h s+ +s. Let M
and L be integers such that

mxl,i,j
(1) U 5

We wish to choose X0, X, as elements of k[x] not all ero such that

Suppose we try to do this with X0, X, of absolute value at most c,
that is, let us try to satisfy (2) with

X uo + u x + + ux (0 i ),

where u0, u are in k. In view of (1) we need only make

(a) E:=0a}’x,} < c- (1 N N v, 1 j

(If M < --L, then we can trivially satisfy (3) by taking each X equal to 1.
Thus we may assume in what follows that L + M 0.) We shall try to
choose the u’s so that the highest power of x occurring in the Laurent series for

X
is x-- or lower (1 v, 1 j s). Now the highest power of x
occurring in any of the a’s is xM, and the highest power of x occurring in the
X’s is x. Thus we need only choose the u’s so that the coefficient of x in
each of the s expressions

’ .)X 1 <j < s)=0a (1 v,
is zero for

-LhMWm.
This gives (L +MWm+ 1)s homogeneous linear equations for the
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(m+ 1)(s-t- 1) unknowns uig (0 <- i <= s, 0 <= g <- m). Thus if

m >- (L + M)s,

we have a nontrivial solution of these equations, which provides a nontrivial
solution of the set of inequalities (3) and therefore of the inequalities (2).
Put

i-O X o

where X0, X1, X is such a nontrivial solution of (2).
gates of 0 over k(x) are

The conju-

(1 <_r_<s).

Thus 0 is an element of k(x)() such that 0 is integral over k[x], O 0,
0r 0 (1 _<_ r-< s), and [0rl < 1 (1 __< r-<_ s). Since 1001... 0rl >-- 1,
we have 01 > 1. Hence 0 is a PV element. Clearly has exact degree s
over k(x), for otherwise it would coincide with one of its coniugates. Thus
0 generates ](x)() over k(x). This completes the proof of Theorem 1.2.
Arguments similar to the preceding were used by Mahler in [5]. We remark

that we have essentially proved and used a crude analogue of Minkowski’s
theorem on complex linear forms.
We remark also that a slight modification of the proof of Theorem 1.2

shows that, given some separable extension of k(x) of finite degree which is
contained in ]{x-1}, there are actually infinitely many PV elements 0 which
generate it. To see this we need only replace the right side of (2) by c-where N is an arbitrary nonnegative integer, and then replace L by L - h
in theJsubsequent part of the proof.
The following lemma will be needed not only for the next theorem but also

for Theorem 3.3. More general results of this type are known, but this lemma
is sufficient for our purposes. The proof given below was communicated to
us by Irving Reiner.

LEMMA 1.1. Suppose ] is a perfect field. Then any element of k{x-} which
is algebraic over k(x) is also separable over k(x).

Proof. The result is trivial if k has characteristic zero. So let us assume
that k has characteristic p, where p is some prime number. Suppose a(x)
is in klx-} and a(x) is a zero of the polynomial g(t) with coefficients in k(x),
where the degree of g(t) is as small as possible. Without loss of generality
we may assume that g(t) has coefficients in k[x]. Suppose that g(t) were in-
separable. Then (cf. [12, p. 67]) g(t) has the form

(1) g(t) A,(x)tup -- An_l(x)t(n-)p -- + Ao(x),

whereAi(x) is inl[x]fori 0, 1,...,nandA(x) O. We may write

Ai(x) Ao(X) + xAi(x) +’"- x-A.-(x)
(2)

(i 0, 1, ..., n),
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where Air(x) is in /[x]. Since g((x)) O, we have from (1) and (2)

(3) -o xJ{Ani(XP)Ot(X) pn
_

An_l,(xP)ot(x)(n-1) 2f_

_
A0j(xp)} 0.

