ON FINITE GROUPS WITH DIHEDRAL SYLOW 2-SUBGROUPS

BY
Daniel Gorenstein and John H. Walter ${ }^{1}$
Part I. Introduction and Preliminaries
\section*{1. Introduction}

Much attention has recently been given to the characterization of classes of simple groups in terms of conditions which specify the centralizers of their involutions ${ }^{2}$ or their Sylow 2-subgroups. (Cf. R. Brauer [2]; R. Brauer, M. Suzuki, and G. E. Wall [7]; W. Feit [11], M. Suzuki [15], [16], [17], [18], [19]; and J. H. Walter [21], [22].) This paper presents such a characterization for the simple groups ${ }^{3} P S L(2, q)$, where q is an odd prime power, and improves the results obtained in [7] and [16].

It is easy to show that in a group with a dihedral ${ }^{4}$ Sylow 2 -subgroup S the centralizer of an involution τ in the center of S has a normal 2-complement U, and our characterization is given in terms of the structure of U.

Theorem I. Let G be a finite group with a dihedral Sylow 2-subgroup S, and let τ be an involution in the center of S. Suppose that the centralizer of τ possesses an abelian 2-complement U. Then G contains a normal subgroup K of odd order and one of the following holds:
(i) G has no normal subgroups of index 2 , and G / K is isomorphic to $\operatorname{PSL}(2, q)$ with q odd or to the alternating group A_{7};
(ii) G contains a normal subgroup of index 2 but no normal subgroup of index 4 , and G / K is isomorphic ${ }^{3}$ to $\operatorname{PGL}(2, q)$ with q odd;
(iii) G contains a normal subgroup of index 4 , and G / K is isomorphic to a Sylow 2-subgroup S of G.

[^0]The dihedral group S is generated by elements α and β which satisfy the relations $\alpha^{2 a}=\beta^{2}=1$ and $\beta \alpha \beta^{-1}=\alpha^{-1}$. In [7], Brauer, Suzuki, and Wall ${ }^{5}$ treat the special case in which β induces an automorphism which inverts every element of U, the centralizer in G of any element $x \neq 1$ of U is contained in the centralizer of τ, and G possesses no normal subgroups of index 2 ; while in [16], Suzuki treats the special case in which S has order $8, \alpha$ induces an automorphism which inverts every element of U, and G possesses no normal subgroups of index 2. (In both cases the action of α and β forces U to be abelian.)

The hypotheses of our theorem are satisfied when S has order 4 and is its own centralizer in G. Therefore we obtain the following corollary, which verifies a conjecture of Brauer [3].

Corollary. Let G be a finite group of order $4 g^{\prime}, g^{\prime}$ odd, and assume that a Sylow 2-subgroup of G is its own centralizer. Then G contains a normal subgroup K of odd order such that G / K is isomorphic either to a Sylow 2-subgroup of G or to $P S L(2, q)$, where $q \equiv 3,5(\bmod 8)$.

The hypotheses of Theorem I are also satisfied when the centralizer of τ is itself a dihedral group. Furthermore, Theorem I can be combined with [14] and [16] to obtain additional results on groups which possess a subgroup of order 4 which is its own centralizer including, as a special case, a classification of groups which admit an automorphism of order 2 with exactly two fixed points. These results are established in §15.

The proof of Theorem I is carried out by induction on the order of G. Because of this, Case (ii) is shown to be a consequence of Case (i) ; Case (iii) is established from theorems of Burnside and Grün. Therefore, the proof of Theorem I reduces to Case (i). In this regard, most of our attention is paid to investigating p-groups in G which admit a four-group as a group of automorphisms. Utilizing a recent theorem of Brauer and Suzuki concerning this class of groups, which has now been presented in a very general and elegant context by H . Wielandt [23], we are able to construct p-subgroups whose orders may be compared with certain factors in the formulas for the order of G derived from character theory. These groups are constructed for those primes p for which there exists a p-element of U whose centralizer in G is not contained in U. Using the formulas for the order of G together with the group-theoretic information, we are able to show that G either satisfies conditions in terms of which Suzuki [16] characterized A_{7}, or that G satisfies conditions in terms of which Brauer, Suzuki, and Wall [7] characterized the groups $P S L(2, q), q$ odd. ${ }^{5}$

Part of the character theory which we develop holds for any finite group containing a dihedral Sylow 2-subgroup and no normal subgroups of index 2.

[^1]We obtain formulas for the order of these groups which are of independent interest. The assumptions of Theorem I are employed to obtain an additional formula for the order of G and congruences for the degrees of certain characters.

For convenience, we shall call a group G which satisfies the hypothesis of Theorem I an L-group. We shall denote by $O(H)$ the maximal normal subgroup of odd order in a group H. Also $C_{H}^{*}(\sigma)$ denotes the set of elements λ in H such that $\lambda^{-1} \sigma \lambda=\sigma^{ \pm 1}$. In other respects our notation is standard.

2. The action of certain automorphism groups

The results of a recent paper of Wielandt [23] are very important to us. We restate without proof two of his preliminary results and also a particular case of his main theorem.

Lemma 1. Let T be a solvable group ${ }^{6}$ of automorphisms of a group K such that $(|T|,|K|)=1$. Then for each p dividing $|K|, K$ possesses a T-invariant ${ }^{7}$ Sylow p-subgroup, and each maximal T-invariant p-subgroup of K is a Sylow subgroup.

Lemma 2. Let T be a group of automorphisms of a group K such that $(|T|,|K|)=1$. Then two T-invariant Sylow p-subgroups of K are conjugate by an element of K left fixed by T.

If P is a T-invariant Sylow subgroup of K, and P^{\prime} is the subgroup of P left fixed ${ }^{7}$ by a subgroup T^{\prime} of T, then P^{\prime} is a Sylow subgroup of the subgroup K^{\prime} of K left fixed by $T^{\prime \prime}$.

Lemma 3. Let T be a four-group ${ }^{4}$ of automorphisms of a group K of odd order. Let $\tau_{i}, i=1,2,3$, denote the three involutions of T, and K_{i} the fixed subgroup of τ_{i}. Then if K_{0} is the fixed subgroup of T,

$$
\begin{equation*}
|K|\left|K_{0}\right|^{2}=\left|K_{1}\right|\left|K_{2}\right|\left|K_{3}\right| . \tag{1}
\end{equation*}
$$

An important structural consequence of Lemma 3 is given in part (ii) of the following lemma. This result was also discovered independently by Steven Bauman.

Lemma 4. Let T and K be defined as in Lemma 3.
(i) $K_{i}=K_{i}^{\prime} K_{0}=K_{0} K_{i}^{\prime}$ where K_{i}^{\prime} is the subset of K_{i} consisting of the elements inverted ${ }^{8}$ by $\tau_{j}, j \neq i$. If $K_{0}=1, K_{i}=K_{i}^{\prime}$ is abelian.
(ii) K admits the factorizations

$$
\begin{equation*}
K=K_{1} K_{2} K_{3}=K_{0} K_{1}^{\prime} K_{2}^{\prime} K_{3}^{\prime} \tag{2}
\end{equation*}
$$

[^2]An element of K has a unique representation as a product $a_{0} a_{1} a_{2} a_{3}$, where $a_{0} \in K_{0}$ and $a_{i} \in K_{i}^{\prime}, i=1,2,3$. Also $K_{i} \cap K_{j}=K_{0}$ and $K_{i}^{\prime} \cap K_{j}^{\prime}=1, i \neq j$.

Proof. (i) If $j \neq i, \tau_{j}$ induces an automorphism of K_{i} of order 2 with fixed subgroup K_{0} and inverted set K_{i}^{\prime}. The first assertion of the lemma now follows from [12, Lemma 1]. If $K_{0}=1$, then $K_{i}=K_{i}^{\prime}$ and, consequently, is abelian.
(ii) It suffices to show that $K=K_{0} K_{1}^{\prime} K_{2}^{\prime} K_{3}^{\prime}$. Because of Lemma 3, this will follow when we prove the uniqueness of the representation of an element x as the product $x=a_{0} a_{1} a_{2} a_{3}$ where $a_{0} \in K_{0}$ and $a_{i} \in K_{i}^{\prime}, i=1,2,3$. Hence suppose that

$$
\begin{equation*}
a_{0} a_{1} a_{2} a_{3}=b_{0} b_{1} b_{2} b_{3}, \tag{3}
\end{equation*}
$$

where $b_{0} \in K_{0}$ and $b_{i} \in K_{i}^{\prime}, i=1,2,3$. Using (i), we have that

$$
b_{1}^{-1} b_{0}^{-1} a_{0} a_{1}=c_{0} c_{1} \text { and } b_{3} a_{3}^{-1}=d_{3} d_{0}
$$

where $c_{0}, d_{0} \in K_{0}, c_{1} \in K_{1}^{\prime}$, and $d_{3} \in K_{3}^{\prime}$. Hence

$$
\begin{equation*}
c_{0} c_{1} a_{2}=b_{2} d_{3} d_{0} . \tag{4}
\end{equation*}
$$

Applying τ_{1}, τ_{2}, and τ_{3} in succession gives

$$
\begin{equation*}
c_{0} c_{1} a_{2}^{-1}=b_{2}^{-1} d_{3}^{-1} d_{0}, \quad c_{0} c_{1}^{-1} a_{2}=b_{2} d_{3}^{-1} d_{0}, \quad c_{0} c_{1}^{-1} a_{2}^{-1}=b_{2}^{-1} d_{3} d_{0} \tag{5}
\end{equation*}
$$

From (4) and (5), we obtain

$$
\begin{equation*}
a_{2}^{2}=d_{0}^{-1} d_{3} b_{2}^{2} d_{3} d_{0}=d_{0}^{-1} d_{3}^{-1} b_{2}^{2} d_{3}^{-1} d_{0} . \tag{6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
b_{2}^{-2} d_{3}^{2} b_{2}^{2}=d_{3}^{-2} . \tag{7}
\end{equation*}
$$

As both b_{2} and d_{3} have odd order, (7) implies $d_{3}=1$; hence $b_{3}=d_{0} a_{3}$. Since each coset of K_{0} in K_{3} contains a unique element of $K_{3}^{\prime}, d_{0}=1$. Consequently $b_{3}=a_{3}$. A similar calculation shows that $c_{1}=1$, and hence from (4), $c_{0}=1$ and $a_{2}=b_{2}$. Thus $a_{0} a_{1}=b_{0} b_{1}$; whence $a_{0}=b_{0}$ and $a_{1}=b_{1}$.

Let K be a group of odd order which admits a four-group $T=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ as a group of automorphisms. Then the decompositions (2) will be called T-decompositions of K. In the following lemma, G will be a group containing a normal subgroup M. Designate by \vec{H} and $\bar{\sigma}$ the images of a subgroup and an element σ of G in $\bar{G}=G / M$.
Lemma 5. Let G be a finite group containing a four-group T and a normal subgroup M of odd order. Then if τ is an involution of $T, \overline{C_{\sigma}(\tau)}=C_{\bar{\sigma}}(\bar{\tau})$. Also $\overline{C_{G}(T)}=C_{\bar{\sigma}}(\bar{T})$. If K is a T-invariant subgroup of G of odd order with T-decompositions (2), then \bar{K} has the \bar{T}-decomposition

$$
\begin{equation*}
\bar{K}=\bar{K}_{1} \bar{K}_{2} \bar{K}_{3}=\bar{K}_{0} \bar{K}_{1}^{\prime} \bar{K}_{2}^{\prime} \bar{K}_{3}^{\prime} \tag{8}
\end{equation*}
$$

Proof. Let $T=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$. Clearly $\overline{C_{G}\left(\tau_{i}\right)} \leqq C_{\bar{G}}\left(\bar{\tau}_{i}\right)$ and $\overline{C_{G}(T)} \leqq$ $C_{\bar{G}}(\bar{T})$. Let $\sigma \epsilon G$, and suppose that for given $i=1,2,3, \sigma^{\tau_{i}}=\sigma \lambda_{i}$ where $\lambda_{i} \in M$. Then $\lambda_{i} \lambda_{i}^{\tau_{i}}=1$. Since $|M|$ is odd, $\lambda_{i}=\mu_{i}^{2}$ where $\mu_{i} \in M$. Then $\left(\sigma \mu_{i}\right)^{\tau_{i}}=\sigma \mu_{i} . \quad$ Thus $\overline{C_{G}\left(\tau_{i}\right)}=C_{\bar{G}}\left(\bar{\tau}_{i}\right)$.

We may now suppose that σ has been chosen in σM so that $\sigma^{\tau_{1}}=\sigma$ and $\sigma^{\tau_{2}}=\sigma \lambda_{2}$. Then $\left(\sigma \lambda_{2}\right)^{\tau_{1}}=\sigma \lambda_{2}$ and $\lambda_{2}^{\tau_{1}}=\lambda_{2}$. As μ_{2} is a power of $\lambda_{2}, \mu_{2}^{\tau_{1}}=\mu_{2}$. Consequently, $\left(\sigma \mu_{2}\right)^{\tau_{i}}=\sigma \mu_{2}, i=1,2,3$; hence $\overline{C_{G}(T)}=C_{\bar{G}}(\bar{T})$.

The remaining statement is a direct consequence of the foregoing.
Lemma 6. Let $T=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ be a four-group of automorphisms of a p-group P, p odd, with T-decomposition $P=P_{1} P_{2} P_{3}$, and assume that each P_{i} is abelian. Let $P_{0}=C_{P}(T)$, and let $P_{i}^{\prime}, i=1,2,3$, be the subset of P_{i} inverted by $\tau_{j}, j \neq i$. Then the complex $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is a group, and we have

$$
\begin{equation*}
P=P_{0} \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} \tag{9}
\end{equation*}
$$

Proof. The lemma is proved by induction on the order of P. We first note that $P_{i}=P_{0} \times P_{i}^{\prime}$ because of Lemma 4(i) and the fact that P_{i} is abelian of odd order. Then $P_{0} \leqq Z\left(P_{i}\right), i=1,2,3$; hence $P_{0} \leqq Z(P)$.

Suppose first that $P_{0}<Z(P)$. Then T acts on $Z(P)$ which is abelian. Hence $Z(P)$ admits the T-decomposition by virtue of Lemmas 2 and 4

$$
Z(P)=\left(P_{1} \cap Z(P)\right)\left(P_{2} \cap Z(P)\right)\left(P_{3} \cap Z(P)\right)
$$

Since $P_{0} \leqq Z(P)$, we must have that $P_{i} \cap Z(P)=P_{0} \times P_{i}^{\prime} \cap Z(P)$. Set $P_{i}^{\prime \prime}=P_{i}^{\prime} \cap Z(P)$. Considering the way the involutions of T act on P_{0} and $P_{i}^{\prime \prime}, i=1,2,3$, we see that

$$
Z(P)=P_{0} \times P_{1}^{\prime \prime} \times P_{2}^{\prime \prime} \times P_{3}^{\prime \prime}
$$

This proves the lemma in case $P=Z(P)$. Otherwise set

$$
F=P_{1}^{\prime \prime} \times P_{2}^{\prime \prime} \times P_{3}^{\prime \prime} ;
$$

since by assumption $P_{0}<Z(P), F \neq 1$. We may then apply the lemma by induction to $\bar{P}=P / F$. Adopting an analogous notation for \bar{P}, we have $\bar{P}=\bar{P}_{0} \times \bar{P}^{\prime}$ where $\bar{P}^{\prime}=\bar{P}_{1}^{\prime} \bar{P}_{2}^{\prime} \bar{P}_{3}^{\prime}$. It is an easy consequence of Lemma 5 that \bar{P}_{i}^{\prime} is the image of P_{i}^{\prime} under the natural mapping of P onto \bar{P}. Since $F \cap P_{0}=1$, the inverse image P^{\prime} of \bar{P}^{\prime} is disjoint from P_{0}, and hence $P=P_{0} \times P^{\prime}$. Since P^{\prime} contains each P_{i}^{\prime} and is invariant under T, $P^{\prime}=P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$.

Finally assume that $P_{0}=Z(P)<P$. Consider the second center $Z_{2}(P)$, which has the T-decomposition

$$
Z_{2}(P)=\left(P_{1} \cap Z_{2}(P)\right)\left(P_{2} \cap Z_{2}(P)\right)\left(P_{3} \cap Z_{2}(P)\right)
$$

As $Z_{2}(P)>Z(P)=P_{0}, P_{i} \cap Z_{2}(P)>P_{0}$ for some $i=1,2,3$. Since P_{i} is abelian, $P_{i} \cap Z_{2}(P)=P_{0} \times\left(P_{i}^{\prime} \cap Z_{2}(P)\right)$. Choose $x_{i} \neq 1$ in $P_{i}^{\prime} \cap Z_{2}(P)$.

If $x_{j} \in P_{j}, j \neq i$, then

$$
\begin{equation*}
x_{j}^{-1} x_{i} x_{j}=x_{i} x_{0} \tag{10}
\end{equation*}
$$

where $x_{0} \in Z(P)=P_{0}$. Applying τ_{j} to (10), we obtain

$$
\begin{equation*}
x_{j}^{-1} x_{i}^{-1} x_{j}=x_{i}^{-1} x_{0} \tag{11}
\end{equation*}
$$

Combining (11) with (10) gives $x_{i} x_{0}=x_{0}^{-1} x_{i}$, and hence $x_{0}=1$. Thus x_{i} centralizes $P_{j}, j \neq i$. Since P_{i} is abelian, $x_{i} \in Z(P)$, which is a contradiction. This excludes the last possibility and proves the lemma.

Lemma 7. Let the hypotheses and notation be as in Lemma 6, and assume $P>P_{1}$. Then there exists an element σ in P_{2}^{\prime} or P_{3}^{\prime} which centralizes P_{1}.

Proof. Let $Z_{r}(P)$ be the first term of the ascending central series of P which is not contained in P_{1}. Since $Z_{r}(P)$ is T-invariant, it follows from Lemma 4 that

$$
Z_{r}(P)=\left(Z_{r}(P) \cap P_{1}\right)\left(Z_{r}(P) \cap P_{2}^{\prime}\right)\left(Z_{r}(P) \cap P_{3}^{\prime}\right)
$$

One of $Z_{r}(P) \cap P_{2}^{\prime}$ or $Z_{r}(P) \cap P_{3}^{\prime}$ contains an element $\sigma \neq 1$, and σ is inverted by τ_{1}. Hence for $x \in P_{1}, \sigma x \sigma^{-1}=x \mu$, where $\mu \in Z_{r-1}(P) \leqq P_{1}$. Conjugating by τ_{1} gives $\sigma^{-1} x \sigma=x \mu$, and it follows that σ^{2} commutes with x. Since σ has odd order, σ commutes with x. Since x was arbitrary, σ centralizes P_{1}.

3. The Sylow 2-subgroups and the involutions in G

Let G be a group with dihedral Sylow 2 -subgroups, and let S be a fixed Sylow 2 -subgroup of G. S is generated by elements α and τ_{2}, where α has order $2^{a}, a \geqq 1, \tau_{2}$ has order 2, and $\tau_{2} \alpha \tau_{2}^{-1}=\alpha^{-1}$. Set $\tau_{1}=\alpha^{2^{a-1}}, \beta=\alpha^{2}$, and if $a \geqq 2, \gamma=\alpha^{2 a-2}$. Also define $\tau_{3}=\tau_{1} \tau_{2}$. When $a \geqq 2, A=\{\alpha\}$ is the unique cyclic subgroup of index 2 in S and thus is characteristic in S; $B=\{\beta\}$ is the commutator subgroup of S.

There are three classes of involutions in S; namely, one consisting of the central involution τ_{1} above, a second consisting of the elements $\tau_{2} \alpha^{2 i}$, $i=1,2, \cdots, 2^{a-1}$, and a third consisting of the elements $\tau_{2} \alpha^{2 i+1}, i=1$, $2, \cdots, 2^{a-1}$. Consequently when $a>1$, there are two conjugate classes of four-groups which are represented by $S_{0}=\left\{\tau_{1}, \tau_{2}\right\}$ and $S_{1}=\left\{\tau_{1}, \tau_{2} \alpha\right\}$. When $a>1, \tau_{2}^{\gamma}=\tau_{3}, \tau_{3}^{\gamma}=\tau_{2},\left(\tau_{2} \alpha\right)^{\gamma}=\tau_{1}\left(\tau_{2} \alpha\right)$, and $\left(\tau_{1}\left(\tau_{2} \alpha\right)\right)^{\gamma}=\tau_{2} \alpha$.

In particular, γ normalizes any four-subgroup T of S. When $a>1$, let $C_{G, S}^{\prime}(T)$ be the subgroup of G generated by γ and $C_{G}(T)$. Generally, there will be no confusion if we set $C_{G}^{\prime}(T)=C_{G, S}^{\prime}(T)$, although there may be other Sylow subgroups of G containing T and an element $\gamma \in N_{G}(T)-T$. When $a=1$, set $C_{G}^{\prime}(T)=C_{G}(T)$. Then $N_{G}(T) / C_{G}(T)$ is isomorphic to a subgroup of the symmetric group on 3 letters. Hence $\left|N_{G}(T): C_{G}^{\prime}(T)\right|=1$ or 3 .

When $N_{G}(T)>C_{G}^{\prime}(T)$, there exists a 3 -element ρ in $N_{G}(T)-C_{G}^{\prime}(T)$ such that $\tau_{1}^{\rho}=\tau_{2}, \tau_{2}^{\rho}=\tau_{3}$, and $\tau_{3}^{\rho}=\tau_{1}$.

Lemma 8. Let G be a group with a dihedral Sylow 2-subgroup S. Then one of the following holds:
(i) G contains no normal subgroups of index 2. Then all involutions in G are conjugate, $N_{G}\left(S_{0}\right)>C_{G}^{\prime}\left(S_{0}\right)$, and when $S>S_{0}, N_{G}\left(S_{1}\right)>C_{G}^{\prime}\left(S_{1}\right)$.
(ii) G contains a normal subgroup of index 2 , but no normal subgroup of index 4. Then $S>S_{0}$, and for exactly one value of $i=0,1, N_{G}\left(S_{i}\right)>C_{G}^{\prime}\left(S_{i}\right)$.
(iii) G contains a normal subgroup of index 4. Then G possesses a normal 2-complement.

In particular, $C_{G}\left(\tau_{1}\right)$ has a normal 2-complement.
Proof. Suppose first that $S=S_{0}$. If G contains no normal subgroups of index 2 , then by Burnside's theorem [13, p. 203], $N_{G}\left(S_{0}\right)>C_{G}\left(S_{0}\right)$. Then all involutions in S and consequently in G are conjugate. Conversely, if G contains a normal subgroup of index $2, N_{G}\left(S_{0}\right)=C_{G}\left(S_{0}\right)$, and Burnside's theorem implies that G has a normal 2 -complement.

Now assume that $S>S_{0}$. The automorphism group of S is a 2 -group, and hence $N_{G}(S)=S C_{G}(S)$. It follows then from Grün's theorem [13, p. 214] that the maximal abelian 2 -factor group of G is isomorphic to S / S_{2}, where S_{2} is generated by the subgroups $S \cap S^{\prime \sigma}, \sigma \epsilon G$. Since $S^{\prime}=B, A$ is not contained in $S \cap S^{\prime \sigma}$ for any σ, and it follows that $S=S_{2}$ if and only if τ_{2} and $\tau_{2} \alpha$ lie in some $S \cap S^{\prime \sigma}$. This is equivalent to having τ_{1} conjugate to τ_{2} and to $\tau_{2} \alpha$ in G. Thus if G has no normal subgroups of index 2 , all the involutions of S and hence of G are conjugate. Furthermore, there exists then an element σ such that $\tau_{1}^{\sigma}=\tau_{2}$. Replacing γ^{σ} by $\gamma^{\sigma \lambda}$ where $\lambda \epsilon C\left(\tau_{2}\right)$, if necessary, we may suppose that γ^{σ} is in $C_{G, S^{\sigma}}^{\prime}\left(S_{0}\right)$. Then γ^{σ} centralizes τ_{2} and interchanges τ_{1} and τ_{3}. A simple calculation shows that $\rho=\gamma \gamma^{\sigma}$ conjugates τ_{1} into τ_{3}, τ_{2} into τ_{1}, and τ_{3} into τ_{2}. Thus $\rho \in N_{G}\left(S_{0}\right)-C_{G}^{\prime}\left(S_{0}\right)$. A similar calculation shows that $N_{G}\left(S_{1}\right)>C_{G}^{\prime}\left(S_{1}\right)$.

The same argument shows that G has a normal subgroup of index 2 , but no normal subgroup of index 4 if and only if $S_{2}=\left\{B, \tau_{2}\right\}$ or $\left\{B, \tau_{2} \alpha\right\}$; and it is clear that in this case $N_{G}\left(S_{i}\right)>C_{G}^{\prime}\left(S_{i}\right)$ for exactly one value of $i=0,1$.

If G has a normal subgroup G_{0} of index 4 , then $S_{2}=B$, and B is a Sylow 2 -subgroup of G_{0}. Since B is cyclic, G_{0} and hence G has a normal 2-complement.

Finally if $H=C_{G}\left(\tau_{1}\right)$, then $H \geqq S$, and τ_{1} is not conjugate to τ_{2} or $\tau_{2} \alpha$ in H. Hence by the preceding argument applied to H, H has a normal 2-complement.

4. Properties of $\operatorname{PSL}(2, q), \operatorname{PGL}(2, q)$, and A_{7}

We will list the properties of these groups which are to be used in this paper. For further reference, the reader is referred to L. Dickson [9] or J. Dieudonné [10].
(A) The groups $P S L(2, q), P G L(2, q), q$ odd, and A_{7} are L-groups of orders $\frac{1}{2} q\left(q^{2}-1\right), q\left(q^{2}-1\right)$, and 2520 , respectively; $\operatorname{PSL}(2, q)$ and A_{7} are
simple groups except for $\operatorname{PSL}(2,3)$, which is isomorphic to the alternating group A_{4}. Also $\operatorname{PSL}(2,5)$ is isomorphic to A_{5}.
(B) Let τ and τ^{\prime} be involutions in $P S L(2, q)$ and $\operatorname{PGL}(2, q)-P S L(2, q)$, respectively. Then $D=C_{P G L(2, q)}(\tau)$ and $D^{\prime}=C_{P G L(2, q)}\left(\tau^{\prime}\right)$ are dihedral groups of orders $2(q-\delta)$ and $2(q+\delta)$, respectively, where $\delta= \pm 1$ and $\delta \equiv q(\bmod 4) . \quad D \cap \operatorname{PSL}(2, q)$ and $D^{\prime} \cap \operatorname{PSL}(2, q)$ are dihedral groups of orders $q-\delta$ and $q+\delta$, respectively. D contains a Sylow 2-subgroup of $\operatorname{PGL}(2, q)$.

The elements of D and D^{\prime} may be represented, respectively, by matrices in either (12) or (13), or in (13) or (12) according as $q \equiv 1$ or $q \equiv-1$ $(\bmod 4)$.

$$
\begin{array}{lll}
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right), & \left(\begin{array}{cc}
a c & 0 \\
0 & a^{-1}
\end{array}\right), & \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right), & \left(\begin{array}{cc}
a c & b c \\
-b & a
\end{array}\right), & \left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \tag{13}
\end{array}
$$

where $a^{2}+b^{2}=1$ and c is a nonsquare. We shall refer to these matrices as (12a), (12b), (12c), etc.

Two matrices of the form (12a), (12b), (13a), or (13b) represent the same coset in $\operatorname{PGL}(2, q)$ if and only if they are negatives of each other. Thus the matrices (12a) and (13a) represent elements of cyclic groups C_{0} and C_{0}^{\prime} of orders $\frac{1}{2}(q-1)$ and $\frac{1}{2}(q+1)$ respectively, in $\operatorname{PSL}(2, q)$. The matrices (12b) and (13b) represent, respectively, generators of cyclic groups C and C^{\prime} in $P G L(2, q)$ which contain C_{0} and C_{0}^{\prime} as subgroups of index 2. The matrices (12c) and (13c) represent involutions in $\operatorname{PGL}(2, q)$ which invert C and C^{\prime}, respectively. When $q \equiv 1(\bmod 4), \tau$ is represented by (12a) with $a^{2}=-1$, and τ^{\prime} by (13 b) with $a=0$ and $b=1$. When $q \equiv-1$ $(\bmod 4), \tau$ is represented by (13a) with $a=0$ and $b=1$, and τ^{\prime} by (12b) with $a=1$ and $c=-1$.
(C) The groups $P S L(2, q), q$ odd, contain cyclic Hall subgroups of odd orders $u=(q-\delta) /|S|$ and $(q+\delta) / 2$. Two such subgroups of the same order are conjugate, and distinct conjugate subgroups have trivial intersections.
(D) There are two conjugate classes of self-centralizing four-subgroups in $\operatorname{PSL}(2, q)$ if its Sylow 2-subgroup has order greater than 4, and one class if its Sylow 2-subgroup has order 4. In A_{7}, there are two classes of four-subgroups, in one of which the subgroups are self-centralizing, and in the other the centralizers have order 12.

We need the following embedding result.
Lemma 9. Let G be an L-group which contains a normal subgroup G_{0} isomorphic to $\operatorname{PSL}(2, q), \operatorname{PGL}(2, q)$, or A_{7}. Then $G_{0} O(G)$ is a direct product
$G_{0} \times O(G)$, and $\left[G: G_{0} O(G)\right] \leqq 2$. If $\left[G: G_{0} O(G)\right]=2$, then G_{0} is isomorphic to $\operatorname{PSL}(2, q)$, and G is the semidirect product $G_{1} O(G)$ where G_{1} is isomorphic to $\operatorname{PGL}(2, q)$.

Proof. We treat first the case that G_{0} is isomorphic to $\operatorname{PSL}(2, q)$ or $\operatorname{PGL}(2, q)$. For the sake of convenience, we identify G_{0} with its isomorphic image. Suppose first that $\left|G: G_{0}\right|$ is even. Then a dihedral Sylow 2-subgroup T of G_{0} is a normal subgroup of a dihedral Sylow 2 -subgroup S of G. Hence $|S: T|=2$, and the 2 -elements of G / G_{0} are involutions. Let $x G_{0}$ be such an element; we shall show that $G_{1}=\left\{G_{0}, x\right\}$ is isomorphic to $\operatorname{PGL}(2, q)$.

We may assume that x is a 2 -element, and hence that $x \in S$. If x is an involution, there is another involution y in T such that $x y$ lies in the maximal cyclic subgroup A of S. Replacing $x y$ by x, if necessary, we may suppose $x \in A$.

Now the automorphisms of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ are well known [10, p. 97]; they are induced by a contragredient transformation of $G L(2, q)$ or by conjugation of $G L(2, q)$ by a semilinear transformation t which is defined relative to an automorphism σ_{t} of the underlying field F_{q} of q elements.

Let $\theta(x)$ be the outer automorphism of G_{0} induced by conjugation by x. If $\theta(x)$ is induced by a contragredient transformation, then relative to a particular choice of the basis of the underlying vector space, $\theta(x)$ is the inverse transpose operation on the matrices (12) and (13). But then $\theta(x)$ will fix the four-group $T_{0} \leqq T$ which is generated by τ and the matrix (12c) or (13c). Thus $C_{G}\left(T_{0}\right)$ contains a noncyclic abelian group of order 8. But this is impossible since the Sylow 2 -subgroups of G are dihedral.

Hence $\theta(x)$ is induced by a semilinear transformation t relative to a field automorphism σ_{t}. Since $x \epsilon A, t$ may be assumed to have the matrix form (12a) or $(13 a)$ according as $q \equiv 1$ or $-1(\bmod 4)$. But then t induces the mapping of the matrices (12) or (13) which sends each matrix with coefficients a and b into the corresponding matrix with coefficients $a^{\sigma_{t}}$ and $b^{\sigma_{t}}$.

Clearly $\left|\sigma_{t}\right| \leqq 2$; assume $\left|\sigma_{t}\right|=2$. In this case F_{q} is an extension of degree 2 over the fixed subfield F_{r} of σ_{t}. If $\left|F_{r}\right|=r$, then $q=r^{2}$; hence $q \equiv 1(\bmod 4)$. Thus the elements of $C_{G_{0}}(\tau)$ are represented by the matrices (12a) and (13c). Since $x \in A, x$ centralizes the elements of T represented by the matrices (12a). This means that t must also have the form (12a). But then it follows that

$$
t^{-1}\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) t=\left(\begin{array}{cc}
a^{\sigma_{t}} & 0 \\
0 & a^{-\sigma_{t}}
\end{array}\right)=\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right)= \pm\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)
$$

for any 2-element a of F_{q}. Hence either $a=i$ where $i^{4}=1$, or $a= \pm 1$ and is in F_{r}. Suppose that $r \equiv 1(\bmod 4)$. Then $i \in F_{r}$. However as $q-1=r^{2}-1=(r+1)(r-1)$, there is a 2-element $a \neq i$ in $F_{q}-F_{r}$; for this element, $a^{\sigma_{t}} \neq \pm a$, which is a contradiction. Suppose then that
$r \equiv-1(\bmod 4)$. Then 4 divides $r+1$, and again there is a 2 -element $a \neq i$ in $F_{q}-F_{r}$. Thus we must have $\sigma_{t}=1$, and so t is linear.

Now if $G_{0}=P G L(2, q)$, this argument shows that $\theta(x)$ is an inner automorphism. Hence $x G_{0}$ contains an element x^{\prime} of $C\left(G_{0}\right)$, and consequently ${x^{\prime}}^{2} \in Z\left(G_{0}\right)$. But $Z\left(G_{0}\right)=1$, and so x^{\prime} is an involution not in G_{0}, but centralizing a four-group of G_{0}. This gives a contradiction.

It follows that $G_{0}=P S L(2, q)$. We know that $x \in A$, and hence x generates the maximal cyclic subgroup of $S \cap G_{1}$. On the other hand, the element \bar{t} of $P G L(2, q)$ which is the image of t satisfies $\bar{t}^{2} \epsilon T$, and $\theta\left(\bar{t}^{2}\right)=\theta\left(x^{2}\right)$. But then $\theta\left(\bar{t}^{2} x^{-2}\right)=1$, and $\bar{t}^{2} x^{-2}$ is a 2-element in $C(T)$. It follows that $\bar{t}^{2}=x^{2}$. Since the automorphism $\theta(\bar{t})$ induced by \bar{t} is the same as $\theta(x)$ and $\bar{t}^{2}=x^{2}$, the mapping $x \rightarrow \bar{t}$ extends the identity mapping of G_{0} onto $\operatorname{PSL}(2, q)$ to an isomorphism of G_{1} onto $\operatorname{PGL}(2, q)$.

It remains to consider the case that the coset $x G_{0}$ has odd order. Since $G=N_{G}(T) G_{0}$ by the Frattini argument, every coset of G_{0} contains an element of $N_{G}(T)$, and so we may assume $x \in N_{G}(T)$. If $|T|>4, N_{G}(T) / C_{G}(T)$ is a 2 -group, and so $x \in C_{G}(T)$. If $|T|=4$, there exists a 3 -element ρ in $N_{G_{0}}(T)-C_{G_{0}}^{\prime}(T)$ and either $x, x \rho$, or $x \rho^{2}$ is in $C_{G}(T)$. Thus we may assume $x \epsilon C_{G}(T) \leqq C_{G}(\tau)$. But $C_{G}(\tau)=S U_{1}$, where U_{1} is abelian and contains x. Then x centralizes $C_{G_{0}}(\tau)=T\left(U_{1} \cap G_{0}\right)$. Thus $\theta(x)$ fixes the matrices (12) or (13). If $\theta(x)$ is induced by the semilinear transformation t relative to the field automorphism σ_{t}, it follows that $a^{\sigma_{t}}=a$ for all $a \in F_{q}$. Thus $\sigma_{t}=1$, and again t is linear.

We conclude as above that each coset of G_{0} of odd order contains an element of $C_{G}\left(G_{0}\right)$. Thus $G_{0} \times C\left(G_{0}\right)$ is a normal subgroup of G of index $\leqq 2$; and, consequently, $C_{G}\left(G_{0}\right)=O(G)$. If this index is 2 , the previous discussion shows that G_{0} is isomorphic to $\operatorname{PSL}(2, q), G_{1}$ is isomorphic to $\operatorname{PGL}(2, q)$, and G is the semidirect product $G_{1} O(G)$, as desired.

When $G_{0}=A_{7}$, the lemma still follows by essentially the same argument since A_{7} admits only the automorphisms induced from the symmetric group S_{7}; and these play the role of a contragredient automorphism of $S L(2, q)$ and $G L(2, q)$. We omit the details.

5. Induction assumptions and reduction of the theorem

Henceforth G will denote a fixed but arbitrary L-group. We shall assume that Theorem I is valid for all L-groups of order less than the order of G.

Lemma 10. In proving Theorem I, we may suppose that G is simple.
Proof. If G possesses a normal subgroup G_{0} of index 2 but none of index 4, we may apply induction to G_{0} to conclude that $G_{0} / O\left(G_{0}\right)$ is isomorphic to $\operatorname{PSL}(2, q)$ or A_{7}. Since $O\left(G_{0}\right)$ is characteristic in G_{0}, it is normal in G; hence $O\left(G_{0}\right)=O(G)$. Now Lemma 9 applies to $\bar{G}=G / O(G)$, and we may conclude that G is isomorphic to $\operatorname{PGL}(2, q)$ in this case.

If G has a normal subgroup of index 4, then G has a normal 2-complement by Lemma 8.

If G has a normal subgroup $K \neq 1$ of odd order, it follows from Lemma 5 that $\bar{G}=G / K$ is an L-group. By induction, the theorem holds for \bar{G} and hence for G.

Thus there remains only the case where G contains normal subgroups of even order but none of index 2. Let G_{0} be a normal subgroup of G, such that $G>G_{0}>1$. By Lemma 8, all involutions in G are conjugate and hence lie in G_{0}. Thus G_{0} contains a Sylow 2 -subgroup of G and consequently has odd index. Since G_{0} is a normal subgroup of $G, O\left(G_{0}\right)$ is a normal subgroup of G. Hence $O\left(G_{0}\right)=1$. Then by induction, G_{0} is isomorphic to $\operatorname{PSL}(2, q)$, $\operatorname{PGL}(2, q), q$ odd, or A_{7}, or G_{0} is a Sylow 2 -subgroup of G. In any of the first three cases, Lemma 9 implies that $G=G_{0} \times O(G)$. Since $O(G)=1$, $G=G_{0}$, which is a contradiction.

In the remaining case, G_{0} is a dihedral 2-group; and $C\left(G_{0}\right)=G_{0}$ since otherwise G would have a normal subgroup of odd order. If $\left|G_{0}\right|>4$, then $G=N_{G}\left(G_{0}\right)=G_{0}$, which is a contradiction. If $\left|G_{0}\right|=4$, the only possibility is that $\left|G: G_{0}\right|=3$, in which case G is isomorphic to $\operatorname{PSL}(2,3)$. Theorem I then holds in this case. Thus we have reduced the proof of Theorem I to the case that G is simple.

It will be useful to combine Lemma 8 and the induction hypothesis in the following lemma, which is stated without proof.

Lemma 11. Let H be a proper subgroup of G containing a dihedral Sylow 2 -subgroup S. One of the following cases holds:
(i) The group H contains no normal subgroups of index 2; and $H / O H$ is isomorphic to $\operatorname{PSL}(2, q), q$ odd, or to A_{7}.
(ii) The group H contains a normal subgroup of index 2 but none of index $4 ; S>S_{0} ; N_{H}\left(S_{i}\right)>C_{H}^{\prime}\left(S_{i}\right)$ for exactly one value of $i=0,1$; and $H / O(H)$ is isomorphic to $\operatorname{PGL}(2, q), q$ odd.
(iii) The group H contains a normal subgroup of index $4 ; N_{H}\left(S_{0}\right)=C_{H}^{\prime}\left(S_{0}\right)$, and, when $S>S_{0}, N_{H}\left(S_{1}\right)=C_{H}^{\prime}\left(S_{1}\right) ; H / O(H)$ is isomorphic to S.

Remark. Since all the involutions in G are conjugate, $O(C(\tau))$ is abelian for any involution τ. Hence the Sylow p-subgroups of $C(\tau)$ are unique for all odd p. It follows then from Lemmas 2 and 4 that, if K is an S_{i}-invariant subgroup of G of odd order, where $i=0,1$, there is a unique S_{i}-invariant Sylow p-subgroup of K for every prime p dividing $|K|$. This fact is to be used repeatedly.

Part II. The Structure of the Group G

6. Structure of the centralizer $C_{G}\left(\tau_{1}\right)$

For brevity we shall henceforth write $C(H), C(x)$, etc., for $C_{G}(H), C_{G}(x)$, etc., H being a subgroup, and x an element of G.

By Lemma 8, $C\left(\tau_{1}\right)$ has a normal 2-complement $U=U_{1}$ which under the hypotheses of Theorem I is abelian. Thus $C\left(\tau_{1}\right)=S U_{1}$. If ρ_{0} is in $N\left(S_{0}\right)-C^{\prime}\left(S_{0}\right)$, then $C\left(\tau_{2}\right)=S^{\rho 0} U_{1}^{\rho 0}$ and $C\left(\tau_{3}\right)=S^{\rho_{0}{ }^{2}} U_{1}^{\rho_{0}{ }^{2}}$. We set $U_{2}=U_{1}^{\rho 0}$ and $U_{3}=U_{1}^{\rho 0^{2}}$. Then $U_{3}^{\rho 0}=U_{1}$.

Henceforth S will denote a fixed Sylow 2-subgroup of G, and S^{*} a dihedral subgroup of S. If $\left|S^{*}\right|>4$, let S_{0}^{*}, S_{1}^{*} be representatives of the two conjugate classes of four-groups in S^{*}. To unify the notation, we put $S^{*}=S_{0}^{*}$ when $\left|S^{*}\right|=4$, and do not define S_{1}^{*} in this case. If $S^{*}=S$, we set $S_{0}^{*}=S_{0}$ and $S_{1}^{*}=S_{1}$ (when it exists).

Whenever there is danger of ambiguity, we shall use the notation $\tau_{1 i}^{*}, \tau_{2 i}^{*}$, $\tau_{3 i}^{*}$ for the involutions in S_{i}^{*}. However, when $S_{i}^{*}=S_{0}$, we shall continue to denote them by $\tau_{1}, \tau_{2}, \tau_{3}$.

We define $E^{*}=C\left(S^{*}\right) \cap U_{1}, E_{0}^{*}=C\left(S_{0}^{*}\right) \cap U_{1}$, and $E_{1}^{*}=C\left(S_{1}^{*}\right) \cap U_{1}$ when S_{1}^{*} exists. When $S=S^{*}$, we use E, E_{0}, E_{1} in place of $E^{*}, E_{0}^{*}, E_{1}^{*}$.

Let $A^{*}=\left\{\alpha^{*}\right\}$ be the maximal cyclic subgroup of S^{*} containing the central involution $\tau_{1}=\tau_{10}^{*}=\tau_{11}^{*}$. Then $U_{1}=D^{*} \times F^{*}$ where α^{*} acts regularly on D^{*} and $F^{*}=C\left(\alpha^{*}\right) \cap U_{1}$. Hence D^{*} and F^{*} are uniquely determined. Because A^{*} is a normal subgroup of S^{*}, both D^{*} and F^{*} are S^{*}-invariant. In particular, they are invariant under conjugation by the involutions τ_{20}^{*} and $\tau_{21}^{*}=\tau_{20}^{*} \alpha^{*}$. In fact, both these involutions induce the same automorphism of F^{*} with E^{*} as the fixed subgroup. Thus $F^{*}=E^{*} \times{U_{1}^{\prime *}}^{\prime}$ where $U_{1}^{\prime *}$ is inverted by both τ_{20}^{*} and τ_{21}^{*}. This decomposition admits the group S^{*}. We cannot do the same in decomposing D^{*}. However, setting

$$
E_{i}^{\prime *}=C\left(\tau_{2 i}^{*}\right) \cap D^{*}
$$

$i=0,1$, we obtain S_{i}^{*}-invariant subgroups of D^{*}. Since $E_{0}^{\prime *} \cap E_{1}^{\prime *} \leqq E^{*}$, ${E_{0}^{\prime *}}^{\prime *} \cap E_{1}^{\prime *}=1$. Furthermore, $E_{i}^{*}=C\left(\tau_{2 i}^{*}\right) \cap D^{*} \times C\left(\tau_{2 i}^{*}\right) \cap F^{*}=E^{*} \times E_{i}^{\prime *}$.

Lemma 12. The subgroup U_{1} admits the decomposition

$$
\begin{equation*}
U_{1}=E^{*} \times U_{1}^{\prime *} \quad \text { or } \quad U_{1}=E^{*} \times E_{0}^{\prime *} \times E_{1}^{\prime *} \times U_{1}^{\prime *} \tag{14}
\end{equation*}
$$

according as $S^{*}=S_{0}^{*}$ or $S^{*}>S_{0}^{*}$. Furthermore, the commutator subgroup of S^{*} centralizes U_{1} if $E_{0}^{*}=1$ or $E_{1}^{*}=1$.

Proof. In the case $S^{*}=S_{0}^{*}, D^{*}=1$, and the first case of (14) follows. In the case $S^{*}>S_{0}^{*}$, we have shown that $E^{*} \times E_{0}^{\prime *} \times E_{1}^{\prime *} \times U_{1}^{\prime *}$ is a subgroup of U_{1}. Using Wielandt's formula for the order of a group that is normalized by a dihedral group of automorphisms [23, Beispiel (3.1)], we see that equality holds in the second case of (14).

To prove the last statement, we may assume that $E_{0}^{*}=1$. Then $\tau_{22}^{*}=\tau^{*}$ inverts U_{1}. For $x \in U_{1}$, we have

$$
\left(x^{\alpha^{*}}\right)^{-1}=x^{\alpha^{*} \tau^{*}}=x^{\tau^{*} \alpha^{*}-1}=\left(x^{-1}\right)^{\alpha^{*-1}}=\left(x^{\alpha^{*-1}}\right)^{-1}
$$

Hence the commutator subgroup $\left\{\alpha^{* 2}\right\}$ centralizes U_{1}, and the proof is complete.

Remark. In the special case that $S=S^{*}$ and B centralizes $U_{1}, E_{0}^{\prime}=E_{0}^{\prime *}$ is inverted by $\tau_{2} \alpha$ and $\alpha, E_{1}^{\prime}=E_{1}^{\prime *}$ is inverted by τ_{2} and α (when it is defined), and $U_{1}^{\prime}=U_{1}^{\prime *}$ is inverted by τ_{2} and $\tau_{2} \alpha$ and consequently is centralized by α. Furthermore, if $\rho_{i} \in N\left(S_{i}\right)-C^{\prime}\left(S_{i}\right), U_{1} \cap U_{1}^{\rho_{i} i^{k}}=E_{i}^{\prime}, i=0,1$, $k=1,2$. Hence if $x \in U_{1}^{\prime}$ and $H=C^{*}(x)$, it follows that $N_{H}\left(S_{i}\right)=C_{H}^{\prime}\left(S_{i}\right)$, $i=0,1$. Thus by Lemma $11, C^{*}(x)$ has a normal 2 -complement; also $C^{*}(x)$ contains S. These observations will be used repeatedly.

We shall further decompose $U_{1}^{\prime *}$ into the direct product $V_{1}^{*} \times W_{1}^{*}$, where V_{1}^{*} is the maximal Hall subgroup of $U_{1}^{\prime *}$ in which every element $\sigma \neq 1$ has its centralizer $C(\sigma)$ contained in $C\left(\tau_{1}\right)$, and W_{1}^{*} is the complementary subgroup. Consequently for each prime p dividing $\left|W_{1}^{*}\right|$, there exists a p-element $\sigma \neq 1$ in W_{1}^{*} whose centralizer is not contained in $C\left(\tau_{1}\right)$. Setting $X_{1}^{*}=E^{*} \times W_{1}^{*}$ or correspondingly $X_{1}^{*}=E^{*} \times E_{0}^{\prime *} \times E_{1}^{\prime *} \times W_{1}^{*}$, we obtain the decomposition

$$
\begin{equation*}
U_{1}=V_{1}^{*} \times X_{1}^{*} \tag{15}
\end{equation*}
$$

When $S=S^{*}$, we use V_{1} for V_{1}^{*}, W_{1} for W_{1}^{*}, etc. This notation will be preserved throughout the remainder of the paper.

7. The S^{*}-invariant p-subgroups of G

For some odd prime p let P be an S_{i}^{*}-invariant p-subgroup of $G, i=0$ or 1 , and let $P=P_{1} P_{2} P_{3}$ be an S_{i}^{*}-decomposition of P, where P_{μ} is the fixed subgroup of the involution $\tau_{\mu i}^{*}$. Because G has only one class of involutions, each component P_{μ} is a subgroup of a conjugate of U_{1} and hence is abelian. By Lemma 6,

$$
\begin{equation*}
P=P_{0} \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} \tag{16}
\end{equation*}
$$

where $P_{0}=C\left(S_{i}^{*}\right) \cap P$ and P_{μ}^{\prime} is the subgroup of P_{μ} inverted by $\tau_{\nu i}^{*}, \nu \neq \mu$.
We shall use the notation $E^{*}(p), E(p), E_{i}^{*}(p)$, etc., for the unique Sylow p-subgroups of E^{*}, E, E_{i}^{*}, etc.

Lemma 13. Let H be a proper subgroup of G containing $S^{*} U_{1}$, where S^{*} is a dihedral subgroup of S, and S^{*} is a Sylow 2-subgroup of H. Assume that $N_{H}\left(S_{i}^{*}\right)>C_{H}^{\prime}\left(S_{i}^{*}\right)$ for exactly one value of $i=0,1$. Then
(i) for every prime p dividing $|O(H)|$, there exists a unique S^{*}-invariant Sylow p-subgroup P of $O(H)$;
(ii) P has the S_{i}^{*}-decomposition $P=P_{1} P_{2} P_{3}=E_{i}^{*}(p) \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$, and

$$
\begin{equation*}
\left|P_{1}\right|=\left|P_{2}\right|=\left|P_{3}\right| \quad \text { and } \quad\left|P_{1}^{\prime}\right|=\left|P_{2}^{\prime}\right|=\left|P_{3}^{\prime}\right| ; \tag{17}
\end{equation*}
$$

(iii) either $P_{\mu}=E_{i}^{*}(p)$, or P_{μ} is a Sylow p-subgroup of $C\left(\tau_{\mu i}^{*}\right), \mu=1,2,3$;
(iv) $O(H) \cap U_{1}=X_{1}^{*}$, and every prime dividing $|O(H)|$ divides $\left|X_{1}^{*}\right|$.

Proof. Some conjugate of S^{*} in S contains S_{0} or S_{1}. Hence without loss we may assume that $i=0$ and that $S_{0}^{*}=S_{0}$. Thus $N_{H}\left(S_{0}\right)>C_{H}^{\prime}\left(S_{0}\right)$ and $E_{0}^{*}=E_{0}$.
(i) The existence of an S^{*}-invariant Sylow p-subgroup P of $O(H)$ follows from Lemma 1. Its uniqueness follows from the remark at the end of §5.
(ii) Denote by \bar{K} the image of a subgroup K of H in $\bar{H}=H / O(H)$. Since by assumption $U_{1} \leqq H$, it follows from Lemma 5 that $\bar{S}_{0} \bar{E}_{0}=C_{\bar{H}}\left(\bar{S}_{0}\right)$. On the other hand, by Lemma 11, \bar{H} is isomorphic to $\operatorname{PGL}(2, q), q$ odd, if $\left|S^{*}\right|>4$ and to $\operatorname{PSL}(2, q), q$ odd, if $\left|S^{*}\right|=4$; consequently $C_{H}\left(\bar{S}_{0}\right)=\bar{S}_{0}$ by $\S 4(\mathrm{D})$. Then E_{0} and hence $E_{0}(p)$ is contained in $O(H)$. By Lemma 1, $E_{0}(p)$ lies in the unique S_{0}-invariant Sylow p-subgroup of $O(H)$, which must be P. Hence P has the S_{0}-decomposition given in (ii).

Now by the Frattini argument, $H=O(H) K$, where $K=N_{H}(P)$; hence $N_{K}\left(S_{0}\right)>C_{K}^{\prime}\left(S_{0}\right)$. There exists an element ρ_{0} in K which conjugates τ_{1} into τ_{2}, τ_{2} into τ_{3}, and τ_{3} into τ_{1}. It follows that $P_{1}^{\rho_{0}}=P_{2}, P_{2}^{\rho_{0}}=P_{3}$; this gives (17) at once.
(iii) Suppose that $P_{1}>E_{0}(p)$; it suffices to show that P_{1} is the Sylow p-subgroup R_{1} of U_{1} since $P_{2}=P_{1}^{\rho 0}$ and $P_{3}=P_{2}^{\rho 0}$. Now $R_{2}=R_{1}^{\rho 0}$ and $R_{3}=R_{2}^{\rho 0}$ are contained in H. Assume that $\bar{R}_{1} \neq 1$; then $\bar{R}_{2} \neq 1$ and $\bar{R}_{3} \neq 1$ since $O(H)^{\rho_{0}}=O(H)$. Each subgroup \bar{R}_{μ} is a Sylow p-subgroup of $C_{\bar{H}}\left(\bar{\tau}_{\mu}\right)$ and is cyclic since \bar{H} is isomorphic to $\operatorname{PGL}(2, q)$ or $\operatorname{PSL}(2, q)$. Furthermore $\bar{R}_{\mu} \cap \bar{R}_{\nu}=1$ for $\mu \neq \nu$. Consequently \bar{R}_{1} and \bar{R}_{2} do not generate a p-group. We shall now contradict this in order to obtain $\bar{R}_{\mu}=1$ and $R_{\mu}=P_{\mu}$, as desired.

Now $R_{1} O(H)$ is S^{*}-invariant, and it follows that the unique S_{0}-invariant Sylow p-subgroup of $R_{1} O(H)$ is necessarily S^{*}-invariant; by Lemma 4, it has the S_{0}-decomposition $R_{1} P_{2} P_{3}=R_{1} P_{2}^{\prime} P_{3}^{\prime}$. By (17), $R_{1} P_{2} P_{3}>R_{1}$; hence we may apply Lemma 7 to obtain an element σ in, say, P_{2}^{\prime} such that $M=C_{H}^{*}(\sigma)$ contains R_{1}. But $N_{M}\left(S_{0}\right)=C_{M}^{\prime}\left(S_{0}\right)$ since σ is in P_{2}^{\prime}; also $N_{M}\left(S_{1}^{*}\right)=C_{M}^{\prime}\left(S_{1}^{*}\right)$ (if S_{1}^{*} exists) since $N_{H}\left(S_{1}^{*}\right)=C_{H}^{\prime}\left(S_{1}^{*}\right)$. Hence M has a normal 2-complement $O(M)$. It is clear that $M>S_{0}$. Hence $O(M)$ is S_{0}-invariant. On the other hand, $R_{1} \leqq O(M)$. As U_{1} is abelian, $R_{2} \leqq M$; hence $R_{2} \leqq O(M)$. By Lemmas 1,2 , and 4 , there is a unique S_{0}-invariant Sylow p-subgroup R of $O(M)$ with the S_{0}-decomposition $R_{1} R_{2} R_{3}^{\prime}$ where $R_{3}^{\prime} \leqq R_{3}$ 。

In \bar{H} the image \bar{R} of R has the decomposition $\bar{R}=\bar{R}_{1} \bar{R}_{2} \bar{R}_{3}^{\prime}$, and consequently \bar{R}_{1} and \bar{R}_{2} generate a p-group, which is a contradiction and establishes (iii).
(iv) It follows from (ii) that if p divides $|O(H)|$, then p divides $\left|O(H) \cap U_{1}\right|$. It remains to show that $O(H) \cap U_{1}=X_{1}^{*}$. We have already shown in the first paragraph of (ii) that $E_{0} \leqq O(H)$, and the same argument yields that $\bar{E}_{1}^{*}=1$, and hence that $E_{1}^{*} \leqq O(H)$, whence $E_{0} E_{1}^{*} \leqq O(H)$. Now if $V_{1}^{*} \cap O(H) \neq 1$, there exists a p-element $\sigma \neq 1$ in $V_{1}^{*} \cap O(H)$ for some
prime p. By (ii) and (iii), σ belongs to the subgroup P_{1}^{\prime} of the S^{*}-invariant Sylow p-subgroup P of $O(H)$ with S_{0}-decomposition (16). By (17), $P_{1}^{\prime} \neq 1$; whence by Lemma 7 there exists an element in P_{2}^{\prime} which centralizes P_{1}. Hence σ commutes with an element not in U_{1}. This is a contradiction, and we conclude that $V_{1}^{*} \cap O(H)=1$.

It thus suffices to show that $W_{1}^{*} \leqq O(H)$. Hence suppose that there is a p-element in W_{1}^{*}, but $\operatorname{notin} O(H)$. Then P_{1} is not a Sylow p-subgroup of U_{1}, so that, by (iii), $P_{1}=E_{0}(p)$. In other words, the subgroup P_{1}^{\prime} in (16) is the identity. Thus the Sylow p-subgroup of W_{1}^{*} is disjoint from $O(H)$. Hence there exists an element $\sigma \epsilon W_{1}^{*}$, but not in $O(H)$, such that $C(\sigma)$ is not contained in $S^{*} U_{1}$.

Since $\sigma \epsilon W_{1}^{*}, C_{H}(\sigma)$ has a normal 2-complement F with S_{0}-decomposition

$$
F=F_{0} F_{1}^{\prime} F_{2}^{\prime} F_{3}^{\prime}=F_{1} F_{2} F_{3}
$$

Since U_{1} is abelian, $F_{1}=U_{1}$. By our assumption on $\sigma, F_{2}^{\prime} F_{3}^{\prime} \neq 1$. Let $\lambda_{2} \neq 1$ be an element of, say, F_{2}^{\prime}, and set $\lambda_{1}=\lambda_{2}^{\rho 0^{-1}}$. Now $K=C_{H}^{*}\left(\lambda_{1}\right)$ contains σ and $\sigma^{0^{-1}}$. Since $\lambda_{1} \in F_{1}^{\prime}, N_{K}\left(S_{0}\right)=C_{K}^{\prime}\left(S_{0}\right)$, and $C_{H}^{*}\left(\lambda_{1}\right)$ has a normal 2-complement Y which contains σ and $\sigma^{\rho_{0}^{-1}}$. The unique S_{0}-invariant Sylow p-subgroup Q of Y has the S_{0}-decomposition

$$
Q=Q_{1} Q_{2} Q_{3}=Q_{0} Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime}
$$

and hence $\sigma \in Q_{1}^{\prime}, \sigma^{\rho_{0}-1} \in Q_{3}^{\prime}$. Thus $\left\{\sigma, \sigma^{\rho_{0}-1}\right\}$ is a p-group. Since \bar{H} is isomorphic to $P G L(2, q)$ and $\bar{\sigma}$ and $\bar{\sigma}^{\rho^{-1}}$ are in the centralizers of different involutions, $\bar{\sigma}$ and $\bar{\sigma}^{\rho_{0}^{-1}}$ do not generate a p-group in \bar{H}, which is a contradiction. Thus $W_{1}^{*} \leqq O(H)$, and the lemma is proved.

Remark. If $P>E_{0}(p)$, we have shown in (iii) that P_{μ} is the Sylow p-subgroup of $C\left(\tau_{\mu}\right), \mu=1,2,3$. It follows, therefore, from Lemma 4 that P is a maximal S_{0}-invariant and, when $S=S^{*}$, a maximal S-invariant p-subgroup of G. However, as we shall see later, P need not be a maximal $S_{0^{-}}$ invariant subgroup of G.

8. The structure of G, Case I

In the remainder of the paper we shall distinguish the following cases:
Case I. $\quad E_{0} \neq 1, \quad E_{1} \neq 1$.
Case II. $\quad E_{0}=1, \quad E_{1} \neq 1$.
Case III. $\quad E_{0}=1, \quad E_{1}=1$.
By symmetry we need not consider the case $E_{0} \neq 1, E_{1}=1$. Case II can occur only if $|S| \geqq 8$; and the same is true in Case I if $E_{i}>E, i=0$ or 1 .

To analyze Case I we need a lemma which is closely related to Lemma 13.
Lemma 14. Let H_{0}, H_{1} be proper subgroups of G containing $S^{*} U_{1}$, where S^{*} is a dihedral subgroup of S and a Sylow 2-subgroup of both H_{0} and H_{1}. Assume that $N_{H_{i}}\left(S_{i}^{*}\right)>C_{H_{i}}^{\prime}\left(S_{i}^{*}\right), N_{H_{i}}\left(S_{j}^{*}\right)=C_{H_{i}}^{\prime}\left(S_{j}^{*}\right), i, j=0,1, j \neq i$. Then $O\left(H_{0}\right)=O\left(H_{1}\right)$.

Proof. As in Lemma 13, we may assume for convenience that $S_{0}^{*}=S_{0}$. We first show that for every prime p dividing $\left|U_{1}\right|, E_{0}^{*}(p)=E^{*}(p)$ if and only if $E_{1}^{*}(p)=E^{*}(p)$. We may suppose that $E_{0}^{*}(p)=E^{*}(p)$ and $E_{1}^{*}(p)>$ $E^{*}(p)$. By Lemma $13(\mathrm{iv}), O\left(H_{0}\right) \cap U_{1}=X_{1}^{*}$, and hence $E_{1}^{*} \leqq O\left(H_{0}\right)$. Hence by that lemma, $O\left(H_{0}\right)$ contains an S^{*}-invariant Sylow p-subgroup $P \neq 1$ with S_{0}-decomposition

$$
\begin{equation*}
P=P_{1} P_{2} P_{3}=E^{*}(p) \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} \tag{18}
\end{equation*}
$$

where P_{1} is a Sylow p-subgroup of U_{1} and $\left|P_{1}\right|=\left|P_{2}\right|=\left|P_{3}\right|$. Thus $|P|=\left|P_{1}\right|^{3} /\left|E^{*}(p)\right|^{2}$.

On the other hand, let

$$
\begin{equation*}
P=R_{1} R_{2} R_{3} \tag{19}
\end{equation*}
$$

be the S_{1}^{*}-decomposition of P. Now $R_{1}=P_{1}$ is the Sylow p-subgroup of U_{1}; it follows, therefore, from Lemma 3 that

$$
|P|=\left|R_{1}\right|\left|R_{2}\right|\left|R_{3}\right| /\left|E_{1}^{*}(p)\right|^{2} \leqq\left|P_{1}\right|^{3} /\left|E_{1}^{*}(p)\right|^{2}
$$

But $|P|=\left|P_{1}\right|^{3} /\left|E^{*}(p)\right|^{2}$ and $E_{1}^{*}(p)>E^{*}(p)$, which gives a contradiction. Thus $E_{1}^{*}(p)=E^{*}(p)$, as we asserted.

Now we prove the lemma. We know from Lemma 13 that $O\left(H_{i}\right) \cap U_{1}=$ X_{1}^{*}, and also that every prime dividing $\left|O\left(H_{i}\right)\right|$ divides $\left|X_{1}^{*}\right|, i=0,1$. Let then P, Q be the unique S^{*}-invariant Sylow p-subgroups of $O\left(H_{0}\right), O\left(H_{1}\right)$ respectively for some prime p dividing $\left|X_{1}^{*}\right|$, with respective S_{0} - and S_{1-}^{*} decompositions

$$
\begin{align*}
& P=P_{1} P_{2} P_{3}=E_{0}^{*}(p) \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} \tag{20}\\
& Q=Q_{1} Q_{2} Q_{3}=E_{1}^{*}(p) \times Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime} \tag{21}
\end{align*}
$$

If $E_{0}^{*}(p)=E_{1}^{*}(p)=E^{*}(p)$, it follows from Lemma 13 that either $P=Q=$ $E^{*}(p)$, or that $P_{1}=Q_{1}$ is the Sylow p-subgroup of U_{1}. Moreover, in the latter case P_{μ} is the Sylow p-subgroup of $U_{\mu}, \mu=1,2,3$, and

$$
|P|=|Q|=\left|P_{1}\right|^{3} /\left|E^{*}(p)\right|^{2}
$$

Since Q is S_{0}-invariant, Q must then be contained in P. But as they have the same order, $Q=P$ in this case as well.

Suppose then that $E_{0}^{*}(p)>E^{*}(p)$. By what has been shown above, $E_{1}^{*}(p)>E^{*}(p)$. Now $E_{1}^{*}(p) \leqq O\left(H_{0}\right)$, and hence $E_{1}^{\prime *}(p) \leqq P_{1}^{\prime}$. Thus again by Lemma 13(iii), P_{1} is the Sylow p-subgroup of U_{1}. By the same argument so is Q_{1}, whence $P_{1}=Q_{1}$. But then $P_{2}=P_{1}^{\rho_{0}}$ and $P_{3}=P_{1}^{\rho^{2}}$ are the Sylow p-subgroups of U_{2} and U_{3}, respectively. It then follows that $P=P_{1} P_{2} P_{3}$ is the maximal S_{0}^{*}-invariant p-subgroup of G. Similarly $Q=Q_{1} Q_{2} Q_{3}$ is the maximal S_{1}^{*}-invariant p-subgroup of G. By Lemma 6 , the S^{*}-invariant group P admits an S_{1}^{*}-decomposition

$$
\begin{equation*}
P=E_{1}^{*}(p) \times P_{1}^{\prime \prime} P_{2}^{\prime \prime} P_{3}^{\prime \prime} \tag{22}
\end{equation*}
$$

But then $E_{1}^{*}(p) \times P_{i}^{\prime \prime} \leqq Q_{i}, i=1,2,3$. Hence $P \leqq Q$. By symmetry, $Q \leqq P$. Thus $P=Q$ and $O\left(H_{0}\right)=O\left(H_{1}\right)$, and the proof is complete.

Proposition 15. Case I. There exists a proper subgroup H of G containing $C\left(\tau_{1}\right)$ and having no normal subgroups of index 2.

Proof. Define the class of proper subgroups $\mathfrak{F}_{0}=\left\{H_{0}\right\}$ of G as follows: $H_{0} \in \mathcal{F}_{0}$ if $H_{0} \geqq S^{*} U_{1}$, where S^{*} is a dihedral subgroup of S containing S_{0}, S^{*} is a Sylow 2 -subgroup of H_{0}, and $N_{H_{0}}\left(S_{0}\right)>C_{H_{0}}^{\prime}\left(S_{0}\right)$.

Since $E_{0} \neq 1, N\left(E_{0}\right) \in \mathscr{K}_{0}$, and hence \mathscr{C}_{0} is nonempty. Choose H_{0} in \mathscr{H}_{0} so that S^{*} has maximal order. We shall show first that $S=S^{*}$.

Suppose then that $S^{*}<S$. Let $T=N_{s}\left(S^{*}\right)$. Then T is a dihedral subgroup of S and $\left|T: S^{*}\right|=2$. Since $|S| \geqq 8,\left|N\left(E_{0}\right) \cap S\right| \geqq 8$, and hence $\left|S^{*}\right| \geqq 8$. Then for some δ in $T-S^{*}$, it follows that $S_{0}^{* \delta}=S_{1}^{*}$, and $S_{1}^{* \delta}=S_{0}^{*}$, where $S_{0}^{*}=S_{0}$.

Assume that $N_{H_{0}}\left(S_{1}^{*}\right)>C_{H_{0}}^{\prime}\left(S_{1}^{*}\right)$. Since $U_{1}<H_{0}$,

$$
N\left(S_{0}^{*}\right)=N_{H_{0}}\left(S_{0}^{*}\right) \leqq H_{0} \quad \text { and } \quad N\left(S_{1}^{*}\right)=N_{H_{0}}\left(S_{1}^{*}\right) \leqq H_{0}
$$

But $N\left(S_{0}^{*}\right)^{\delta}=N\left(S_{1}^{*}\right), N\left(S_{1}^{*}\right)^{\delta}=N\left(S_{0}^{*}\right)$, and $U_{1}^{\delta}=U_{1}$. It follows that δ normalizes the subgroup $K=\left\{N_{H_{0}}\left(S_{0}^{*}\right), N_{H_{0}}\left(S_{1}^{*}\right), U_{1}\right\}$ of H_{0}. Thus $H^{*}=N(K)$ is in \mathscr{C}_{0} and contains $T>S^{*}$, contrary to the maximal choice of H_{0}.

Hence $N_{H_{0}}\left(S_{1}^{*}\right)=C_{H_{0}}^{\prime}\left(S_{1}^{*}\right)$. Set $H_{1}=H_{0}^{\delta}$. Then $N_{H_{1}}\left(S_{1}^{*}\right)>C_{H_{1}}^{\prime}\left(S_{1}^{*}\right)$, $N_{H_{1}}\left(S_{0}^{*}\right)=C_{H_{1}}^{\prime}\left(S_{0}^{*}\right), H_{1} \geqq S^{*} U_{1}$, and S^{*} is a Sylow 2-subgroup of H_{1}. Thus by Lemma 14 it follows that $O\left(H_{0}\right)=O\left(H_{1}\right)$. Set $H=N\left(O\left(H_{0}\right)\right)$; then H contains H_{0} and H_{1}. Since $N_{H}\left(S_{i}^{*}\right)>C_{H}^{\prime}\left(S_{i}^{*}\right) i=0$, 1 , we conclude as above that $H^{*}=N(H)$ is in \mathfrak{C}_{0} and contains T, contradicting the maximal choice of H_{0}.

Thus $S^{*}=S$. If $N_{H_{0}}\left(S_{1}\right)>C_{H_{0}}^{\prime}\left(S_{1}\right)$, the proposition follows with $H=H_{0}$. Hence we may assume that $N_{H_{0}}\left(S_{1}\right)=C_{H_{0}}^{\prime}\left(S_{1}\right)$.

By symmetry we define a class \mathfrak{C}_{1} of proper subgroups of G. Since $E_{1} \neq 1$, we may show by an entirely analogous argument that there exists a subgroup H_{1} of G containing $S U_{1}$ and such that $N_{H_{1}}\left(S_{1}\right)>C_{H_{1}}^{\prime}\left(S_{1}\right)$. If $N_{H_{1}}\left(S_{0}\right)>$ $C_{H_{1}}^{\prime}\left(S_{0}\right)$, the proposition follows once again with $H_{1}=H$. Thus we may assume that $N_{H_{1}}\left(S_{0}\right)=C_{H_{1}}^{\prime}\left(S_{0}\right)$. The conditions of Lemma 14 are again satisfied, whence $O\left(H_{0}\right)=O\left(H_{1}\right)$. The proposition thus follows as above with $H=N\left(O\left(H_{0}\right)\right)$.

9. Maximal S_{0}-invariant p-subgroups of G in Cases II and III

In the next two sections, we shall assume that $E=E_{0}=1$. Thus $C\left(S_{0}\right)=S_{0}$, and $N\left(S_{0}\right)$ is isomorphic to A_{4} or S_{4}. Furthermore, τ_{2} inverts U_{1} and, by Lemma $12, \alpha^{2}$ centralizes U_{1}. We construct in this section, for each prime p dividing $\left|W_{1}\right|$, an $N\left(S_{0}\right)$-invariant p-group in G which contains the Sylow p-subgroup of U_{1}. To begin this construction we prove the following lemma.

Lemma 16. Let $\lambda \in U_{1}$. Then either $H=C^{*}(\lambda)$ has a normal 2-complement, or $\lambda \in E_{1}$ and H satisfies the conditions of Lemma 13 with $i=1$ and $S^{*}=S$.

Proof. If $\lambda \in U_{1}^{\prime}, C^{*}(\lambda)$ has a normal 2-complement by virtue of $\S 6$. If $\lambda \in U_{1}-E_{1}-U_{1}^{\prime}$, a Sylow 2 -subgroup S^{\prime} of H is generated by τ_{2} and α^{2}. As representatives of the two conjugate classes of four-groups in S^{\prime}, we may take S_{0} and $S_{1}^{\prime}=\left\{\tau_{1}, \tau_{2} \alpha^{2}\right\}$. But S_{0} and S_{1}^{\prime} are conjugate in G; hence $N_{H}\left(S_{1}^{\prime}\right)=C_{H}^{\prime}\left(S_{1}^{\prime}\right)$. Thus H has a normal 2 -complement by Lemma 11.

Finally take $\lambda \in E_{1}$. Since B centralizes $U_{1}, S U_{1}$ is contained in H. If $\rho_{0} \in N\left(S_{0}\right)-C^{\prime}\left(S_{0}\right), \lambda^{\rho_{0}} \notin U_{1}$ since $C\left(S_{0}\right)=S_{0}$. Thus $N_{H}\left(S_{0}\right)=C_{H}^{\prime}\left(S_{0}\right)$. If $N_{H}\left(S_{1}\right)=C_{H}^{\prime}\left(S_{1}\right)$, again H has a normal 2-complement. If this is not the case, H satisfies the conditions of Lemma 13 with $i=1$ and $S^{*}=S$. The lemma is proved.

Suppose that G contains a subgroup H satisfying the conditions of Lemma 13 with $i=1$ and $S^{*}=S$. Let P be an S-invariant Sylow p-subgroup of $O(H)$; then P satisfies (16) and (17). Assume further that $P_{1}^{\prime} \neq 1$, in which case P_{1} is a Sylow p-subgroup of U_{1} by Lemma 13(iii). By the remark in $\S 7, P$ is a maximal S-invariant p-subgroup of H; but it need not be a maximal S_{0}-invariant subgroup when $S>S_{0}$. In fact, set $\bar{H}=H / O(H)$, and let \bar{M} and $\bar{\sigma}$ be the images of a subgroup M and an element σ of H in \bar{H}. By Lemma 11(ii), \bar{H} is isomorphic to $P G L(2, q)$. Since $N_{\bar{H}}\left(\bar{S}_{0}\right)=C_{\bar{H}}^{\prime}\left(\bar{S}_{0}\right)$, the involution $\bar{\tau}_{2}$ of \bar{S}_{0} lies outside the normal subgroup of \bar{H} which is isomorphic to $\operatorname{PSL}(2, q)$. Then by $\S 4(\mathrm{~B}),\left|C_{\bar{H}}\left(\bar{\tau}_{2}\right)\right|=2(q+\delta)$ and $\left|C_{\bar{H}}\left(\bar{\tau}_{1}\right)\right|=2(q-\delta)$ where $\delta= \pm 1$ and $\delta \equiv q(\bmod 4)$. Hence if p divides $q+\delta$, it is possible to form a maximal S_{0}-invariant subgroup $P^{(2)}>P$ in the S_{0}-invariant subgroup $C_{H}\left(\tau_{2}\right) O(H)$, which is the inverse image of $C_{\bar{H}}\left(\bar{\tau}_{2}\right)$ in H by virtue of Lemma 5. By the Frattini argument, $K=C_{H}\left(\tau_{2}\right) O(H)=$ $N_{K}(P) O(H)$. Hence $P^{(2)}$ has the form $P_{2}^{*} P$ where P_{2}^{*} is the Sylow p-subgroup of $C_{H}\left(\tau_{2}\right)$. In a similar manner we may form $P^{(3)}=P_{3}^{*} P$ where P_{3}^{*} is the Sylow p-subgroup of $C_{H}\left(\tau_{3}\right)$. We are now in a position to complete the proof of the following lemma.

Lemma 17. Let p be a prime dividing $\left|W_{1}\right|$. Let $\lambda \neq 1$ be in U_{1}, and set $H=C^{*}(\lambda)$. Then H contains two S_{0}-invariant p-subgroups $P^{(2)}$ and $P^{(3)}$ with S_{0}-decompositions

$$
\begin{equation*}
P^{(2)}=P_{1} P_{2}^{*} P_{3}^{* *} \quad \text { and } \quad P^{(3)}=P_{1} P_{2}^{* *} P_{3}^{*} \tag{23}
\end{equation*}
$$

where P_{1} is the Sylow p-subgroup of U_{1}, and P_{μ}^{*} is the Sylow p-subgroup of $C_{H}\left(\tau_{\mu}\right), \mu=2,3$. Furthermore, if λ is in the center of an S_{0}-invariant p-subgroup Q, then Q is contained in either $P^{(2)}$ or $P^{(3)}$.

Proof. If H has a normal 2-complement, then $O(H)$ contains a unique S_{0}-invariant Sylow p-subgroup P^{*}, by the remark in $\S 7$. Hence (23) holds with $P^{(2)}=P^{(3)}=P^{*}$. If $\lambda \in Z(Q)$, then $Q \leqq O(H)$ and $Q \leqq P$.

Thus, by virtue of Lemma 16, we may suppose that H satisfies the conditions of Lemma 13 with $i=1$ and $S^{*}=S$. By Lemma 13(iv), $O(H) \cap U_{1}=$ X_{1}; hence $O(H) \geqq W_{1}$. Since p divides $\left|W_{1}\right|, P>E_{1}(p)$. Then by Lemma 13(iii), $P \cap U_{1}=P_{1}$ is the Sylow p-subgroup of U_{1}. Thus the existence of $P^{(2)}$ and $P^{(3)}$ with the decompositions (23) follows from our preceding discussion.

To prove the final statement of the lemma, note first that $Q \leqq H$. Let $Q=Q_{1} Q_{2} Q_{3}$ be the S_{0}-decomposition of Q, and let $\bar{Q}=\bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{3}=\bar{Q}_{2} \bar{Q}_{3}$ be the image of Q in $H / O(H)$. Then $\bar{Q}_{\mu} \leqq C_{\bar{H}}\left(\bar{\tau}_{\mu}\right), \mu=2,3$, and $\bar{\tau}_{2}$ and $\bar{\tau}_{3}$ are not conjugate to $\bar{\tau}_{1}$ in \bar{H}. Since \bar{H} is isomorphic to $\operatorname{PGL}(2, q)$, it follows from $\S 4(\mathrm{~B})$ that $O\left(C_{\bar{H}}\left(\bar{\tau}_{\mu}\right)\right)$ is cyclic and its Sylow subgroups are Sylow subgroups of \bar{H}. But $\bar{Q}_{2} \cap \bar{Q}_{3}=1$. Hence \bar{Q} can be a p-group only if $\bar{Q}_{2}=1$ or $\bar{Q}_{3}=1$. If $\bar{Q}_{\mu}=1$, then $\bar{P}_{\nu}^{*} \geqq \bar{Q}, \nu \neq \mu$, and $P^{(\nu)} \geqq Q$.

Lemma 18. Let p be a prime dividing $\left|W_{1}\right|$. Then G contains an $S_{0}-$ invariant p-subgroup P with the S_{0}-decomposition

$$
\begin{equation*}
P=P_{1} P_{2} P_{3}^{\prime} \quad \text { or } \quad P=P_{1} P_{2}^{\prime} P_{3} \tag{24}
\end{equation*}
$$

where $P_{\mu}, \mu=1,2,3$, is a Sylow p-subgroup of $U_{\mu}, \mu=1,2,3$, and $P_{\nu}^{\prime} \leqq P_{\nu}$, $\nu=2,3$. Either P is $N\left(S_{0}\right)$-invariant, or P is a Sylow p-subgroup of G and S_{0} is a Sylow 2-subgroup of $N(P)$.

Proof. Because of the definition of W_{1}, there exists an element $\sigma_{1} \neq 1$ in $P_{1} \cap W_{1}$ for which $C\left(\sigma_{1}\right)$ is not contained in $C\left(\tau_{1}\right)$. Since $W_{1} \leqq U_{1}^{\prime}$, $C^{*}\left(\sigma_{1}\right)$ has a normal 2-complement M with S_{0}-decomposition $M=M_{1} M_{2} M_{3}$. By the condition on $\sigma_{1}, M_{1}=U_{1}$ and $M>M_{1}$. Thus there exists an element λ_{3} in, say, M_{3}. If $\lambda_{1}=\lambda_{3}^{\rho_{0}}$, where $\rho_{0} \in N\left(S_{0}\right)-C^{\prime}\left(S_{0}\right)$, then $C^{*}\left(\lambda_{1}\right)$ contains the p-element $\sigma_{2}=\sigma_{1}^{\rho_{0}} \in M_{2}$. Furthermore, $\sigma_{2} \in U_{1}$.

By Lemma $17, H=C^{*}\left(\lambda_{1}\right)$ contains an S_{0}-invariant subgroup Q with S_{0}-decomposition $Q=P_{1} Q_{2} Q_{3}$, where Q_{2} is the Sylow p-subgroup of $U_{2} \cap H$. Hence $\sigma_{2} \in Q_{2}$. Then by Lemma 7 , there exists an η in Q_{2} or Q_{3} such that $C(\eta) \geqq P_{1}$. If correspondingly $\eta_{1}=\eta^{\rho_{0}-1}$ or $\eta_{1}=\eta^{\rho_{0}}$, it follows that $H^{*}=C^{*}\left(\eta_{1}\right)$ contains P_{1} and either P_{3} or P_{2}. Thus by Lemma $17, H^{*}$ contains an S_{0}-invariant p-group P^{*} with S_{0}-decomposition given by one of the two relations in (24). Finally let P be a maximal S_{0}-invariant p-group of G containing P^{*}. Then P also has an S_{0}-decomposition given by (24).

If $P=P_{1} P_{2} P_{3}$, then clearly $P^{\rho_{0}}=P$, and P is $N\left(S_{0}\right)$-invariant. Suppose then that, say, $P_{3}^{\prime}<P_{3}$. Then P is not ρ_{0}-invariant, and hence if $K=N(P), N_{K}\left(S_{0}\right)=C_{K}^{\prime}\left(S_{0}\right)$. Let T be a Sylow 2 -subgroup of K. Since T is dihedral, we can assume $S_{0} \leqq T$. Suppose $T>S_{0}$. Then there exists an element γ^{\prime} of order 4 in $T \leqq N_{K}\left(S_{0}\right)$. Hence $P_{3}=P_{2}^{\gamma^{\prime}}=P_{3}^{\prime}$, which is contrary to our assumption. Therefore, $T=S_{0}$; and Burnside's theorem implies that K has a normal 2 -complement $O(K)$. By the maximal choice of P, P must be a Sylow p-subgroup of $O(K)$ and hence of K. Thus P is a Sylow p-subgroup of G, as required.

Lemma 19. Let p be a prime dividing $\left|W_{1}\right|$. Then G contains an $N\left(S_{0}\right)$ invariant p-group P with S_{0}-decomposition

$$
\begin{equation*}
P=P_{1} P_{2} P_{3} \tag{25}
\end{equation*}
$$

where P_{μ} is the Sylow p-subgroup of $U_{\mu}, \mu=1,2,3$.
Proof. We argue by contradiction. By the preceding lemma, we may assume G contains an S_{0}-invariant Sylow p-subgroup P of G with S_{0}-decomposition $P=P_{1} P_{2} P_{3}^{\prime}$, where $P_{3}^{\prime}<P_{3}$. Using Lemma 7, we can find an element λ_{2} in, say, P_{2} which centralizes P_{1}, and in particular commutes with $\lambda_{1}=$ $\lambda_{2}^{\rho_{0}-1}$. Then λ_{2} and $\lambda_{3}=\lambda_{2}^{\rho_{0}}$ commute, as do λ_{2} and λ_{1}. It follows that $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ is a nontrivial $N\left(S_{0}\right)$-invariant p-subgroup of G. Define Q as the maximal $N\left(S_{0}\right)$-invariant p-subgroup of G, and let it have the S_{0}-decomposition

$$
\begin{equation*}
Q=Q_{1} Q_{2} Q_{3} \tag{26}
\end{equation*}
$$

where $Q_{\mu} \leqq P_{\mu}, \mu=1,2,3, Q_{2}=Q_{1}^{\rho_{0}}, Q_{3}=Q_{2}^{\rho_{0}}$. If any $Q_{\mu}=P_{\mu}$ then $Q>P^{\prime}$ which contradicts the fact that P is a Sylow p-subgroup of G. Thus $Q_{\mu}<P_{\mu}$, $\mu=1,2,3$.

The center $Z(Q)$ is also $N\left(S_{0}\right)$-invariant and has an S_{0}-decomposition of the form

$$
\begin{equation*}
Z(Q)=Z_{1} Z_{2} Z_{3} \tag{27}
\end{equation*}
$$

where $Z_{2}=Z_{1}^{\rho_{0}}, Z_{3}=Z_{2}^{\rho_{0}}$. Hence $Z_{\mu} \neq 1, \mu=1,2,3$. Let $\lambda \neq 1$ be in Z_{1}, and consider $H=C^{*}(\lambda)$. By Lemma $17, H$ contains an S_{0}-invariant p-group Q^{*} with S_{0}-decomposition

$$
\begin{equation*}
Q^{*}=P_{1} Q_{2}^{*} Q_{3}^{*} \tag{28}
\end{equation*}
$$

where $Q^{*} \geqq Q$, since $\lambda \in Z(Q)$. Since $P_{1}>Q_{1}, Q^{*}>Q$.
Thus we can consider a maximal S_{0}-invariant p-subgroup of G such that $R \geqq Q^{*}>Q$. We claim that R is also a Sylow subgroup of G. Indeed, let $K=N(R)$, and let $T \geqq S_{0}$ be a Sylow 2 -subgroup of K. If $T=S_{0}$, then by the maximal choice of $Q, N_{K}\left(S_{0}\right)=C_{K}\left(S_{0}\right)$. Hence Burnside's theorem implies $O(K)$ is a normal 2-complement. By Lemma 3, R is a Sylow subgroup of $O(K)$ and hence of G.

Hence suppose that $T>S_{0}$. Then T has two classes of four-groups, represented by S_{0} and S_{1}^{*}. If T is not a Sylow subgroup of G, there exists an element δ in $N(T)$ such that $S_{0}^{\delta}=S_{1}^{*}$. Then $N_{K}\left(S_{0}\right)=C_{K}^{\prime}\left(S_{0}\right)$ implies $N_{K}\left(S_{1}^{*}\right)=C^{\prime}\left(S_{1}^{*}\right)$. Hence by Lemma 11, K has a normal 2-complement $O(K)$. Again R is a Sylow subgroup of G in this case. Thus we may, after a conjugation, if necessary, suppose that $T=S$ and $N_{K}\left(S_{1}\right)>C_{K}^{\prime}\left(S_{1}\right)$, where now $S_{1}^{*}=S_{1}$.

If $R=P_{1} R_{2} R_{3}$ is the S_{0}-decomposition of $R, R_{2} \neq P_{2}$ and $R_{3} \neq P_{3}$; for otherwise, the fact that $R_{2}=R_{3}^{\gamma}$ and $R_{3}=R_{2}^{\gamma}$ would imply that $R=P_{1} P_{2} P_{3}$.

By Lemma 6, R has the S_{1}-decomposition

$$
\begin{equation*}
R=E_{1}(p) \times R_{1}^{\prime} R_{2}^{\prime} R_{3}^{\prime} \tag{29}
\end{equation*}
$$

where $E_{1}(p) \times R_{1}^{\prime}=P_{1}$ and, for some $\rho_{1} \in N_{K}\left(S_{1}\right)-C_{K}^{\prime}\left(S_{1}\right), R_{1}^{\prime \rho_{1}}=R_{2}^{\prime}$, $R_{2}^{\prime \rho_{1}}=R_{3}^{\prime}$. Now $Z(R)$ also has an S_{1}-decomposition

$$
\begin{equation*}
Z(R)=E_{1}(p) \times Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} \tag{30}
\end{equation*}
$$

where again $Z_{1}^{\prime \rho_{1}}=Z_{2}^{\prime}, Z_{2}^{\prime \rho_{1}}=Z_{3}^{\prime}$, and $Z_{\mu}^{\prime} \neq 1, \mu=1,2,3$. On the other hand, $Z(R)$ has an S_{0}-decomposition

$$
Z(R)=Z_{1} Z_{2} Z_{3}
$$

Here $Z_{1}=E_{1}(p) \times Z_{1}^{\prime}$. Since $Z_{2}^{\prime} Z_{3}^{\prime} \neq 1, Z_{2} Z_{3} \neq 1$.
Thus there exists $\lambda \neq 1$ in $Z_{\mu}, \mu=2$ or 3 . Now both R and Z_{μ} are contained in $H=C^{*}(\lambda)$. Applying Lemma 17 to H (actually to $H^{\rho_{0}}$ or $H^{\rho_{0}{ }^{2}}$ since $\lambda \epsilon U_{2}$ or U_{3}), we obtain a maximal S_{0}-invariant p-subgroup R^{*} of H such that $R^{*} \geqq R$ and $R^{*}>P_{2}$. But $R_{2}<P_{2}$, and hence $R^{*}>R$. This contradicts the maximal choice of R and shows that R must, in fact, be a Sylow p-subgroup of G.

To conclude the proof, note that $R^{\sigma}=P$ for some $\sigma \in G$. By Lemma 18, S_{0} is a Sylow 2 -subgroup of $N(P)$. Hence S_{0} is also a Sylow 2 -group of $N(R)$. This implies that S_{0}^{σ} is a Sylow subgroup of $N(P)$. Thus there exists $\eta \in N(P)$ so that $R^{\sigma \eta}=P$ and $\sigma \eta \in N\left(S_{0}\right)$. Since Q is $N\left(S_{0}\right)$-invariant, we obtain that $Q=Q^{\sigma \eta} \leqq P$. Furthermore, $Q_{3}=P_{3}^{\prime}$; in fact, P_{3}^{\prime} generates with $P_{3}^{\prime \rho_{0}}$ and $P_{3}^{\prime \rho_{0} 2}$ an $N\left(S_{0}\right)$-invariant subgroup X of P. Thus $Q \geqq X$, and comparing components we obtain $P_{3}^{\prime} \geqq Q_{3} \geqq P_{3}^{\prime}$. Thus $Q=X$.

Next form $N=N(Q)$. As $Q<P, N \cap P>Q$. Set $\bar{N}=N / Q$, and let \bar{P} be the image of $N \cap P$ in $\bar{N} ; \bar{P}$ is then \bar{S}_{0}-invariant. Since $P_{3}^{\prime} \leqq Q$, $\bar{P} \cap C_{\bar{N}}\left(\bar{\tau}_{3}\right)=1$ by Lemma 5 . Hence $\bar{\tau}_{3}$ inverts \bar{P}, and so \bar{P} is abelian. Thus $\bar{P}=\bar{P}_{1} \times \bar{P}_{2}$, where $\bar{P}_{\mu}=C_{\bar{P}}\left(\bar{\tau}_{\mu}\right), \mu=1,2$. We may assume that $\bar{P}_{1} \neq 1$. Then there exists x_{1} in, say, P_{1} which normalizes Q but is not in Q. Then $x_{2}=x_{1}^{\rho 0}$ normalizes Q and is in P_{2}. Thus the images \bar{x}_{1} and \bar{x}_{2} in \bar{N} of x_{1} and x_{2}, respectively, commute. Set $x_{3}=x_{2}^{\rho 0}$. Then $x_{3} \in N$, and \bar{x}_{2} and \bar{x}_{3} commute as well as \bar{x}_{3} and \bar{x}_{1}. Hence $\left\{x_{1}, x_{2}, x_{3}, Q\right\}$ is a larger $N\left(S_{0}\right)$ invariant p-subgroup than Q. This is a contradiction. Hence $P_{3}^{\prime}=P_{3}$, and we have $P=P_{1} P_{2} P_{3}$. This proves the lemma.

10. The structure of G, Cases II and III

We assume $E=E_{0}=1$ in this section.
Lemma 20. Let p be a prime dividing $\left|W_{1}\right|$. Then $E_{1}(p)=1$. Thus $\left(\left|E_{1}\right|,\left|W_{1}\right|\right)=1$.

Proof. Suppose that $E_{1}(p) \neq 1$. Then $S>S_{0}$. Let $H=N\left(E_{1}(p)\right)$. Since $E_{0}=1, B$ centralizes U_{1}, and so $S \leqq H$. Furthermore, Lemma 13
applies to H with $i=1$. Hence an S-invariant Sylow p-subgroup Q of $O(H)$ has the S_{1}-decomposition

$$
\begin{equation*}
Q=E_{1}(p) \times Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime} \tag{31}
\end{equation*}
$$

where $E_{1}(p) \times Q_{1}^{\prime}=P_{1}$ is the Sylow p-subgroup of U_{1} and $Q_{1}^{\prime}=P_{1} \cap W_{1}$. Thus $Q=P_{1} Q_{2}^{\prime} Q_{3}^{\prime}$. Furthermore, Q is a maximal S-invariant p-subgroup of G by the remark in $\S 7$.

Let P be the maximal $N\left(S_{0}\right)$-invariant p-subgroup of G, constructed in Lemma 19 and having the S_{0}-decomposition (25). On the other hand, Q has an S_{0}-decomposition $Q=P_{1} P_{2}^{\prime} P_{3}^{\prime}$. Here $P_{\mu}^{\prime} \leqq P_{\mu}, \mu=2,3$, and consequently $Q \leqq P$. Now using (17), we have $\left|Q: P_{1}\right|=\left|Q_{2}^{\prime} Q_{3}^{\prime}\right|=\left|Q_{1}^{\prime}\right|^{2}=$ $\left|P_{2}^{\prime} P_{3}^{\prime}\right|$. Thus $\left|P_{2}^{\prime} P_{3}^{\prime}\right|<\left|P_{2} P_{3}\right|$, and so $Q<P$ and Q is not $N\left(S_{0}\right)-$ invariant.

If $K=N(Q), K$ contains S and $N_{K}\left(S_{1}\right)>C_{K}^{\prime}\left(S_{1}\right)$. