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PART I. INTRODUCTION AND PRELIMINARIES

1. Introduction

Much attention has recently been given to the characterization of classes
of simple groups in terms of conditions which specify the centralizers of their
revolutions or their Sylow 2-subgroups. (Cf. R. Brauer [2]; R. Brauer, M.
Suzuki, and G. E. Wall [7]; W. Feit [11], M. Suzuki [15], [16], [17], [18], [19];
and J. H. Walter [21], [22].) This paper presents such a characterization for
the simple groups PSL(2, q), where q is an odd prime power, and improves
the results obtained in [7] and [16].

It is easy to show that in a group with a dihedral Sylow 2-subgroup S
the centralizer of an involution r in the center of S has a normal 2-complement
U, and our characterization is given in terms of the structure of U.

THEOREM I. Let G be a finite group with a dihedral Sylow 2-subgroup S,
and let - be an involution in the center of S. Suppose that the centralizer of r

possesses an abelian 2-complement U. Then G contains a normal subgroup K
of odd order and one of the following holds:

(i) G has no normal subgroups of index 2, and G/K is isomorphic to
PSL(2, q) with q odd or to the alternating group A

(ii) G contains a normal subgroup of index 2 but no normal subgroup of
index 4, and G/K is isomorphic to PGL(2, q) with q odd;

(iii) G contains a normal subgroup of index 4, and G/K is isomorphic to a
Sylow 2-subgroup S of G.
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An involution is understood to be an element of order 2.
These are the groups of unimodular projectivities of a projective line defined with a

finite coordinate field Fq of q elements. The groups PGL(2, q) are the groups of pro-
jectivities of the projective line defined over Fq Also PSL(2, q) and PGL(2, q) are the
homomorphic images of the unimodular group SL(2, q) and the general linear group
GL(2, q) by the honomorphism of GL(2, q) onto GL(2, q)/Z, where Z is the subgroup of
scalar transformations.

We also understand that an elementary abelian group of type (2, 2) is a dihedral
group. Such groups will be called four-groups in this paper.
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The dihedral group S is generated by elements a and which satisfy the
2 --1relations a 1 and at-1

a In [7], Brauer, Suzuki, and Wall
treat the special case in which induces an automorphism which inverts
every element of U, the centralizer in G of any element x 1 of U is contained
in the centralizer of r, and G possesses no normal subgroups of index 2; while
in [16], Suzuki treats the special case in which S has order 8, a induces an
automorphism which inverts every element of U, and G possesses no normal
subgroups of index 2. (In both cases the action of a and forces U to be
abelian.)
The hypotheses of our theorem are satisfied when S has order 4 and is

its own centralizer in G. Therefore we obtain the following corollary, which
verifies a conjecture of Brauer [3].

COROLLARY. Let G be a finite group of order 4g’, g’ odd, and assume that a
Sylow 2-subgroup of G is its own centralizer. Then G contains a normal sub-
group K of odd order such that G/K is isomorphic either to a Sylow 2-subgroup
of G or to PSL(2, q), where q 3, 5 (mod 8).

The hypotheses of Theorem I are also satisfied when the centralizer of r

is itself a dihedral group. Furthermore, Theorem I can be combined with
[14] and [16! to obtain additional results on groups which possess a subgroup
of order 4 which is its own centralizer including, as a special case, a classifi-
cation of groups which admit an automorphism of order 2 with exactly two
fixed points. These results are established in 15.
The proof of Theorem I is carried out by induction on the order of G.

Because of this, Case (ii) is shown to be a consequence of Case (i) Case (iii)
is established from theorems of Burnside and Grtin. Therefore, the proof of
Theorem I reduces to Case (i). In this regard, most of our attention is paid
to investigating p-groups in G which admit a four-group as a group of automor-
phisms. Utilizing a recent theorem of Brauer and Suzuki concerning this
class of groups, which has now been presented in a very general and elegant
context by H. Wielandt [23], we are able to construct p-subgroups whose
orders may be compared with certain factors in the formulas for the order of
G derived from character theory. These groups are constructed for those
primes p for which there exists a p-element of U whose centralizer in G is not
contained in U. Using the formulas for the order of G together with the
group-theoretic information, we are able to show that G either satisfies con-
ditions in terms of which Suzuki [16] characterized AT, or that G satisfies
conditions in terms of which Brauer, Suzuki, and Wall [7] characterized the
groups PSL(2, q), q odd.

Part of the character theory which we develop holds for any finite group
containing a dihedral Sylow 2-subgroup and no normal subgroups of index 2.

Actually they assume, in addition, that the group U is cyclic. The generalization
to the abelian case, which we need, has been carried out and, in fact, can be obtained
by making minor adjustments in their arguments.
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We obtain formulas for the order of these groups which are of independent
interest. The assumptions of Theorem I are employed to obtain an addi-
tional formula for the order of G and congruences for the degrees of certain
characters.
For convenience, we shall call a group G which satisfies the hypothesis of

Theorem I an L-group. We shall denote by O(H) the maximal normal sub-
group of odd order in a group H. Also C*(z) denotes the set of elements
}, in H such that },-1 +/-1. In other respects our notation is standard.

2. The action of certain automorphism groups
The results of a recent paper of Wielandt [23] are ery important to us.

We restate without proof two of his preliminary results and also a particular
case of his main theorem.

LEMMA 1. Let T be a solvable group of automorphisms of a group K such
that (I T I, K I) 1. Then for each p dividing K I, K possesses a T-in-
variant Sylow p-subgroup, and each maximal T-invariant p-subgroup of K is
a Sylow subgroup.

:LEMMA 2. Let T be a group of automorphisms of a group K such that
(I T ], K I) 1. Then two T-invariant Sylow p-subgroups of K are conjugate
by an element of K left fixed by T.

If P is a T-invariant Sylow subgroup of K, and P’ is the subgroup of P left
fixed by a subgroup T’ of T, then P’ is a Sylow subgroup of the subgroup K’
of K left fixed by

LEMMA 3. Let T be a four-group of automorphisms of a group K of odd
order. Let ri, i 1, 2, 3, denote the three involutions of T, and Ki the fixed
subgroup of r. Then if Ko is the fixed subgroup of T,

()

An important structural consequence of Lemma 3 is given in part (ii) of
the following lemma. This result was also discovered independently by
Steven Bauman.

LEMMA 4. Let T and K be defined as in Lemma 3.
(i) K K Ko KoK’ where K is the subset of K consisting of the

elements inverted by ’ j i. If Ko 1, K K’ is abelian.
(ii) K admits the factorizations

(2) K K K2 K3 K0 Ki K K’3.
This assumption of solvability is necessary to secure the well-known result on the

existence of invariant Sylow p-groups which we include in the statement of this lemma.
A subset H of a group K is said to be left invariant by a group T of automorphisms

of K if Hr H; if x x for all x in H and z in T, then H is said to be left fixed by T.
An element x of G is said to be inverted by an element if x x-1. A subset is

said to be inverted by
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An element of K has a unique representation as a product ao al a. a, where
ao Ko and a K i 1, 2, 3. Also K n K Ko and K n K" 1, i # j.

Proof. (i) If j # i, r. induces an automorphism of K of order 2 with
fixed subgroup Ko and inverted set K. The first assertion of the lemma now
follows from [12, Lemma 1]. If Ko= 1, then K K and, consequently,
is abelian.

(ii) It suffices to show that K Ko K’ K K. Because of Lemma 3,
this will follow when we prove the uniqueness of the representation of an
element x as the product x a0 al a. aa where ao e Ko and at e K, i 1, 2, 3.
Hence suppose that

(3) a0 a a. as bo b b.

where bo e Ko and b e KP, i 1, 2, 3. Using (i), we have that

b-fb-ao a Co c and b a- d do

where Co, do e Ko, c e KP, and da e Ks. Hence

(4) Co c a. b. ds do.

Applying r, , and ra in succession gives- b-Z-d -a(5) Co c a , o, Co C b aado co c-{a b-ds do

From (4) and (5), we obtain

(6) a aod b 4s do d-dIb cldo
Hence

--2(7) b2 d3 b2 aa
As both b2 and d3 have odd order, (7) implies da 1; hence b do as. Since
each coset of K0 in Ks contains a unique element of K, do 1. Conse-
quently ba a3. A similar calculation shows that c 1, and hence from
(4),Co landa2 b2. Thusaoa b0b;whencea0 b0andal b.
Let K be a group of odd order which admits a four-group T r,

as a group of automorphisms. Then the decompositions (2) will be called
T-decompositions of K. In the following lemma, G will be a group containing
a normal subgroup M. Designate by/ and the images of a subgroup and
an element a of G in G G/M.

LEMMA 5. Let G be a finite group containing a four-group T and a normal
subgroup M of odd order. Then if r is an involution of T, C(r Co(/).
Also Ca(T) Co(T). If K is a T-invariant subgroup of G of odd order with
T-decompositions (2), then has the ’-decomposition

(8)
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Proof. Let T {rl, r2, r3}. Clearly Ca(r) =< Co() and Ca(T) _-<
Co(T). Let a e G, and suppose that for given i 1, 2, 3, ’ a where
,eM. Then,. 1. Since Mlisodd,, uiwhere ueM. Then
(a)’ ai. Thus Ca(r) Co(i).
We may now suppose that a has been chosen in aM so that a1 a and

a2 a,. Then (ak2) 1 a,. and 21" k. As 2 is a power of 2, t 2

Consequently, (au2) a2, i 1, 2, 3; hence0Ca(T) Co(T).
The remaining statement is a direct consequence of the foregoing.

LEMMA 6. Let T {T1, T2, T3} be a four-group of automorphisms of a
p-group P, p odd, with T-decomposition P PI P2 P, and assume that each
Pi is abelian. Let Po C,( T), and let P i 1, 2, 3, be the subset o] P
inverted by r j i. Then the complex P’ P’2 P is a group, and we have

(9) P P0 PP.
Proof. The lemma is proved by induction on the order of P. We first

note that P P0 X P’ because of Lemma 4(i) and the fact that P is abelian
of odd order. Then Po <= Z(P), i 1, 2, 3; hence Po <- Z(P).

Suppose first that P0 < Z(P). Then T acts on Z(P) which is abelian.
Hence Z(P) admits the T-decomposition by virtue of Lemmas 2 and 4

Z(P) (P Z(P) (P n Z(P) (Pa a Z(P) ).

Since P0 -< Z(P), we must have that P a Z(P) Po X P Z(P). Set
P P’ r Z(P). Considering the way the involutions of T act on P0 and
P., i 1, 2, 3, we see that

Z(P) Po X Pf X P2’ X P’.
This proves the lemma in case P Z(P).

F P’ X P’
Otherwise set

since by assumption Po < Z(P), F 1. We may then apply the lemma by
induction to P P/F. Adopting an analogous notation for P, we have
/5 /5 /, where/’ 5’/’/5’. It is an easy consequence of Lemma
5 that/ is the image of P under the natural mapping of P onto/. Since
F a P0 1, the inverse image P’ of /5 is disjoint from P0, and hence
P Po X P’. Since P’ contains each P’i and is invariant under T,
p, p’ p’ P3

Finally ssume that P0 Z(P) < P. Consider the second center Z2(P),
which has the T-decomposition

Z2(P) (P Z2(P)) (P Z2(P)) (P3 Z2(P)).

AsZ2(P) > Z(P) P0,PaZ2(P) > Poforsomei 1,2,3. SinceP
is abelian, P Z2(P) P0 X (P Z2(P)). Choose x 1 in P Z(P).
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IfxjeP,ji, then

(10)

where x0 e Z(P) P0.

(11)

-1
2j Xi Xj Xi X,

Applying r. to (10), we obtain
--1 --I --I

X, Xi X Xi Xo.
-1Combining (11) with (10) gives XiXo xo x, and hence x0 1. Thus xi

centralizes P., j i. Since P is abelian, x Z(P), which is a contradic-
tion. This excludes the last possibility and proves the lemma.

LEMMA 7. Let the hypotheses and notation be as in Lemma 6, and assume
P > P. Then there exists an element in P or P’a which centralizes P.

Proof. Let Z(P) be the first term of the ascending central series of P
which is not contained in P. Since Z(P) is T-invariant, it follows from
Lemma 4 that

Zr(P) (Zr(P) fl Pl) (Zr(P) fl P’2) (Z.(P) f P’a).
One of Zr(P) n P’2 or Zr(P) n P’a contains an element z 1, and z is inverted
by rl. Hence for x e P1, zxz-1 xt, where t eZ_I(P) <= P1. Conju-
gating by rl gives z-lxz x, and it follows that 2 commutes with x. Since
a has odd order, z commutes with x. Since x was arbitrary, centralizes P1

3. The Sylow 2-subgroups and the involutions in G

Let G be a group with dihedral Sylow 2-subgroups, and let S be a fixed
Sylow 2-subgroup of G. S is generated by elements a and , where a has

--1 --1order2a,a > 1, r has order 2, and r.a7 a Set 71 a / a
2a--2and ifa >_- 2, , a Also define ra rr. Whena

is the unique cyclic subgroup of index 2 in S and thus is characteristic in S;
B {} is the commutator subgroup of S.

There are three classes of involutions in S; namely, one consisting of the
central involution r above, a second consisting of the elements

a--1 2+1 i- 1i 1, 2, "’, 2 and a third consisting of the elements ra
2,-’’ 2a-1. Consequently when a > 1, there are two conjugate classes
of four-groups which are represented by So {rl, r} and $1
When a > 1, r ra, r r, (r= a) " rl(r oe), and (r(r.

In particular, , normalizes any four-subgroup T of S. When a > 1,
let C.s(T) be the subgroup of G generated by y and Co(T). Generally,
there will be no confusion if we set C’(T) C’a.s(T), although there may
be other Sylow subgroups of G containing T and an element , e No(T) T.
When a 1, set C(T) Co(T). Then No(T)/Co(T) is isomorphic to
subgroup of the symmetric group on 3 letters. Hence [No(T):C(T)I 1
or 3.
When Ne(T) > C(T), there exists a 3-element p in Na(T) C(T)

such that r r.. r ra, and r
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LEMMA 8. Let G be a group with a dihedral Sylow 2-subgroup S. Then
one of the following holds:

(i) G contains no normal subgroups of index 2. Then all involutions in G
are conjugate, No(So) > Ca( So) and when S > So, Na(S) > Ca( S1)

(ii) G contains a normal subgroup of index 2, but no normal subgroup of
index4. ThenS > So,andforexactlyonevalueof i 0,1, Na(Si) > C(Si).

(iii) G contains a normal subgroup of index 4. Then G possesses a normal
2-complement.
In particular, Ca(r1) has a normal 2-complement.

Proof. Suppose first that S S0. If G contains no normal subgroups of
index 2, then by Burnside’s theorem [13, p. 203], No(So) > Ca(So). Then
all involutions in S and consequently in G are conjugate. Conversely, if G
contains a normal subgroup of index 2, No(So) Ca(So), and Burnside’s
theorem implies that G has a normal 2-complement.
Now assume that S So. The automorphism group of S is a 2-group,

and hence No(S) SCa(S). It follows then from Grtin’s theorem [13,
p. 214] that the maximal abelian 2-factor group of G is isomorphic to S/S.,
where S is generated by the subgroups S n Sp, a e G. Since S’ B, A is
not contained in S n S’ for any a, and it follows that S S if and only if
r2 and r. a lie in some S n S’. This is equivalent to having 1 conjugate to
r. and to . in G. Thus if G has no normal subgroups of index 2, all the
involutions of S and hence of G are conjugate. Furthermore, there exists
then an element such that r.. Replacing by ,x where }, e C(r:),
if necessary, we may suppose that , is in C’a,s(So). Then centralizes

and interchanges r and ra. A simple calculation shows that
conjugates r into r, r into rl, and r into r. Thus p No(S0) C(S0).
A similar calculation shows that Na(S) > .C(S).
The same argument shows that G has a normal subgroup of index 2, but

no normal subgroup of index 4 if and only if S. {B, r:} or {B, r: a} and it
is clear that in this case Na(Si) > C(S) for exactly one value of i 0, 1.

If G has a normal subgroup Go of index 4, then S B, and B is a Sylow
2-subgroup of Go. Since B is cyclic, Go and hence G has a normal 2-comple-
ment.

Finally if H Ca(r), then H >= S, and r is not conjugate to
in H. Hence by the preceding argument applied to H, H has a normal
2-complement.

4. Properties of PSL(2, q), PGL(2, q), and A
We will list the properties of these groups which are to be used in this

paper. For further reference, the reader is referred to L. Dickson [9] or
J. Dieudonni [10].

(A) The groups PSL(2, q), PGL(2, q), q odd, and A are L-groups of
orders 1/2q(q 1), q(q 1), and 2520, respectively; PSL(2, q) and A are
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simple groups except for PSL(2, 3), which is isomorphic to the alternating group
A4 Also PSL(2, 5) is isomorphic to As.

(B) Let r and ’ be involutions in PSL(2, q) and PGL(2, q) PSL(2, q),
respectively. Then D C.aL(.q) ) and D CpaL(.q) ’) are dihedral
groups of orders 2(q i) and 2(q ), respectively, where :i:1 and
i q (rood 4). D n PSL(2, q) and D PSL(2, q) are dihedral groups of
orders q and q , respectively. D contains a Sylow 2-subgroup of
PGL(2, q).

The elements of D and D’ may be represented, respectively, by matrices
in either (12) or (13),or in (13) or (12) according asq-- lorq --- -1
(mod 4).

(12) ( a0-1)(c a0_l)(0 )-1

(13) (ab ba)( b
_ac

where a + b 1 and c is a nonsquare. We shall refer to these matrices as
(12a), (12b), (12c), etc.
Two matrices of the form (12a), (12b), (13a), or (13b) represent the same

coset in PGL(2, q) if and only if they are negatives of each other. Thus the
matrices (12a) and (13a) represent elements of cyclic groups Co and C of
orders 1/2(q 1) and 1/2(q + 1) respectively, in PSL(2, q). The matrices
(12b) and (13b) represent, respectively, generators of cyclic groups C and
C’ in PGL(2, q) which contain Co and C as subgroups of index 2. The
matrices (12c) and (13c) represent involutions in PGL(2, q) which invert
C and C’, respectively. When q 1 (mod 4), r is represented by (12a)
with a --1, and rPby (13b) with a 0 and b 1. When q-- -1
(mod 4), is represented by (13a) with a 0 and b 1, and rr by (12b)
witha landc- -1.

(C) The groups PSL(2, q), q odd, contain cyclic Hall subgroups of odd
orders u (q ) /I S and (q - i)/2. Two such subgroups of the same
order are conjugate, and distinct conjugate subgroups have trivial intersections.

(D) There are two conjugate classes of self-centralizing four-subgroups in
PSL(2, q) if its Sylow 2-subgroup has order greater than 4, and one class if
its Sylow 2-subgroup has order 4. In AT, there are two classes of four-sub-
groups, in, one of which the subgroups are self-centralizing, and in the other the
centralizers have order 12.

We need the following embedding result.

LEMMA 9. Let G be an L-group which contains a normal subgroup Go iso-
morphic to PSL(2, q), PGL(2, q), or AT. Then GoO(G) is a direct product
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Go X 0(G) and [G" Go 0(G) <-_ 2. If [G" Go 0(G) 2, then Go is isomorphic
to PSL(2, q), and G is the semidirect product G10(G) where G is isomorphic
to PGL(2, q).

Proof. We treat first the case that Go is isomorphic to PSL(2, q) or
PGL(2, q). For the sake of convenience, we identify Go with its isomorphic
image. Suppose first that 1G’Go is even. Then a dihedral Sylow 2-subgroup
T of Go is a normal subgroup of a dihedral Sylow 2-subgroup S of G. Hence
S" T 2, and the 2-elements of G/Go are involutions. Let xGo be such an

element; we shall show that G1 {Go, x} is isomorphic to PGL(2, q).
We may assume that x is a 2-element, and hence that x e S. If x is an

involution, there is another involution y in T such that xy lies in the maximal
cyclic subgroup A of S. Replacing xy by x, if necessary, we may suppose
x.A.
Now the automorphisms of PSL(2, q) and PGL(2, q) are well known [10,

p. 97]; they are induced by a contragredient transformation of GL(2, q)
or by conjugation of GL(2, q) by a semilinear transformation which is de-
fined relative to an automorphism at of the underlying field Fq of q elements.

Let 0(x) be the outer automorphism of Go induced by conjugation by x.
If 0(x) is induced by a contragredient transformation, then relative to a
particular choice of the basis of the underlying vector space, 8(x) is the in-
verse transpose operation on the matrices (12) and (13). But then (x)
will fix the four-group To =< T which is generated by r and the matrix (12c)
o (13c). Thus Ca(T0) contains a noncyclic abelian group of order 8. But
this is impossible since the Sylow 2-subgroups of G are dihedral.
Hence (x) is induced by a semilinear transformation relative to a field

automorphism at. Since x e A, may be assumed to have the matrix form
(12a) or (13a) according as q 1 or -1 (mod 4). But then induces the
mapping of the matrices (12) or (13) which sends each matrix with coeffi-
cients a and b into the corresponding matrix with coefficients a and b.

Clearly al <- 2; assume al 2. In this case Fq is an extension of
degree 2 over the fixed subfield Fr of at. If Fr r, then q r; hence
q 1 (mod 4). Thus the elements of Coo (r) are represented by the matrices
(12a) and (13c). Since x e A, x centralizes the elements of T represented
by the matrices (12a). This means that must also have the form (12a).
But then it follows that

0 _1

a-,) (ao Oa) ::l:: ( aO-)
for any2-element aofFq. Hence eithera iwhere 1, ora 1
and is in F. Suppose that r -= 1 (mod 4). Then i eft. However as
q-- 1= r2- 1 (rW 1)(r-- 1),thereisa2-elementa iinFq- Fr;
for this element, a =t=a, which is a contradiction. Suppose then that
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r --1 (mod 4). Then 4 divides r -t- 1, and again there is a 2-element
a i in Fq Ft. Thus we must have zt 1, and so is linear.
Now if Go PGL(2, q), this argument shows that t(x) is an inner auto-

morphism. Hence xGo contains an element x’ of C(Go), and consequently
x’ e Z(Go). But Z(G0) 1, and so x’ is an involution not in Go, but cen-
tralizing a four-group of Go. This gives a contradiction.

It follows that Go PSL(2, q). We know that x e A, and hence x gen-
erates the maximal cyclic subgroup of S n G1. On the other hand, the
element of PGL(2, q) which is the image of satisfies e T, and 0(2) t(x2).
But then t(2x-2) 1, and x- is a 2-element in C(T). It follows that

x. Since the automorphism t() induced by is the same as t(x) and
x2, the mapping x -- extends the identity mapping of Go onto PSL(2, q)

to an isomorphism of G1 onto PGL(2, q).
It remains to consider the case that the coset xGo has odd order. Since

G Na(T)Go by the Frattini argument, every coset of Go contains an ele-
ment of Na(T), and sowemayassume x e Na(T). If T > 4, Na(T)/Ca(T)
is a 2-group, and so x e Ca(T). If T 4, there exists a 3-element p in
Na0 (T) C0 (T) and either x, xp, or xp is in Ca(T). Thus we may assume
x e Ca(T) __< Ca(r). But Ca(r) SUI, where U1 is abelian and contains x.
Then x centralizes Ca0(r) T(U n Go). Thus 0(x) fixes the matrices
(12) or (13). If t(x) is induced by the semilinear transformation relative
to the field automorphism zt, it follows that a a for all a e Fq. Thus
z 1, and again is linear.
We conclude as above that each coset of Go of odd order contains an element

of Ca(Go). Thus Go X C(Go) is a normal subgroup of G of index -< 2; and,
consequently, Ca(Go) O(G). If this index is 2, the previous discussion
shows that Go is isomorphic to PSL(2, q), G1 is isomorphic to PGL(2, q),
and G is the semidirect product G O(G), as desired.
When Go AT, the lemma still follows by essentially the same argument

since A7 admits only the automorphisms induced from the symmetric group
S; and these play the role of a contragredient automorphism of SL(2, q)
and GL(2, q). We omit the details.

5. Induction assumptions and reduction of the theorem
Henceforth G will denote fixed but rbitrry L-group. We shall assume

that Theorem I is valid for all L-groups of order less than the order of G.

LEMMA 10. In proving Theorem I, we may suppose that G is simple.

Proof. If G possesses a normal subgroup Go of index 2 but none of index
4, we may apply induction to Go to conclude that Go/O(Go) is isomorphic to
PSL(2, q) or A. Since O(Go) is characteristic in Go, it is normal in G;
hence O(Go) O(G). Now Lemma 9 applies to G/O(G), and we may
conclude that G is isomorphic to PGL(2, q) in this case.
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If G has a normal subgroup of index 4, then G has a normal 2-complement
by Lemma 8.

If G has a normal subgroup K 1 of odd order, it follows from Lemma 5
that G G/K is an L-group. By induction, the theorem holds for and
hence for G.
Thus there remains only the case where G contains normal subgroups of

even order but none of index 2. Let Go be a normal subgroup of G, such that
G > Go > 1. By Lemma 8, all involutions in G are conjugate and hence lie
in Go. Thus Go contains a Sylow 2-subgroup of G and consequently has odd
index. Since Go is a normal subgroup of G, 0(G0) is a normal subgroup of G.
Hence O(Go) 1. Then by induction, Go is isomorphic to PSL(2, q),
PGL(2, q), q odd, or AT, or Go is a Sylow 2-subgroup of G. In any of the
first three cases, Lemma 9 implies that G Go X O(G). Since O(G) 1,
G Go, which is a contradiction.

In the remaining case, Go is a dihedral 2-group; and C(Go) Go since
otherwise G would have a normal subgroup of odd order. If G01 > 4, then
G Na(G0) Go, which is a contradiction. If G01 4, the only possi-
bility is that G’Go 3, in which case G is isomorphic to PSL(2, 3). Theo-
rem I then holds in this case. Thus we have reduced the proof of Theorem I
to the case that G is simple.

It will be useful to combine Lemma 8 and the induction hypothesis in the
following lemma, which is stated without proof.

LEMMA 11. Let H be a proper subgroup of G containing a dihedral Sylow
2-subgroup S. One of the following cases holds"

(i) The group H contains no normal subgroups of index 2; and H/OH
is isomorphic to PSL(2, q), q odd, or to AT.

(ii) The group H contains a normal subgroup of index 2 but none of index
4; S > So Nn(Si) > C(S) for exactly one value of i O, 1; and H/O(H)
is isomorphic to PGL(2, q), q odd.

(iii) The group H contains a normal subgroup oJ" index 4; NH (S0) C(So),
and, when S > So, N,( S1) C( S1) H/O(H) is isomorphic to S.

Remark. Since all the involutions in G are conjugate, 0(C(r)) is abelian
for any involution r. Hence the Sylow p-subgroups of C(r) are unique for
all odd p. It follows then from Lemmas 2 and 4 that, if K is an S-invariant
subgroup of G of odd order, where i O, 1, there is a unique S-invariant Sylow
p-subgroup of K for every prime p dividing K [. This fact is to be used re-

peatedly.

]:)ART II. THE STRUCTURE OF THE GROUP G

6. Structure of the centralizer C(r)
For brevity we shall henceforth write C(H), C(x), etc., for Ca(H), C((x),

etc., H being a subgroup, and x an element of G.
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By Lemma 8, C(rl) has a normal 2-complement U U1 which under the
hypotheses of Theorem I is abelian. Thus C(rl) SU1. If p0 is in
N(So) C’(So), then C(r2) S"U and C(ra) S"Ul. We set
U2 Uand Ua U Then U
Henceforth S will denote a fixed Sylow 2-subgroup of G, and S* a dihedral

subgroup of S. If ]S* > 4, let S, S be representatives of the two con-
jugate classes of four-groups in S*. To unify the notation, we put S*
when S* 4, and do not define S in this case. If S* S, we set S S0
and S* S (when it exists).
Whenever there is danger of ambiguity, we shall use the notation * *Tli

T3 for the involutions in S. However, when S S0, we shII continue
to denote them by n, v2, 3.

We define E* C(*) U, E C() U, and E C() U
when S exists. When S S*, we use E, Eo, E in place of E*, E, E.

Let A* {*} be the maximul cyclic sbgroup of S* containing the central
* D* F*involution T T0 V. Then U X where acts regularly on

D* and F* C(a*) n U. Hence D* and F* are uniquely determined. Be-
cause A* is normul suboup of S*, both D* nd F* are S*-invriant.
prticu]r, they re invuriunt under conjugation by the involutions To nd
721 T20 In fct, both these involtions induce the sume tomorphism
of F* with E* as the fixed subgroup. Thus F* E* X U’* where U’* is
inverted by both *720 d Tl. This decomposition admits the group S*.
We cannot do the same in decomposing D*. However, setting

E’* C( *

i 0, 1, we obtain S-invariant subgroups of D*. Since E* n E* E*,
E* n E* 1. Furthermore, E C( * D* * F* E*

LEMMA 12. The subgroup U1 admits the decomposition

(14) u E*

according as S* S$ or > S. Furthermore, the commutator subgroup
of S* centralizes U1 ifE 1 or E 1.

Proof. In the case S* S, D* 1, and the first case of (14) follows. In
the case S* > S, we have shown that E* X E* X E’I* X U’I* is a subgroup
of U1. Using Wielandt’s formula for the order of a group that is normalized
by a dihedral group of automorphisms [23, Beispiel (3.1) ], we see that equality
holds in the second case of (14).
To prove the last statement, we may assume that E0* 1. Then 722" T*

inverts U1. For x e U1, we have
o*r ’* o*-- X--1 a*-- x*-- --1(x"*)-=x =x (x
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Hence the commutator subgroup {a*} centralizes U1, and the proof is com-
plete.

Remark. In the special case that S S* and B centralizes U1, E Eo*
is inverted by r a and a, E’I E’* is inverted by r and a (when it is de-
fined), and U’ U’I* is inverted by r and r a and consequently is centralized

pi !
bya. Furthermore, if pi e N(Si) C’(S), UI n Uz E, i O, 1,
k 1,2. Hence if x e U’I and H C*(x),it follows that N,(S) C’(S),
i 0, 1. Thus by Lemma 11, C*(x) has a normal 2-complement; also C*(x)
contains S. These observations will be used repeatedly.
We shall further decompose U’I* into the direct product V* X W*, where

V* is the maximal Hall subgroup of U’z* in which every element a 1 has
its centralizer C(a) contained in C(rz), and W is the complementary sub-
group. Consequently for each prime p dividing W* I, there exists a p-ele-
ment a 1 in W* whose centralizer is not contained in C(rz). Setting
X* E* X W* or correspondingly X’ E* X E* X E’I* X W*, we ob-
tain the decomposition

(15) U V* X X.
When S S*, we use V for V’, W for W, etc. This notation will

be preserved throughout the remainder of the paper.

7. The S*-invariant p-subgroups of G
For some odd prime p let P be an S-invariant p-subgroup of G, i 0 or 1,

and let P P1 P. P3 be an S’-decomposition of P, where P, is the fixed
subgroup of the involution r,*. Because G has only one class of involutions,
each component P, is a subgroup of a conjugate of U1 and hence is abelian.
By Lemma 6,

(16) P P0 X P’l P’2 e’3,
where P0 C(S) n P and Pj is the subgroup of P, inverted by r, .
We shall use the notation E*(p), E(p), E’(p), etc., for the unique Sylow

p-subgroups of E*, E, E, etc.

LEMMA 13. Let H be a proper subgroup of G containing S*U, where S*
is a dihedral subgroup of S, and S* is a Sylow 2-subgroup of H. Assume that
N,(S) > C’(S) for exactly one value of i O, 1. Then

(i) for every prime p dividing 0(H) I, there exists a unique S*-invariant
Sylow p-subgroup P of 0(H);

(ii)
and

()

(iii)
(iv)

P has the S-decomposition P P1 P. P E(p) X P’ P’. P’a,

IPI--IPI--IPI and

eitherP, E(p),orPisaSylowp-subgroupofC(r), 1,2,3;
0(H) n U X, and every prime dividing O(H) divides X I.
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Proof. Some conjugate of S* in S contains S0 or $1. Hence without
loss we may assume that i 0 and that So* So. Thus N,(S0) > C(S0)
and E0* E0.

(i) The existence of an S*-invariant Sylow p-subgroup P of O(H)
follows from Lemma 1. Its uniqueness follows from the remark at the end
of 5.

(ii) Denote by/ the image of a subgroup K of H in I H/O(H).
Since by assumption U -< H, it follows from Lemma 5 that 0/0 C($0).
On the other hand, by Lemma 11, is isomorphic to PGL(2, q), q odd, if

S*I > 4 and to PSL(2, q), q odd, if S*I 4; consequently C(0) 0
by 4(D). Then E0 and hence Eo(p) is contained in O(H). By Lemma 1,
Eo(p) lies in the unique S0-invariant Sylow p-subgroup of O(H), which must
be P. Hence P has the S0-decomposition given in (ii).
Now by the Frattini argument, H O(H)K, where K N.(P) hence

NK(So) > C(So). There exists an element p0 in K which conjugates 1

into r, into 3, and 3 into . It follows that p0 P2, p0 pa
this gives (17) at once.

(iii) Suppose that P1 E0(p); it suffices to show that P is the Sylow
p-subgroup R of U1 since P2 p0 and P3 p0. Now R2 R and
Ra R are contained in H. Assume that/ 1; then/2 1 and/a 1
since O(H) p O(H). Each subgroup/ is a Sylow p-subgroup of Ca()
and is cyclic since/ is isomorphic to PGL(2, q) or PSL(2, q). Furthermore
/ n/ 1 for . Consequently/ and/2 do not generate a p-group.
We shall now contradict this in order to obtain/ 1 and R P,, as
desired.
Now R O(H) is S*-invariant, and it follows that the unique S0-invariant

Sylow p-subgroup of RI O(H) is necessarily S*-invariant; by Lemma 4, it
has the S0-decomposition R P2 P R P’ P’. By (17), R P P3 > R1
hence we may apply Lemma 7 to obtain an element a in, say, P such that
M C,*(a) contains R But N:(So) C’(So) since a is in P’2; also
N(S) C’(S’) (if S* exists) since N,(S) C’(S’). Hence M has a
normal 2-complement 0(M). It is clear that M > S0. Hence 0(M) is
S0-invariant. On the other hand, R <= O(M). As U is abelian, R <- M;
hence R <= O(M). By Lemmas 1, 2, and 4, there is a unique S0-invariant
Sylow p-subgroup R of O(M) with the S0-decomposition R R. R’ where
R’ -<_ R.
In/ the image/ of R has the decomposition/ /1//a, and conse-

quently/ and/, generate a p-group, which is a contradiction and establishes
(iii).

(iv) It follows from (ii) that if p divides 10(H)I, then p divides
O(H) n U ]. It remains to show that O(H) U X*. We have already
shown in the first paragraph of (ii) that E0 -<_ 0 (H), and the same argument
yields that/* 1, and hence that E’ <= O(H), whence Eo E* <= O(H).
Now if V* n 0(H) 1, there exists a p-element a 1 in V* 0(H) for some
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prime p. By (ii) and (iii), belongs to the subgroup P’I of the S*-invariant
Sylow p-subgroup P of O(H) with S0-decomposition (16). By (17), P’I 1;
whence by Lemma 7 there exists an element in P’. which centralizes P1.
Hence a commutes with an element not in U1. This is a contradiction, and
we conclude that V* n O(H) 1.

It thus suffices to show that W <= O(H). Hence suppose that there is a
p-element in WI*, but not in 0(H). Then P is not a Sylow p-subgroup of U,
so that, by (iii), P1 Eo(p). In other words, the subgroup P’ in (16) is
the identity. Thus the Sylow p-subgroup of Wt is disjoint from O(H).
Hence there exists an element e W’, but not in O(H), such that C(a) is
not contained in S* U1.

Since e W*, C.(z) has a normal 2-complement F with S0-decomposition

F Fo F’ F’2 F’3 F, F. F3.
Since U1 is abelian, F1 U. By our assumption on a, FF’ 1. Let
),. 1 be an element of, say, F’ },2, and set h NowK
contains a and aDo-‘ Since e F’I N(So) C’(So) and C,*(h) has
normal 2-complement Y which contains a and ep-. The unique S0-in-
variant Sylow p-subgroup Q of Y has the S0-decomposition

Q Q Q. Q Q0 Q’ Q’2
and hence a e Q’ a- eQ’. Thus {a, ,0 1} is a p-group. Since / is

--1
isomorphic to PGL(2, q) and and ,0 are in the centralizers of different
involutions, and ,0- do not generate a p-group in/, which is a contradic-
tion. Thus W <= O(H), and the lemma is proved.

Remarlc. If P > Eo(p), we have shown in (iii) that P, is the Sylow p-sub-
group of C(r,), 1, 2, 3. It follows, therefore, from Lemma 4 that P is
a maximal S0-invariant and, when S S*,. a maximal S-invariant p-sub-
group of G. However, as we shall see later, P need not be a maximal
invariant subgroup of G.

8. The structure of G, Case
In the remainder of the paper we shall distinguish the following cases"

CaseI. E0 1, E 1.
CaseII. E0 1, E 1.
CaseIII. E0 1, El-- 1.

By symmetry we need not consider the case E0 1, E1 1. Case II can
occur only if S >- 8;and the same is true in Case I if E > E, i 0 or 1.
To analyze Case I we need a lemma which is closely related to Lemma 13.

LEMMA 14. Let Ha, H be proper subgroups of G containing S*U where S*
is a dihedral subgroup of S and a Sylow 2-subgroup of both Ha and H1. As-
sume that N(S) > C(S), N(S) C;(S), i,j O, 1,j i. Then
O(Ho) O(H,).
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Proof. As in Lemma 13, we may assume for convenience that S S0.
We first show that for every prime p dividing U1 I, Eg’ (p) E*(p) if and
only ifE (p) E*(p). We may suppose that E’ (p) E*(p) and E* (p) >
E*(p). By Lemma 13(iv), O(Ho) n Uj X[, and hence E[ <__ O(Ho).
Hence by that lemma, O(Ho) contains an S*-invariant Sylow p-subgroup
P 1 with S0-decomposition

(1.8) P P1 P2 P3 E*(p) )< P’l P’. P’3,
where Pj is a Sylow p-subgroup of U1 and Pll P21 Pal. Thus
Pl P I/i E*(p)
On the other hand, let

(19) P R R R
be the S*-decomposition of P. Now R, P1 is the Sylow p-subgroup of U
it follows, therefore, from Lemma 3 that

p R1 I[ R2 [I Ra I/i E*(p)12 =< [P la/[ E* (p)12.
But Pl pl I/I W*(p)I and E[(p) > W*(p), which gives a contradic-
tion. Thus E* (p) E*(p), as we asserted.
Now we prove the lemma. We know from Lemma 13 that O(Hi) n U:=

X*, and also that every prime dividing 0(Hi) divides X* I, i 0, 1.
Let then P, Q be the unique S*-invariant Sylow p-subgroups of O(Ho), 0(HI)
respectively for some prime p dividing X* [, with respective S0- and S’-
decompositions

(20) P P P2 P3 E’(p) X P; e’2 P’,
(21) Q Q Q2 Qa E[(p) X Q’I Q’ Q.
If E(p) E*(p) E*(p), it follows from Lemma 13 that either P Q
E*(p), or that P Q is the Sylow p-subgroup of U. Moreover, in the
latter case P, is the Sylow p-subgroup of U,, g 1, 2, 3, and

P QI pl la/I E*(p) ]2.
Since Q is S0-invariant, Q must then be contained in P. But as they have the
same order, Q P in this case as well.

Suppose then that E(p) > E*(p). By what has been shown above,
E’(p) > E*(p). Now E’(p) <-O(Ho), and hence E’*(p) <-P’I. Thus
again by Lemma 13(iii), P is the Sylow p-subgroup of U. By the same
argument so is Q, whence P Q1. But then P2 p0 and Pa P2

are the Sylow p-subgroups of U2 and Ua, respectively. It then follows that
P P P. Pa is the maximal S’-invariant p-subgroup of G. Similarly
Q Q1 Q2 Q3 is the maximal S-invariant p-subgroup of G. By Lemma 6,
the S*-invariant group P admits an S*-decomposition

(22) P E* (p) X P’ P’ P’.
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But thenE(p) X P <= Qi,i 1, 2, 3. HenceP __< Q. By symmetry,
Q _-< P. Thus P Q and O(Ho) O(Ht), and the proof is complete.

PROPOSITION 15. Case I. There exists a proper subgroup H of G containing
C(rj) and havin no normal subgroups of index 2.

Proof. Define the class of proper subgroups o {He} of G as follows:
H0 e 0 if He >= S*Ut, where S* is a dihedral subgroup of S containing So,
S* is a Sylow 2-subgroup of He, and N,0 (So) > Co (So).

Since E0 1, N(Eo) Co, and hence 3C0 is nonempty. Choose H0 in 3C0
so that S* has maximal order. We shall show first that S S*.

Suppose then that S* < S. Let T Ns(S*). Then T is a dihedral
subgroup of Sand IT:S*[ 2. Since ISI ->_ 8, N(Eo) n S >_- 8, and
hence S*I >= 8. Then for some iin T S*, it follows that So* S,
and S* S’ where S So.
Assume that N,o(S) > C0(S*). Since Ut < H0,

N(S) N,0(S) =< H0 and N(S*) N,0(S*) -< He.
But N(Sg’) N(S*t), N(S) N(S), and U Ut. It follows that
normalizes the subgroup K {Nuo(S0*), N,0(S*), U1} of H0. Thus
H* N(K) is in 3Co and contains T > S*, contrary to the maximal choice
of H0.
Hence N,0 (S*) Co (S*). Set Ht H*0 Then Nnl (S) > C1 (S’),

Nu(S*o) C;(S*o), H1 >= S*UI, and S* isa Sylow2-subgroup of H. Thus
by Lemma 14 it follows that O(Ho) O(Ht). Set H N(O(Ho) then H
contains H0 and Hr. Since Nu(S) > C;(S) i 0, 1, we conclude as
above that H* N(H) is in C0 and contains T, contradicting the maximal
choice of H0.
Thus S* S. If Nn0(St) > C0 (St), the proposition follows with

H H0. Hence we may assume that Nuo (St) C0 (St).
By symmetry we define a class Cl of proper subgroups of G. Since Et 1,

we may show by an entirely analogous argument that there exists a subgroup
Ht of G containing SUt and such that N.(St) > C1 (St). If N.1 (S0) >
C’(So), the proposition follows once again with Ht H. Thus we may
assume that Nn (S0) C (So). The conditions of Lemma 14 are again
satisfied, whence O(Ho) O(Ht). The proposition thus follows as above
with H N(O(Uo)).

9. Maximal S0-invariant p-subgroups of G in Cases II and Iii

In the next two sections, we shall assume that E Eo 1.
Thus C(So) So, and N(So) is isomorphic to A4 or $4. Furthermore, 2 in-
verts U1 and, by Lemma 12, a centralizes Ut. We construct in this sec-
tion, for each prime p dividing W I, an N(So)-invariant p-group in G which
contains the Sylow p-subgroup of Ut. To begin this construction we prove
the following lemma.
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LEMMA_ 16. Let X U1. Then either H C*(X) has a normal 2-comple-
ment, or E1 and H satisfies the conditions of Lemma 13 with i 1 and
S* S.

Proof. If e U, C*(X) hs normM 2-complement by virtue of 6.
If X e Ux El-- U, Sylow 2-subgroup S’ of H is generated by r nd a.

As representatives of the two coniugte classes of four-groups in S’, we my
take So and S’1 {r, r2 a2}. But So and St1 are conjugate in G; hence
N,(S’) C(S’I). Thus H has a normal 2-complement by Lemma 11.

Finally take X e E. Since B centralizes U, SU is contained in H. If
oo e N(So) C’(So), X UI since C(So) So. Thus N,(So) C;(So).
If N,(S) C’(SI), again H has a normal 2-complement. If this is not the
case, H satisfies the conditions of Lemma 13 with i= 1 and S* S. The
lemma is proved.

Suppose that G contains a subgroup H satisfying the conditions of Lemma
13 with i 1 and S* S. Let P be an S-invariant Sylow p-subgroup of
O(H); then P satisfies (16) and (17). Assume further that P’ 1, in
which case Pt is a Sylow p-subgroup of Ut by Lemma 13(iii). By the re-
mark in 7, P is a maximal S-invariant p-subgroup of H; but it need not be a
maximal S0-invariant subgroup when S > So. In fact, set/ H/O(H),
and let 2t and be the images of a subgroup M and an element a of H in/.
By Lemma 11(ii),//is isomorphic to PGL(2, q). Since No(N0) C(0),
the involution 2 of N0 lies outside the normal subgroup of/ which is iso-
morphic to PSL(2, q). Then by 4(B), Ca(2)l 2(q + i) and
Ca()l 2(q ) where i 4-1 and q (mod 4). Hence if p divides

q nu ti, it is possible to form a maximal S0-invariant subgroup p(2) > p in
the S0-invariant subgroup C,(r.)O(H), which is the inverse image of Ca(2)
in H by virtue of Lemma 5. By the Frattini argument, K C,(r2)0(H)
N:(P)O(H). Hence p(2) has the form P2* P where P2* is the Sylow p-sub-
group of C,(r2). In a similar manner we may form p(3) p, p where P
is the Sylow p-subgroup of C.(ra). We are now in a position to complete
the proof of the following lemma.

LEMMA 17. Let p be a prime dividing W I. Let 1 be in U, and
set H C*(). Then H contains two So-invariant p-subgroups p(2) and P()
with So-decompositions

(23) P() PIP P* and P() PP*2 P
where P is the Sylow p-subgroup of U1, and P*, is the Sylow p-subgroup of
C,(r,), 2, 3. Furthermore, if X is in the center of an So-invariant p-sub-
group Q, then Q is contained in either P(2) or P(3).

Proof. If H has a normal 2-complement, then O(H) contains a unique
S0-invariant Sylow p-subgroup P*, by the remark in 7. Hence (23) holds
withP(2) p() p,. IfxeZ(Q),thenQ <- O(H) andQ _-< P.
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Thus, by virtue of Lemma 16, we may suppose that H satisfies the condi-
tions of Lemma 13 with i 1 and S* S. By Lemma 13(iv), O(H) n U1
X1; hence O(H) >= W1. Since p divides W1 I, P > E(p). Then by
Lemma 13(iii), P n U P1 is the Sylow p-subgroup of U1. Thus the
existence of P(") and p(3) with the decompositions (23) follows from our
preceding discussion.
To prove the final statement of the lemma, note first that Q _<_ H. Let

Q Qi Q,. Q3 be the S0-decomposition of Q, and let Q 1 (2 Q 2 (a
be the. image of Q in H/O(H). Then (, =< Ca(,), 2, 3, and 2 and a
are not conjugate to in/. Since/-t is isomorphic to PGL(2, q), it follows
from 4(B) that O(C()) is cyclic and its Sylow subgroups are Sylow sub-
groups of/. But 2 (3 1. Hence can be a p-group only if (,. 1
orQa 1. IfQ, 1, thenP,* >-_ (, t,andP() >__ Q.

LEMMA 18. Let p be a prime dividing W 1. Then G contains an So-
invariant p-subgroup P with the So-decomposition

(24) P P P,.P’3 or P- PI P’,.P
where P, t 1, 2, 3, is a Sylow p-subgroup of U, t 1, 2, 3, and P <= P, 2, 3. Either P is N( So)-invariant, or P is a Sylow p-subgroup of G and
So is a Sylow 2-subgroup of N(P).

Proof. Because of the definition of W1, there exists an element 1
in P n W for which C(a) is not contained in C(1). Since WI <-_ U’,
C*() has a normal 2-complement M with S0-decomposition M M M,. Ma.
By the condition on , M U and M > M. Thus there exists an ele-
ment h in, say, M3. If ),1 },0, where po eN(So) C’(So), then
contains the p-element a a e M. Furthermore, a U.
By Lemma 17, H C*(1) contains an S0-invariant subgroup Q with S0-de-

composition Q P Q2 Q, where Q is the Sylow p-subgroup of U: a H.
Hence : e Q,.. Then by Lemma 7, there exists an v in Q or Q such that
C(v) >-P. If correspondingly v- or w v, it follows that
H* C*(w) contains P1 and either P or P. Thus by Lemma 17, H* con-
ruins an S0-invariant p-group P* with S0-decomposition given by one of the
two relations in (24). Finally let P be muximal S0-invariunt p-group of G
containing P*. Then P also has an S0-decomposition given by (24).

If P P1 P2 P, then clearly p0 p, and P is N(S0)-invariant. Sup-
pose then that, say, P’ < P. Then P is not p0-invariant, and hence if
K N(P), N(S0) C(S0). Let T be a Sylow 2-subgroup of K. Since
T is dihedral, we can assume So =< T. Suppose T > So. Then there exists
an element /’ of order 4 in T <_- N(S0). Hence Pa P’ Pa, which is
contrary to our assumption. Therefore, T So; and Burnside’s theorem
implies that K has a normal 2-complement O(K). By the maximal choice
of P, P must be a Sylow p-subgroup of O(K) and hence of K. Thus P is
a Sylow p-subgroup of G, as required.
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LEMMA 19. Let p be a prime dividing Wll. Then G contains an N( So)-
invariant p-group P with So-decomposition

(25) P P1 P. P3,

where P is the Sylow p-subgroup of U 1, 2, 3.

Proof. We argue by contradiction. By the preceding lemma, we may as-
sume G contains an S0-invariant Sylow p-subgroup P of G with S0-decomposi-
tion P Pl P2 P’3, where P’a < Pa. Using Lemma 7, we can find an element
2 in, say, P. which centralizes P1, and in particular commutes with h
o- 0Then k and k commute, as do k. and ,. It follows that
{kx, , k} is nontrivial N(So)-invriant p-subgroup of G. Define Q as
the maximal N(S0)-invarint p-subgroup of G, nd let it have the So-decompo-
sition

(26) Q Q Q2 Q,

where Q =< P, 1, 2, 3, Q. Q0, Q3 Q0. If any Q, P, then Q > P’
which contradicts the fact that P is a Sylow p-subgroup of G. Thus Q, < P,,

1,2,3.
The center Z(Q) is also N(S0)-invariant and has an S0-decomposition of

the form

(27) Z(Q) Z Z. Z3

whereZ Z,Z3 Z. HenceZ, 1, 1, 2, 3. Leth lbein
Z1, and consider H C*(h). By Lemma 17, H contains an S0-invariant
p-group Q* with S0-decomposition

(28) Q* PI Q Q
whereQ* >__ Q, sinceheZ(Q). SinceP > Q1,Q* > Q.
Thus we can consider a maximal S0-invariant p-subgroup of G such that

R >= Q* Q. We claim that R is also a Sylow subgroup of G. Indeed, let
K N(R),andlet T_>- So beaSylow2-subgroupofK. IfT So, then
by the maximal choice of Q, N(S0) C(S0). Hence Burnside’s theorem
implies O(K) is a normal 2-complement. By Lemma 3, R is a Sylow sub-
group of O(K) and hence of G.
Hence suppose that T > S0. Then T has two classes of four-groups,

represented by So and S’. If T is not a Sylow subgroup of G, there exists an
element in N(T) such that S0 S’. Then N(So) C(So) implies
N:(S) C’(S). Hence by Lemma 11, K has a normal 2-complement
O(K). Again R is a Sylow subgroup of G in this case. Thus we may, after
a conjugation, if necessary, suppose that T S and N(SI) > C(SI),
where now S* $1.

If R P R Ra is the S0-decomposition of R, R2 P and R P3 ;for
otherwise, the fact that R: R and R3 R would imply that R P P Pa.
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By Lemma 6, R has the Sl-decomposition

(29) R E(p) X R R R
where El(p) X R’I P and, for some p. e N(S1) C’(S), R’pl R’
R’.pl R’3. Now Z(R) also has an Sl-decomposition

(30) Z(R) E_(p) X Z’ Z’ Z’3
Z’.1 Zr3 andZ 1, u 1 2,3 On the otherwhere again Z’ Z’.

hand, Z(R) has an S0-decomposition

Z(R) Z Z Z3

Here Z E(p) X Z’I. Since Z’ Zr 1, Z. Z3 - 1.
Thus there exists , 1 in Z,, u 2 or 3. Now both R and Z, are con-

tained in H C*(h). Applying Lemma 17 to H (actually to H or H*
since h e U or U), we obtain a maximal S0-invariant p-subgroup R* of H
suchthutR* >= RandR* > P. ButR < P and hence R* > R. This
contradicts the maximal choice of R and shows that R must, in fact, be a
Sylow p-subgroup of G.
To conclude the proof, note that R P for some e G. By Lemma 18,

So is a Sylow 2-subgroup of N(P). Hence So is also a Sylow 2-group of
N(R). This implies that S is a Sylow subgroup of N(P). Thus there
exists v N(P) so that R’ P and N(So). Since Q is N( So) -invariant,
we obtain thut Q Q’ <- P. Furthermore, Q P ;in fact, P’a generates

/p0with pp0 and k’ an N(S0)-invariant subgroup X of P. Thus Q -> X, and
comparing components we obtain P’a >= Qa >- P’3. Thus Q X.
Next formN N(Q). AsQ < P, NnP > Q. Setf N/Q, andlet

/5 be the image of N n P in hT; /5 is then o-invariant. Since P <= Q,
/ n C() 1 by Lemma 5. Hence inverts/5, and so/ is abelian. Thus
/5 /1 X/, where/5, C(e,), # 1, 2. We may assume that/ 1.
Then there exists xz in, say, P which normalizes Q but is not in Q. Then
x. x normalizes Q and is in P. Thus the images z and in f of x
and x, respectively, commute. Set x3 x;. Then x e N, and and a
commute as well as and . Hence {x, x, xa, Q} is a larger N(S0)-
invariant p-subgroup than Q. This is a contradiction. Hence P’a P3,
and we have P Pz P P. This proves the lemma.

10. The structure of G, Cases II and III
We assume E E0 1 in this section.

LEMM& 20. Let p be a prime dividing WI I. Then E(p) 1. Thus
(I E1 I, W I) 1.

Proof. Suppose that E(p) 1. Then S > So. Let H N(E(p)).
Since Eo 1, B centralizes U, and so S -< H. Furthermore, Lemma 13
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applies to H with i 1. Hence an S-invariant Sylow p-subgroup Q of
O(H) has the Sl-decomposition

(31) Q E(p) Q Q’ Q’,
where El(p) X Q P is the Sylow p-subgroup of U and Q’ PI W.
Thus Q P Q’ Q’. Furthermore, Q is a maximal S-invariant p-subgroup
of G by the remark in 7.

Let P be the maximal N(S0)-invariant p-subgroup of G, constructed in
Lemma 19 and having the S0-decomposition (25). On the other hand, Q
has an S0-decomposition Q P P Pa. Here P: -< P,, 2, 3, and con-
sequently Q _-< P. Now using (17), we have Q’P Q’ Q Q
P P’a I. Thus P’ P’l < P: P I, and so Q < P and Q is not N(So)-

invariant.
If K N(Q), K contains S and N(S) > C’(SI). Since Q is not N(So)-

invariant, N(So) C(So), and it follows from Lemma 11(ii) that
[ K/O(K) is isomorphic to PGL(2, q), q odd. Since O(K) contains a
unique S-invariant Sylow p-subgroup, this must be Q by the maximal nature
of Q.
On the other hand, K P > Q as P > Q. Let/5 p/5./sa be the image
ofKPin- K/O(K). SinceP < Q,/5 =/p. But P and P are
contained in distinct cyclic Sylow subgroups of/ and hence generate a p-group
only if/5 lor/Sa 1. ThusKoPorKPis contained in0(K).
Since (K P.) K Pa and O(K) is S-invariant, both K P. and K P,
and consequently K P, are contained in O(K). Thus K P Q, which
is a contradiction.

LEMM_ 21. For each prime p dividing W [, let P be the N(So)-invariant
p-subgroup of G constructed in Lemma 19. Then N(P) contains S, V, and
N(S).

Proof. The center Z(P) has the S0-decomposition Z(P) Z Z Z3, where
eachZ, 1. Let heZ. SinceE(p) 1 by Lemma20, heU’l ;hence
M C*(,) has a normal 2-complement. Since both S and P are contained
in M, it follows at once that P is S-invariant.

Let be the set of primes dividing V I. Then E1 F Fr, where
F1 is the Hall -subgroup of E and F is the complementary subgroup.
Thus V X F1 is a Hall -subgroup of U since V is, by definition, a Hall
-subgroup of Urn. Let q e , and let Q be the Sylow q-subgroup of U1.
Let Q be the S-invariant Sylow q-subgroup of 0(M). Since U1 =< 0(M),
Q >= Q1. If Q > Q1, it follows from Lemma 7 that there exists a nontrivial
element in Q n U., say, which centralizes Q, and, in particular, Q1 n V.
This contradicts the definition of V and shows that V F is an abelian Hall
subgroup of O(M).

Let Y NoM)(V1 F1), and let Y Y Y. Ya be the S0-decomposition of
Y. Clearly Y centralizes VIF. Let heVF1 and zeY,, t 2 or 3.
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Then eV1F1 -< U1, whence 1 1- -. Thus h.
Since z has odd order, it follows that z commutes with and that V F1 is
in the center of its normalizer in O(M). Since V F1 is an abelian Hall
subgroup of 0(M), Burnside’s theorem implies that V F has a normal com-
plement M0 in O(M) By Lemma 1, M0 contains an SV F-invariant Sylow
p-subgroup, and this must be P, since P is the unique S-invariant Sylow
p-subgroup of 0(M). Thus V1 -< V F <= N(P).

Suppose next that E 1. Then H N(EI) < G. Since NH(So)
CI(So) and N(S) > C/(S1), we may apply Lemma 13 to H. It follows
from parts (iii) and (iv) of that lemma and from Lemma 19 that P is the
S-invariant Sylow p-subgroup of O(H). Since H O(H)K, where
g N(P) NK(S,) > C(S1) Let p NK(S) C’(S) and let P
have the S-decomposition P PP P’. Now E1 <- UI <- C(P). We
have El E <- C(P) C(P), and similarly E _<_ C(P’). Thus
E <= C(P). Since N(S) {p, C’(S)}, N(SI) <-_ N(P), which proves
the lemma in this case.
Assume finally that E 1. Then C(S) SI ,andN(S) {p, C’(S)},

where p has order 3. Since P is S-invariant, it has an S-decomposition
P P1 P’2 P’, where P is contained in the Sylow p-subgroup of C(r a),

2, 3. Since G has only one class of involutions, these Sylow p-subgroups
are conjugate toP. Since Ipl IPlwemusthavelpl IPl IP;I
and hence P: is the Sylow p-subgroup of C(r,a), 2, 3. But
thenP’ P’2,P’21 P’,andP’ P. ThusP P, andN(S) =<
N(P). The lemma is proved.

PROPOSITION 22. Case II. If W 1, there exists a proper subgroup of
G containing C(rl) and having no normal subgroups of index 2.

Proof. Let H N(E). Since E 1, H < G. For each prime p
dividing W I, let P be the N(S0)-invariant p-subgroup constructed in
Lemma 19. It follows from Lemma 13 and Lemma 19 that P <= O(H).
Let K be the subgroup of O(H) generated by the subgroups P for all the
primesp dividing Wll. ThenK <= O(H) < G. By Lemma21, S, V1,
E, N(S0), and N(S) all are contained in N(K). Hence Lemma 11 implies
that N(K) has no normal subgroups of index 2. Thus N(K) satisfies the
requirements of this proposition.

PROPOSITION 23. Case III. For each prime p dividing W I, there exists
an S-invariant p-subgroup P of G of order P , where PI is the Sylow p-sub-
group of C(r). If H N(P), H contains S and V and has no normal
subgroups of index 2. Furthermore, H/O(H) is isomorphic to PSL(2, q), q
odd, and either q is determined independently of p, or S So and VI 1, in
which case q 3 or 5.

Proof. Let P be the N(S0)-invariant p-subgroup of G which was con-
structed in Lemma 19. The first assertion has been proved in Lemma 19,
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and the second in Lemma 21. By Lemma 11, H is isomorphic to PSL(2, qp)
or toAT. AsE0 Es 1, Hcannot be isomorphic toAT. Thus it re-
mains only to show that % is independent of p.
We first claim that Us n O(H) W1 n H. Indeed if R’ is a Sylow r-sub-

group of Us H, R’s, R’2 R;’, and R’3 R’2p normalize P, where
po e N(So) C’(So). If r divides Ws I, R =< R, the unique maximal
N(S0)-invariant r-subgroup of G constructed in Lemma 19. Hence

is an r-group, and R’ > R’1. By the usual argument, the image of R’ in
must be the identity. Hence R’ <= O(H). Thus U1 O(H) >= W1 H.

Since p0 normalizes O(H), O(H) admits the S0-decomposition

O(H) Ks Ks K3

where K2 K and K Kp2 Hence for any prime r dividing
the unique S0-invariant Sylow r-subgroup R of O(H) has the S0-decomposi-
tion R Rs R R3 where R, is the Sylow r-subgroup of K; and, conse-
quently, R, 1, 1, 2, 3. But then by Lemma 7, C(R_) contains
nontrivial element of R or R ;this contradicts the definition of V1. Thus
U O(H) W H.

It follows that in I H/O(H), C(’1) 1 is isomorphic to SV.
From 4(A), it follows that

I1 1/2q,(q, W 1)(q 1),

where q 2a+iy - , 8p 4-1, and v Vs ].
LetM IS, Vs,N(S0),N(SI)}. ThenM __< HandbyLemma 11 has

no normal subgroups of index 2. Hence M/O(M) is isomorphic to
PSL(2, q), q is odd (A is not allowed as E0 Es 1). Certainly
M n O(H) _-< M n O(M); hence I1 divides I/ I. As above, C(1) is
isomorphic to SVs. Hence Br 1/2q(q -i- 1) (q 1), where q 2"+1v
e :i:l. Ife e,wemusthavee lande -lsincel/r
But then % q W 2, and (q-t- 3)(q-t- 2)(q W 1)/(q-t- 1)q(q- 1) must
be an integer. This implies that q divides 6. Since q is odd, the only solu-
tion is q 3, in which case is isomorphic to PSL(2, 3), and/ to PSL(2, 5).
In this case S So and V 1. For every other choice of q,
and % q. Since M is determined independently of the choice of p, the
proof is complete.

COOLLXY 24. Case II1 with Ws 1. Set Vl v, Wll w, and
q 2+Sv - e, where 4-1. When V1 1, or S So,gisdivisibleby
gs 1/2 q q 1) w for suitable choice of e. When V1 lands So g is
divisible by 12w.
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Proof. When V1 > 1 or S > So, 1/2q(q 1)w divides g, where w is
the highest power of a prime p dividing w. Since q is determined inde-
pendently of p, we may set q q and easily obtain that gl divides g.
When V1 1 and S So, the group/- constructed in the proof of Propo-

sition 23 is isomorphic to PSL(2, 3) or PSL(2, 5). Hence ]1 12 or 60.
The result now follows.
Remark. If for each p dividing Wll the corresponding N(S0)-invariant

p-subgroups of G constructed in Lemma 19 were pairwise permutable, they
would generate a group of odd order by a theorem of P. Hall [13, p. 144],
and it would follow also in Case III with W1 1 that G possesses a proper
subgroup H N(K) having no normal subgroups of index 2 and containing
C(r). Indeed, this would be the case if it were known that a group of odd
order which admits the four-group as a fixed-point-free group of automor-
phisms is solvable.
To see this, let p and q be two primes dividing W ], and let P, Q be the

corresponding N(S0)-invariant subgroups. Then if a e Z(P) n U1, C*(a)
has a normal 2-complement M containing P and U1 and M would be solvable
by the above proposition. But then M would contain a unique S0-invariant
Hall (p, q)-subgroup PQ, where Q n U _-< Q _-< Q, and it would follow that
P is permutable with Q,ipo, where po e N(So) C(So). Consequently P
would be permutable with Q {Q, Qp0, Q,02}.

PART III. CHARACTER THEORY

11. General character theory

In this part, we treat the theory of exceptional characters. This theory
has been developed principally by R. Brauer and M. Suzuki (cf. [2], [5],
and [19]). Its object is to develop at least part of the character table of G.
In our case we apply it to compute formulas for the order of G and to obtain
certain congruences for the degrees of the irreducible characters of G. In the
following sections, this will be done with just the assumption that G contains
a dihedral Sylow 2-subgroup and no normal subgroups of index 2. We will
also obtain slightly stronger results in particular cases when G is an L-group.

In this section, we will present a refinement of the technique of Suzuki
[19] which was obtained by comparing his approach with that of Brauer in
[5]. We summarize Suzuki’s work omitting the proofs given there.

Let G be a finite group with a subgroup H. We say that a set of conjugate
classes of H are special classes if the following two conditions are satisfied:
(a) If x belongs to a special class, then Ca(x) <- H. (b) If x and y belong

Added in proof. Now that Walter Feit and John Thompson have proved that all
groups of odd order are solvable, it follows from this remark that an alternative proof
could be given for Case III with W1 1 by using Proposition 30 instead of Lemma 32
and Proposition 33.
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to special classes and are conjugate in G, then they belong to the same class
of H.
We will assume that H possesses a set of special classes; designate by D

the elements of these classes. We let De be the set of elements of G which
are conjugate to elements of D. Let Me and Mr be the modules of gen-
eralized characters of G and H, respectively. Let Mr(D) be the submodule
of Mr which consists of those generalized characters which vanish outside of
D. Let * be the (generalized) character of G that is induced by a character
of H, and let Mr(D)* be the submodule of Me consisting of the character

* where e Mr(D).
The principal results about the characters of Mr(D) are the following.

It follows from the definition of the special classes that if e Mr(D) and

(32) *(a) (a).
Set

(33) (, v}, (l/h), (()v((r), (, ?}a (1/g)a ()v(),
where and v are characters of H or G as the case may be and g [GI and
h H I. The weight w() of a character is the integer (, }, or (, }a
as the case may be. If and v are in Mr(D),

(34) (, v}- (*, ,*}e.
The rank of the module M,(D) is the number of special classes that can be
formed from the elements of D [19, Theorem 2]. If v e Mr, then v(z) 0
for all a e D if and only if (, v}- 0 for all e Mr(D). (See [19, Theorem
3].)
We now wish to make a more careful, investigation of the structure of the

modules Mr(D) and Me(De). We say that a character of MH belongs
to a p-block B of H if it is the sum of irreducible characters of H belonging
to B. The set of such characters form a submodule Mr(D, B) of M,(D).
If/ is a p-block of G, we similarly form the submodule Ma(D e, [). It is
our purpose to compare the modules M,(D, B) and M(De, ). To do
this we make use of the mapping B-- Be of the p-blocks of H into the p-blocks
of G established by Brauer [3], [4]. We say that D is complete if it contains
along with any p-singular element ra ar all p-singular elements in the
centralizer C(r) of the p-component r of ra.

PROPOSITION 25. Let D be a subset of the subgroup H which determines a
set of special classes and which consists of p-singular elements. Assume that
D is complete. Suppose that

(35) M,(D) (i=1M.(D, Bi),

where the summation is over all p-blocls of H. Then M((D, [) is generated
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by those submodules M,(D, Bi)* for which B [, and

Ma(D( [i)(36) M,(D a) i--1

where the summation is over all p-blocks [ of G of the form [ Ba where B
is a p-block of H.

(37)

We may choose a basis t for M,(D) such that for mi-1 <- < m,
]c, t belongs to the module M,(D, B). Then

r----1 art Cr
where the Cr are irreducible characters of H and ate. 0 only if t and be-
long to the same p-block. Set

(38) t* cr=l

where the q, are irreducible characters of G. We shall show that ct,.

only if belongs to the block Ba where B is the p-block of H to which
belongs.
Now we have for the restriction of to H

(39) .1, -,l Yrs,

Using the Frobenius reciprocity law, we obtain that

(40) C AX,

where C (ct), A (ats), andX (x,r) is the transpose of the matrix
Y (y). In particular, we have for e D,

(41) (a) ’. xs(a).

However, as Suzuki shows, the matrix X is not uniquely determined by the
conditions (41) alone. More than this, any matrix X (Xr) satisfying
(41) also satisfies (40). We shall make use of this and choose an appropriate
matrix to analyze the matrix C.
Now if is a p-element of D and is a p-regular element in Ca(r) =< H,

then

(42) 4(ra) ’= dry. i’ (),
where the d- are the generalized decomposition numbers of G, and ’the modular irreducible characters of Ca(). Likewise

(43) (va) =e. ; (a),

are

where now e. are the generalized decomposition numbers of H. Using the
linear independence of the modular characters and the completeness of D,
we obtain from (41), (42), and (43) that

(44) d" s=l Xsr esj

Now let / be a p-block of C(r). We can then form /" B and /,
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the p-blocks of H and G, respectively, determined by/]i, and
cording to [4, (2A), (2B)]. Now the Principal Theorem of [4] (Theorem
(6A)) asserts that e 0 only if belongs to the block B
is the block to which i’ belongs. Likewise dr 0 only if r belongs to the
block Be /o. Hence if we replace X (x) by a matrix X’ (x’,),
where x, 0 if e B and B e and xr x otherwise, equation (44)
still holds, so that we obtain

(45) d" --1 xsr es-.
Now using (43) and (45) in (42), we obtain for z e D

(46) r(z) ".,= x,(a),
and hence that C AX’. Then

(47) ct -1 at, x

is nonzero only if , belongs to the block B of H to which t belongs and
belongs to the block Be determined by the block B to which , belongs.
This shows that if t e B, then t* e B. Hence

(48) Me(D(, [) >-_ M,(D, B)*,
where B /. Also

(49) Me(D () >-_ @ _- Me(D o, [).
On the other hand, (32) implies that every character of Me(D agrees on
G with the character of G induced by its restriction on H. Thus

(50) Me(D) Mu(D) * ,= M(D, B) *.
Thus (48), (49), and (50) imply that Me(D, ) is generated by those
submodules Mn(D, B)* for which B /, and (36) follows.

12. Character theory of C(r)
We now apply these results to the ease where G contains a dihedral Sylow

2-subgroup S and no normal subgroups of index 2. We also consider the
ease G is an L-group in Case II with W 1 or in Case III.

LEMMA 26. The set D AU U determines a set of special classes of
When G is an L-group in Case II with W 1 or in Case III, the set
U X also determines a set of special classes.

Proof. Let x have even order. Then x for some integer n, and
C(x) <- c( ).

Let x have odd order. This can occur only if G is an L-group and
x D’ D. Hence we are in Case II or III. First consider Case II, where
W 1. Then x e V E E. By Lemma 16, C*(x) has an S0-invariant
normal 2-complement K. Let K KKK be its S0-decomposition. Then
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K _-> U1. Hence K1 U1, and K land K3 divide K1 I. But then for
any prime p dividing KI or K3 I, there exists an S0-invariant p-subgroup
P of K with S0-decomposition P P P. P. Since P1 1 and P P 1,
Lemma 7 implies p divides W . Hence K K 1, and C(x) SU
C().

In Case III, xeVW W. Since by definition (V[, W[) 1,
some powerx lisinV. But thenC(x) C(x) C(r).

D’We next show that if y-xye C(r) for x e and y e G, then y e C(r).
In any event, y-xy is also in C(r) for any power x" of x. Hence if x has
even order, it follows that y e C(r) since r is the only involution in AU.
If x has odd order, then x e U X ;hence some power x 1 is in the unique
Sylow p-subgroup P of U corresponding to a prime p which divides V ].
We claim that H N(P) C(r). Since P is the unique Sylow p-sub-

group of U, S is a Sylow 2-subgroup of H. Also N(S0) C(S0). Should
N(S) > C( S;), Lemma 13 inplies that P E(p) X P P P’. Since
P V 1, P’ 1, and also P P 1. Lemma 7 then shows that there
exists k e P P’ which centralizes P P a V. This is a contradiction.
Hence N(S) C(S), and H contains a normal 2-complement K. Then
K is S0-invariant and possesses the S0-decomposition K KK K. Let
CbeinK,,=2or3, andzeP. TheneP,sothatz= z-----Iz Hence and thus centralize P. But as P V 1, the definition
of Vforces 1. HenceK K U. This means thatH C(r).
But if H N(P) C(r), then P is a Sylow subgroup of N(P) and

hence of G. Because P is abelian, a theorem of Burnside [14, p. 203] im-
plies that, there exists z in N(P) such that y-xy z-xz. Then both z and

--1zy areinC(T). ThusyeC(T).
We now shall obtain a maximal linearly independent subset in Mc()(D)

and, when G is an L-group in Case II with W1 1 and in Case
III, in Mc()(D’).

In order to do this, we first describe the irreducible characters of AU and
then form a basis of Mu(D). The relations between the irreducible char-
acters of AU and those of the normal subgroup U are described by Clifford
[9, p. 547] in the case that A U1/U1 is cyclic; we summarize these results
here. We shall denote by the character of AU induced by a character

of a subgroup. Associated with each irreducible character of U is
its stability group A () U, where A () is a subgroup of A and A () U
consists of those elements of AU such that . There exists ]A ()[
extensions of to A()U which are of the form ’, where is a linear
character of A()U/U and ’ is the extension of to A()U obtained by
setting ’(z) deg for z e A(). The character h’ is irreducible,
andM if and only if , A(u) A(2), and . All
the distinct irreducible characters of A U1 are obtained in this way. If
A()[ 2 and u deg , deg ’ {A’A()[u 2a-du.
The number of irreducible characters of AU is, of course, the number of
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classes in A U1. But also the number of irreducible characters of A U1 of
the form g’, where g is a character of U, is the number of classes of A
contained in U1. This can be seen from the fact that gl’ g2’ if and only if
g g2 for some in A U1. Thus the number of generalized characters of
AU of the form (h, g) g’ hg’, where h and g are irreducible characters
of A (g)U/U and of U, respectively, is precisely the number of classes in
AU U. By [16, Theorem 2], this is the rank of Mv(D). Then since
(h, g) are independent elements of Mv(D), they form a maximal linearly
independent subset of Mv(D).

Denote by the character of C(r) SU induced by
subgroup. Then the characters (h, g) induced on SU by the characters
(h, g) form a basis for Msv (D). We wish to describe their decomposition
into irreducible characters. Let Xg’ be an irreducible character of A U.
Then (hg’) is reducible if and only if (hg’)’ hg. This will be the case
if and only if h and g" g’.

Let B(g) be the normal subgroup of index 2 in A (g). Because
we must have A(g) 1. Hence B(g) always exists. Let 1(,) be the
identity character of A(g)U, and let (,) be the character whose kernel
is B(g) U1. Then h’ h if and only if h 1(,) or h (,).

If g’ g, then g’ g’ for some aeSU1- A(g)U. But for
e AU A (g)U, g’ g’. Hence g’= g’ implies that may be taken

i.to be in S A. Thus r2 a s an involution. Let S(g) be the dihedral
subgroup {A(g), r2a*}. Then g’ may be extended to a character g" of
S(g) U of the same degree. Let , 2,, and Ca, be the linear characters
of S(g) U with kernels A(g), {B(g), 2}, and {B(g), rx 2}, respectively.
In particular, when S(g) S, set ,, i 1, 2, 3. These characters
will be extended to SU by setting ,() 0 for e SU- S(g)U if
necessary. An irreducible character g’ 1(,) of A(g)U now induces

g’ induces the char-the character (1 + )" of S()U Likewise
acter ( + )". Thus ’ (1 + )"; and so

deg #" S" S()[ deg #" U

where 2 A()] and u deg .
When but h , h’) (h’) is irreducible. Because the

characters u induced on AU are distinct for distinct characters h of A ()
and because (’) (’) (’) ()
and (k #’) are the same if and only if k. Thus there are A () 1
distinct irreducible characters of the form (k#’) where k k. Here
deg (k#’) 2 deg (") 2a-d+lu.
When #, (k’)

q
again is irreducible. Suppose that

Then for a e A (#) U
x(),’() + x()’() x:(),’() + x;(),’().

Hence k k. Thus there are ]A(#) irreducible characters of the form
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(k’) when t[ . Also in this case

deg (k’) S"A (t) deg ’ 2a-d+lu,
where u
Thus the characters (k, ) have three types of decompositions, namely

(51) 0(g) 1 + ) (g"),
(52) (x,

(53) (k,

Here k is a character of A(u) such that k 1 and in (52), k ea(). For
" (51) and (52) apply. For u, (53) applies. There are
[A(u)] 1 characters of the form (52) for each u. Hence ifA(u)[ 2,
n(k, u) does not exist. When u 1, A (u) A. In this case we distinguish
00 0(1) and (k) (k, 1)"

(54) 00

(55)

where deg k 2. The characters v(k) exist if and only ifS[ > 4.
The central character of H that is determined by an irreducible character
of H is the function

(56) ()
c.() (1)"

It is known that two characters of H belong to the same 2-block if the central
characters which they determine are equivalent modulo a prime ideal divisor
of 2 in the field of [HI roots of unity. Applying this criterion to the com-
ponents of 0(u), v(k, u), and v(k, u), we see that the characters of the form
0(u) and (k, u) for a fixed character u of U belong to the same 2-block.
Likewise the characters (k, u) for a fixed character u belong to the same
2-block. The distinct sets of characters just described belong to distinct
2-blocks of H.
When G is an L-group in Case II with W 1 or in Case III, we modify

our development to replace the role of U byX WEand A (u) by A (u) V.
Since V is cyclic, AV is cyclic and the above analysis applies. We thus
conside u to be a character of the normal subgroup WE X. Because
of Lemma 12, V Z(AU). Hence uforallaeV. Thus the sta-
bility group of u now always contains V and is of the form (A(u)V)X.
Because r e Z(A U), A (u) 1. Thus the characters k now are taken to be
characters of the cyclic group A (u) Va. Hence, for each u, there will now be
A (u) Va 1 characters of the form (53) for each character u of X such

that u": u. There also will be A (u) V 1 characters of the form (53)
for each
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13. Induced characters of (7

Now form the characters 0()*, (h, )*, and r(),, )*. By virtue of
(34) and (52) they have the respective weights 4, 3, and 2. From the
Frobenius reciprocity theorem, the character 1 appears only in Oo* and v(h)*.
Using the fact that w(0o*- n0(),)*)= W(Oo- 7(3,))= 3, and that
v0()) *(1) v0(h) (1) 0, we obtain the expansions into distinct irreducible
characters of G:

(57)

(58)

where i =i= 1.

V(),)* 1 X-- Ax.
The remaining characters 0(#)*,. v(h, #)*, and v(h,

decompose into sums of 4, 3, and 2 irreducible characters.
Letf degx,i 1,2,3, andletf degAx. Equation (58) shows

that f4 is determined independently of , and

(59) 1 + 5f + f + afa 0,

(60) 1 + f tf.

The character x is distinguished by the fact that it appears in both (57)
and (58) whenlSl N 8. Incase ISI 4, we argue that xt can be chosen
so that f fi, j 2, 3. Indeed, should f f fa, then by (59), f 1,
i 1, 2, 3. On the other hand as G has no normal subgroups of index 2,
x(r) =f lfori 1,2,3. But then

4 00(r) 00(r)* 1 +++ 0(1) 00(1) 0,

which is a contradiction. Hence when ]S 4, we choose x so that
f,j= 1,2.
We next show that the characters 1, x and Ax appear only in the decom-

position of the two characters and v(X)*. The characters 00 and
are the only characters of the form (51), (52), and (53) which belong to the
first 2-block B of H. By virtue of Proposition 25, the characters 0 and
v(X)* belong to the block B of G. Since 1 is a component of , this is the
first 2-block . We must show that none of the characters 0()*, v(h, )*
or (, )* for 1 belong to 1. To do this it suffices to show that, for
any 2-block B B of H, Ba by virtue of Proposition 25.
An important result of Brauer ([13, (12A)] and [4, (2D)]) shows in the

case we are considering that to each block with defect group S there cor-
responds a character of C(S)/S. Furthermore, two blocks of C(r) with
defect group S will correspond to the same block in G if and only if the cor-
responding characters of C(S)/S are associated in N(S)/S. But, of course,
the principal character, which determines B, is associated only with itself.
Since Be implies that B has defect group S, we have that B B1.
Now we are in a position to prove the following result.
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LEMMA 27. The characters xl, x, and x3 have the values

(61 xl(a) 61 61 1 .2 ((T) 62 2 (0") )(.3 (0") 63 3 (0")

for a e D or for a e D’ if G is an L-group in Case II with W1 1 or in Case
III. In particular, when S 4,

(62) xl(rl) 61 x2(rl) 6. x3(rl) 63.

When IS > 4,

(63) xl(r) 61 x.(r) -62 x3(rl)

Proof. We have shown that xJ, x2, x3 appear only in the characters
00" and v(h)*. Also 1, 2, and 3 appear only in the characters 00 and
Thus from the Frobenius reciprocity law, we have that

(64) (xl It<,1) 611, 0())e<:,) (xl, 0()*)a 61(1, O())e(,,) 0.

Similarly,

(X1 ](<r,> 61 (1, ,(X, )C<,) (X1 Iff(rl) 61 (1, 71"(X, )) 0.

Thus xl Ic(,) 61 1 is orthogonal to a maximal linearly independent subset
of Mc(,)(D). Then by [19, Theorem 3], xl(a) 611(a) for a e D. In
the case that G is an L-group in Case II with W1 1 or in Case III, we can
form a maximal linearly independent subset for Mc(,)(D’) by adding to the
set of characters O(), v(X, ), and (h, ), the characters (X) 1 -[- 1
where now X is an irreducible character of A U/X1. Using the orthogonality
relations (34), we obtain

One may verify that xl c(,) 6 1 is now orthogonal to all elements of
Mc(,,)(D’). Thus xl(a) 611(a) for all a e D’. A similar argument verifies
the other equalities in (61). Of course, (62) and (63) are special cases of (61).

14. Formulas for the order of G
The groups E, E0, and E1 are defined in general in the same way as in

6 where U1 is abelian. Throughout the remainder of the paper we use the
following notation"

(65) e [E I, e0 Eo:E I, el EI:E ], u C():E

When S 4, e0 el 1. When G is an L-group, we also have

(66) u I, , I, w w, I, u

Using [23, Beispiel (3.1)], we huve

C(r,) 2a+ueo el e, C(So) 4eo e, and C(S1) 4e e.
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We shall employ Suzuki’s formula (**) developed in [19], which we repeat
here:

g (To(x)2/Dg x)(x, ’(g)*)o
(67)

where the summations are taken over all the irreducible characters x of G
and all the irreducible characters of C(va), and

(68)

(69) Tc(,)() (r)/[ C(r)[ + Cj(r)/] C(So)[ + O(r)/l C(S).
When S > 4 or G is an L-group in Case III withPROPOSITION 28.

SVI[ > 4, we have

(70) g 2aaueo ej (eo -}- el) 2e f f + )
(f ).

In general, we have

flf2fa(71) g 2aa+2ue e e
(f + )(f + )(f + )"

Proof. To derive these formulas, we shall use the characters 80 and (),)
for (z) in (67), where ), is a linear character of A for which h(r) --1.
Such a character v()) exists if either [SI ) 4 or G is an L-group in Case
III with SV1 > 4.
Now() .(.) () 1,() () () (,.) 1,

and.(r) () 4-1 according aslSI > 4orlSI 4. ByLemma
27, x(r) . Furthermore v(,)*(rl) --2, and hence by (32) and (58),
we obtain hx(r) 2i.

Substituting () ’(X) in (67) and using these values, we obtain after
simplification

(72) g(1 + /f /f) 2aueoe(eo + e)e.
Formula (70) now follows at once if we use (60).
On the other hand, in all cases it follows from Lemma 27 that

x(r) 4-1t, i 1, 2, 3. Substituting (v) 90 in (67) and using these
values, we obtain

(73) g(1 + /f.+ &./f + &/f) 2a+2uee e.

Formula (71) now follows at once if we use (59).
Formula (70) has been derived by Suzuki in [19] under the assumption

thata 2, e0 e landu 1. Formulas (70) and (71) have beende-
rived previously by Brauer in [5].
When G is an L-group in Case II with W1 1 and in Case III, we shall

need congruences for the degrees f of x, i 1, 2, 3. These are easily ob-
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tained by using the orthogonality relations in evaluating []SVl X(a) and
using Lemma 27. These calculations yield

(74) fl (1 -" 2a+ivr,
(75) f2 -- -" 2av(2s "- 1),

(76) f3 --6a - 2av(2t -- 1),

where r is a positive integer and s, are nonnegative integers.
When G is isomorphic to PSL(2, q), we remark that r 1, s 0, and

61 -62 -68 e, wheree 4-1 ande-= q(mod4). Also in this case
u v, w e0 el e 1.

PART IV. COMPLETION OF THE PROOF OF THEOREM I AND AN APPLICATION
15. Application of the formulas for the order of G

We shall apply the results of Part III to the three cases which we have
considered in Part II. We shall continue to use the notation x, x2, xa, and
Ax for the irreducible characters of G constructed in 12. We shall still
denote their degrees by fl, f2, fa, and f, and use ii, 2, and tia for the signs
occurring in (59) and (60). If H is a proper subgroup of G containing SV and
having no normal subgroups of index 2, the preceding discussion applies to
H, and we shall use the notation x, x, x3, Ax for the irreducible characters
of H, f, f, f, and f for their degrees, and t’, it, i’a for the corresponding
signs.

LEMMA 29. In proving Theorem I we may assume that

(77) f >= 5

fori 1,2,3.

Proof. Since G is simple, each fi > 1. By (74), (75), and (76) each fi is
odd. If G possesses an irreducible representation of degree 3, a result given
by Blichfeldt [1, p. 112] shows that G is isomorphic to PSL(2, q) where
q 5, 7, or 9. The theorem is verified in this case, and the lemma is proved.

PROPOSITION 30. There exists no proper subgroup of G which contains the
centralizer of an involution and no normal subgroups of index 2. Consequently
Case I and Case II where W 1 do not occur.

Proof. Let H be a proper subgroup of G containing C(rl) and having no
normal subgroups of index 2. Suppose that SI > 4. Then (70) applies
to H as well as G. Set

(78) !(fl, 61) -’-fl(f + 6)/(f- ),

(79) b(f, ’) f(f + 6’)/(f’ ’).
Then by (71), inasmuch as C,(ri) Co(ri), G’H] (f, 6l)/b(f’, ’).
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From Lemma 29, we see that b(fl, 1) -< --. On the other hand, the mini-
mum value of b(f, ’1) occurs when H/O(H) is isomorphic to PSL(2, 3),
in whichcse f 3 nd =-1. Hence (f,) . Thus

G’H 5;

and it follows that G has representation in the symmetric group S, which
must be faithful s G is simple. But S contains no L-subgroup H with
O(H) 1. When S] 4, similar rgument using (71) yields the sme
contradiction.
The lst statement of the proposition now follows from Propositions 15 and

22.

PROPOSWON 31. Case II, W 1. The group G is isomorphic o he
alternating group A.

Proof. Equating (70) nd (71) und setting e e0 w 1, we obtain
after simplification

(80) 4e (1 + e) (1 + /f) (1 + /f) (1 + 25/( ) ).

Since E0 1 and E 1, S S0 hence 2a+ 8. We first treat the case
2+v > 8. Using (74), (75), and (76), we find that

(81) 1

However, by (59), at least one 1, i 1, 2, 3; so at least one of the ex-
pressions in (81) is actually greater than 1. Thus (80) yields the inequality

(82) 4e

Since the resulting quadratic equution has a largest solution less than 5, the
only possibility for e is e 3.
From (70) and (74) we obtain

(83) g 2-e(e + 1)(2+vr + ) (2vr + )/r.
Now G’C(v) is an odd integer. Since C(r)] 2+ive, it follows
from (83) that (e T 1)/2r must be an odd integer. Since e 3, this forces
r=2.

Substituting e 3 in (80), we find that

=> + /f) (1 + /f) or
(84)

according as 1 or a 1. The first inequality gives => () , and the
second ) since r 2, both of which are contradictions.
Hence 2a+v 8. Since 2+ 8, we must have 2a+ 8, V 1. But

this is precisely the case considered by Suzuki in [16, pp. 265-266]; and there
he showed that G is isomorphic to A.
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Thus to complete the proof of Theorem I, it remains to treat Case III.
begin with the following lemma.

We

LEMMA 32. Assume SV1 > So, and let H be a subgroup of G containing
SV1 and having no normal subgroups of index 2. If fj f and ’1, then
O(H) 1.

Proof. Let W’I be the S-invariant complement of W n H in W. Then
U (U1 n H) X W, and W is a normal subgroup of C(r). Hence
Cx(r) is isomorphic to C(r)/W. This means that the module
M’ Mc,(I)(D’ H) of characters of Cx(r) which vanish outside of
the set D’ H is the submodule of Mc(I)(D’) which is generated by the
characters which vanish on W’I. In particular the character 7() vanishes on
U1 => W’ and belongs to Mc()(D’) since SV > So. Thus (),) is in
M’. Let x and Ax be the irreducible characters of H appearing in the ex-
pansion of the induced character (h) of v(h) to H, so that

(85) (X) 1--k tX-- tAx.
We next observe that if an element a of H is conjugate in G to an element

a’ of a special class, then a is already conjugate to that element in H. Indeed,
a will be in the centralizer of an involution ’ in G. Since H has no normal
subgroups of index 2, ’ is conjugate to r in H, and a is conjugate to an ele-
ment of C(r) H Cx(rl). Thus we may suppose that is in Cx(r).
By Lemma 26, a and a’ already are conjugate in C(r). But then they will
be conjugate by an element of S =< H, which is what we asserted.
Thus because of (33), (},) and v (h) * agree on all elements of H which

are conjugate to an element of a special class, and they vanish on the remain-
ing elements of H. Then v()* Ix (X). Because fl f and ti’, it
follows from (60) that f4 f. But then neither x Ix nor Ax ]. can be
reducible. Hence x Ix x.
Now x’ is the character of H defined from a character of H/O(H). Hence

x’ has O(H) in its kernel. Then the same is true of Xl. Therefore, since
G is simple, 0(H) 1.

PROPOSITION 33. Case III. The subgroup WI 1.

Proof. Suppose that W 1, and let p be any prime dividing W Let
H be the subgroup constructed in Proposition 23 for the prime p. Then H
contains SV and has no normal subgroups of index 2. Now fl H/O(H) is
isomorphic to PSL(2, q) where q 2+v e by Corollary 24. Hence

(86) f 2a+Y 2F F., f 2a) + , f 2ay + .
We now divide the proof into two cases.
Case A. Assume [SVI > 4. By Corollary 24, g/g is an integer.

Using the value ofg given by (70) (withe e0 el 1), the value of
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fl given by (74), and the value of gl given by Corollary 24, we obtain that

(87) (2a+lvr -- 6) (2avr --is an integer. But this is possible only if r 1 and e. Hence by (74)
and (86), f f and 1 i’1 e. But Lemma 32 implies 0(H) 1, con-
trary to the fact that O(H) contains the p-group P constructed in Proposition
23.

Case B. Assume SVII --4. Then SI 4 and IVll --1. By
Corollary 24, g/12w is an integer. It follows then from (71) that

(88) 32 flAf 32

is an odd integer. In (74), (75), and (76), set x 2ri, y (28
and z (2t + 1) i. From (88) we obtain that

2x- 1 2y- 1 2z- 1b(x, y, z)
xq--1 y z

(89)

--(2 X --11)(2
is an odd multiple of 3.
From Lemma 29 we see that x 0,

formula (59) gives

(90) x .-l- y -l- z O.

Now from (89), 3 < (.}) -<_ (x,y,z) __< (.}) 3< 13. Hence

(91) dp(x, y, z).- 9.

Suppose that x > 0. Because of (90) we may suppose z < 0.

--2, y :i:l, and z :i:l. Also

Ify <0,
then certainly (x, y, z) < 8 by (89), which contradicts (91). Hence y > 0.
Then from (89) and (91),2 q- 1/y > ,whence0 < y < 4. Thusy 3.
This gives (2 1/(x q-- 1))(2 q- i/z) ---. Substituting z -x- 3, we
obtain a quadratic equation with nonintegral solutions. Consider then the
case x < 0. As above we immediately reduce to the case y > 0, z < 0.
This time (89) and (91) yield

(92,
x--i 2"

Now by(90),(l-t-x) --y= l-z>0. Hence2-- 1/(x--1) > 2- l/y,
andso (2- 1/(x + 1))2> -. This yields x > -9.2, whence x __> --8, and
the possibilities for x are -4, -6, -8. Substituting x -4, -6, -8 in
(89) and using (90) and (91), we again obtain quadratic equations for y
with nonintegral solutions. Hence this case is not possible.
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PROPOSITION 34. Case III. The group G is isomorphic to PSL(2, q) q odd.

Proof. Since W 1, C(r) SV. Hence for any element 1 of
V we have C(a) _-< C(r). Since . inverts V, the conditions of the theorem
of Brauer, Suzuki, and Wall are satisfied, and it follows that G is isomorphic
to PSL(2, q), q odd.

This completes the proof of Theorem I.

16. An application of Theorem
In [16] Suzuki has investigated groups which contain a cyclic subgroup of

order 4 which is its own centralizer. Combining his results with Theorem I
and a theorem of Brauer and Suzuki [6] on the structure of groups whose
Sylow 2-subgroups are generalized quaternion groups, we are able to obtain
the following generalization of Suzuki’s results:

THEOREM II. Let G be a finite group containing a subgroup of order 4 which
is its own centralizer in G. Then ether

(i) G has no normal subgroups of index 2, and a Sylow 2-subgroup of G
is generated by elements , satisfying the relations

2 1, 1, O-1 --1-}-2a--1

(ii) G contains a normal subgroup Go of index less than or equal to 2, and
Go/O(Go) is isomorphic to one of the groups SL(2, q), PGL(2, q), PSL(2, q),
q odd, or A7 or

(iii) G possesses a normal 2-complement.

Proof. Let So be a self-centralizing subgroup of order 4 in G. In [14] and
[16] Suzuki has determined the structure of a 2-group S which contains such
a subgroup S0. Taking each of these possibilities for S in turn as a Sylow
2-subgroup of G, Suzuki shows in [14] and [16] by means of Griin’s theorem
that one of the following conditions must hold:

--1 -k2(a) S {a, }, where f 1, a 1, and 0/-I
O/ and G has

no normal subgroups of index 2;
(b) G contains a normal subgroup Go of index less than or equal to 2

whose Sylow 2-subgroups are dihedral groups;
(c) The Sylow 2-subgroups of G are of the form (a), and G contains a

normal subgroup Go of index 2 whose Sylow 2-subgroups are generalized
quaternion groups;

(d) G has no normal subgroups of index 2, and the Sylow 2-subgroups of
G are quaternion groups of order 8;

(e) G has a normal 2-complement.

In Case (b) if denotes the central involution of S n Go (which is a Sylow
2-subgroup of Go), then Ca(r) :Coo (r)] _-< 2, and Coo (rl) has a normal
2-complement U which is normalized by So. Since Ca(S0) So and r cen-
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tralizes U1, S0 must contain an element r which inverts U1, so U1 is abelian.
This holds whether S0 is cyclic or a four-group. It follows then from Theorem
I that Go/O(Go) is isomorphic to PGL(2, q), PSL(2, q), q odd, or AT, or else
has a normal 2-complement.
On the other hand, in Case (c) it follows from [6] that Go/O(Go) contains

a unique element of order 2, and hence that G possesses a normal subgroup
K > O(Go) such that K’O(Go)I 2. Furthermore
dihedral Sylow 2-subgroup and contains a normal subgroup (0 of index 2.
It follows as in (b) that G satisfies the hypotheses of Theorem I. Since
0(() 1, (0 is either isomorphic to PSL(2, q) or else has a normal 2-comple-
ment. In the first case Go/O(Go) is isomorphic to SL(2, q) by a theorem of
Schur, and in the second G has a normal 2-complement.

Finally in Case (d), G/O(G) is isomorphic to SL(2, 3) or SL(2, 5) by [16].
Remarks. Theorem I is not sufficient to classify groups which satisfy

condition (i), for it is known that these include the groups PSL(3, q),
q --- 3 (mod 4), among others.
Theorem II does give, however, as a special case, a classification of groups

which admit an automorphism of order 2 with exactly two fixed points,
which was previously obtained by Zassenhaus [24]. In fact, if G0 is such
group and G denotes the holomorph of G0 and , then G possesses a subgroup
of order 4 which is its own centralizer in G; and hence G satisfies either condi-
tion (ii) or (iii) of the theorem.

Finally we remark that when So {} is cyclic, Theorem II can be con-
siderably sharpened. In fact, in this case Suzuki shows that when G has no
normal subgroups of index 2, either G is isomorphic to AT, or G/O(G) is
isomorphic to PSL(2, 7), PSL(2, 9), SL(2, 3), or SL(2, 5), and that O(G)
is abelian. Furthermore r induces an automorphism of O(G) leaving only
the identity element fixed, so that by a result of Gorenstein and Herstein
[12], O(G) is always.solvable, and its commutator subgroup is nilpotent.
If G has a normal subgroup of index 2 but not a normal 2-complement, it
follows easily from Theorem I that G/O(G) is isomorphic to
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