By a familiar property of fields of characteristic p we have

.(x)

where (x) is in ]lx-1} and is obtained from a(x) by raising each coefficient
to the ph power. Hence the jth term in the sum in (3) contains only powers
of x with exponents congruent to j modulo p. Thus each term in the sum
must be separately zero, that is,

An(xP)a(x)pn - An_I,i(xP)((x)p(n-1) - - Ao(X) 0
(4)

(j- 0, 1,...,p-- 1).

Since k is perfect, every coefficient of A(x) is a ph power, and so there exists
B(x) in k[x] such that

A(x) IBid.(x)} (i 0, 1,..., n;j O, 1,..., p 1).

Thus (4) may be written

IBnj(X)O(x) - Bn_l,i(x)o(x) n-i - - Bo(X)l- 0
(5)

(j-- 0, 1,...,p 1).

Since A(x) 0, there exists a j such that A(x) 0 and so B(x) 0.
Then by (5), a(x) is a zero of the polynomial

Bj(x)t - B_,(x)t- + + Bo(X),

which has coefficients in k[x] but lower degree than g(t). Thus the assump-
tion that g(t) is inseparable leads to a contradiction. This completes the
proof of Lemma 1.1.

THEOREM 1.3. Suppose tc is a perfect field. Then any extension of
oj finite degree which is contained in klx-1} can be generated by a PV element.

Proof. By Lemma 1.1 any extension of k(x) of finite degree which is
contained in klx-1} is separable. Thus Theorem 1.2 gives the desired result.

2. Basic Property
THEOREM 2.1. Suppose is an arbitrary field and is a PV element of

]{ x-} of degree r over (x). Suppose is an element of k (x) () such that

T(O), T(O+), ..., T(ON+r-1)
are all in k[x] for some integer N. Then

lim+((h0)) 0.

Remarlc. The condition on X is certainly satisfied by any element , of
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k(x)(O) such that ),0N is integral over k[x] for some integer N. However,
in general it is also satisfied by other elements as well (cf. [12, pp. 298-312]).
For example, if 0 is a PV element of degree 2 over k(x), we could have
X (0 0’)-1, where 0’ is the coniugate of 0, for then the above condition
is satisfied with N 0.

Proof. Suppose the conjugates of 0 over k(x) are 01 0, 0=, Or, and
suppose the minimal polynomial of 0 over k(x) is

"at- At_itr-1 -{- -{- Ao,

where Ao, A are in k[x]. Then

T(XOn) + At-1 T(XOn-l) -+- -- Ao T(On-r)

T{),O’-r(O + Ar-1 0-1 + + A0)} 0

for any integer n. Hence by induction T(,O") is in k[x] for all n -> N.
Let be the image of h under the isomorphism of k(x)(O) onto k(x)(Oi)
which takes 0 into 0 and leaves k(x) fixed (i 2,..., r). Then

XO" T(XO) ), O X 0,

and so for n >- N we have

[((x0n))l <-- max,:,.....,: IX+ 0 l-
The assertion of the theorem follows since 01 < 1 (i 2, r).

3. Characterization

Our discussion in this section is somewhat parallel to the exposition in [1,
Ch. 8] of the two theorems characterizing PV numbers which are quoted in
the Introduction.

LEMMA 3.1. Suppose that k is an arbitrary field. Suppose the polynomial
f(t) Ao + A1 "4-"’" "4-Ag has coeffwients in k[x], is irreducible over
k[x], and has r distinct zeros 01, O, O in K. If 1, , are given
elements of K, the system of linear equations

Z’-=:I OY (0 <= i < r)

has the unique solution for Y1, Y given by

where

with

. Yj - aj, , (1 =< j -< r),

+ f’(0) # 0,

minant formed from 01, 0,

a f( O) # O,

fi(t) A+ + A+2 + + A r-i-1.

Since the determinant of the system is the Vandermonde deter-..., 0, uniqueness is immediate. The actual
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calculation of the solution is given in [1, p. 135]. Note that the separability
of f(t) is essential.

LEMMA 3.2. Suppose that ]c is an arbitrary field. If 0 is an element of the
algebraic closure K of/{x-lt and t is a nonzero element of K such that
tO, are all equal to polynomials in 0 of degree r 1 with coefficients in
]c[x], then 0 is integral over k[x] of degree at most r.

Proof. Let F be the k[x]-module generated by , 0, 02, By as-
sumption F is a submodule of the k[x]-module generated by 1, 0, 0r-1.
Since k[x] is a Euclidean domain, it follows (cf. [2, pp. 56-57]) that F has a
finite set of generators over/[x], say 1, ’8, where we may assume s _-< r.
Since 0,i is in F for i 1, s, there exist elements D of k[x] such that

0,i =D, (i 1, s).

Since # 0, not all of the , are zero, and so

det(0I-D) O,

where I is the s by s identity matrix and D is the s by s matrix formed by the
D. Thus 0 satisfies a monic polynomial equation having coefficients in
]c[x] and degree s, where s -<_ r.

THEOREM 3.1. Suppose t is an arbitrary field. Suppose O is an element of
t{x-ll which is algebraic and separable over to(x) and satisfies O > 1. Sup-
pose there is a nonzero element of k{x-} such that lim,,_.+((hon)) --O.
Then O is a PV element, and is an element of k(x)(O) such that for some N
we have

T(0i+NX) e k[x] (i 0, 1, r 1).

Proof. Suppose that f(0) 0, where

f(t) At - -Ao
is a separable polynomial with coefficients in k[x] which is irreducible over
k[x]. We assume A 0. Suppose the zeros of f in K are 0 0,

0. Let

(1) XO Bn - gn,

where Bn [hOn] and , (hOn) ). Since

on--i(2) Ao O + AI -- + A O,

we have

(3) Ao Bn -- Ai Bn+l -- -J- A Bn+r -Ao en A e+
Since [ < 1/max(I A0 ], lAx ], ".., A I) for all sufficiently large n,
there is an N such that

(4) [A0sn -- A18n+i-- -- Arsn+r] < 1
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for n >= N. But A0 B -4- -4- A, B+ is in k[x], and so by (3) and (4)

(5) AoBn -4- A1B,+I + + AB+r 0 (n >= N).

By Lemma 3.1 there are elements ),1, ),2, h, of K such that

(6) ’=1 0}+NXj B+
for i 0, 1, r 1. But by (2) and (5) it follows that (6) then holds
for all nonnegative integers i. The elements Xl, , X are given by the
formulas

(7) fli 07 X 2aB,+ (1 j r),

where we may take m as any integer not less than N. Here i and the
are the elements of k(x)[Oi] given in Lemma 3.1. Thus X is the image of
1 under the isomorphism of k(x) (0) onto k(x) (0i) which takes 0 into 0
and leaves k(x) fixed. Clearly

(8) X 0 (1 Nj N r).

For if any Xi were zero, all of them would be zero, and then B 0 for n R N,
which is impossible by (1).

If we take j 1 in (7), the right-hand side of (7) is a polynomial in 0 0
of degree r 1 with coefficients in k[x]. Since m may be taken as any integer
not less than N, the hypothesis of Lemma 3.2 is satisfied by B 0.
Therefore 0 is integral over k[x].
By equation (1) and the validity of (6) for all nonnegative i we have

for any nonnegative integer i. Thus by Lemma 3.1

(lO) 0 (x

(11)

Since 1 0 and the right-hand side of (10) is a bounded

THEOREM 3.2. Suppose k is an arbitrary field. Suppose O is an element of
klx-1} such that lO > 1 and f(O) O, where f(t) Art - - Ao is a

separable polynomial with coefftcients in ][x] which is irreducible over k[x]. Sup-
pose is a nonzero element of k{x-1} such that

((xon)) < 1/max( A0 I, A1 I, "’", A I)

provided m >= N.
function of m, we must have h ),1 Thus T(0i+h) e k[x] for i 0, 1,
r 1 by (6). Since h 0 and the right-hand side of (11) tends to zero
as m -- + , we must have ]01 < 1 for 2 <- j -< r, which completes the
proof.
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for all sufficiently large integers n. Then 0 is integral over k[x], and all of its
conjugates with respect to k(x have absolute value at most 1. Moreover h is an
element of k(x)(0) such that for some N we have

T(Oi+vh) k[x] (i O, 1, r 1).

Proof. The proof is the same as that of Theorem 3.1, except for the last
sentence. Under the present hypotheses we can say only that the right side
of (11) is bounded, and thus we can infer only that 0. -<- i for 2 _-< j <= r.

LEMMA 3.3. Suppose k is an arbitrary field.
elements of klx-1} satisfying a recurrence relation

Let o 1, be a sequence of

nA-r - Olr--1 nA-r--1 - - Olo n 0 (n > N),

where ao, at-1 are fixed elements of k{x-1}. Suppose B6, B1, is a
sequence of elements of k[x] such that

B < 1/max(I "o I, "’", at-1 [, 1): (n >_- N).

Then the sequence Bo, B1, also satisfies a recurrence relation.

Proof. For n -> N -t- r let us put

In view of the hypothesis we have

(B, ,) + a_l(B,,_l ,_) + ...-4- ao(B,_-

/max(la0[, lar-l, 1) (n >= N -4- r).

For n >- N A- 2r let us put

so that
[/ < 1 (n >= N A- 2r).

Thus[e,l -<- c-lifn->- NA-r, andlv,[ --< c-lifn >= NA-2r. LetA, be
the n -4- 1 by n -4- 1 determinant in which the element in the (i -t- 1)h row
and (j + 1) column is B+. (0 =< i,j <- n). By a sequence of row operations
the element B+ may be replaced by e+ for all i >= N -t- r without changing
the value of the determinant. By a sequence of column operations the ele-
ment Bi+. may be replaced by i+ without changing the value of the de-
terminant, where

ii+j B.+j if i <N-t-r, j <NA-r,

i+j= /+ if i->_ N+r, j_>- N+r,

Thus if
+. e+ otherwise.

M max(lB0[,IBl,-..



P NUMBERS IN FIELDS OF FORMAL POWER SERIES

we have
A. <= M+r(c-a) n---+.

Thus A, < 1 if n is sufficiently large. Since A, is in k[x], we have A, 0
for all sufficiently large n. Therefore, by a theorem of Kronecker (valid for
any field), the sequence B0, B, satisfies a recurrence relation.

THEOREM 3.3. Suppose
k{x-1} such that O > 1. Suppose there is a nonzero element of k{x-} such
that

for all sufficiently large n. Then 0 is algebraic over k x ).

Proof. Put h0" B, + e,, where B,, [0n] is in k[x] and
]e, ((h0")) < 1. Applying the preceding lemma with , 0 and
noting the recurrence relation ,+ 0, we see that the sequence
B0, Ba, satisfies a recurrence relation, say

(1) B,,+ + A_ B,,+_ + + AoB, 0 (n >= N).

Without loss of generality we may assume that A0, A, A_ are in
k (x) (cf. [1, pp. 137-138]). Then (1) gives

(2) )kon(

Since the right side of (2) is a bounded function of n, we must have

O+A_lOr-+...+Ao=O.

Thus Theorem 3.3 is proved.
The following theorem combines Theorems 3.1 and 3.3. We must assume

that k is perfect in order to infer the separability of 0 from Lemma 1.1.

THEOREM 3.4. Suppose k is a perfect field. Suppose 0 is an element of
k{x-1} such that O > 1. Suppose there is a nonzero element of k{x-} such
that lim,+(()0n) O. Then 0 is a PV element, and is an element of
k(x (0) such that for some N we have

T(O+Z) k[x] (i O, 1, r 1).

Proof. By Theorem 3.3, 0 is algebraic over k(x). By Lemma 1.1, 0 is
therefore separable over k(x). Thus we may apply Theorem 3.1 to obtain
the above conclusions.
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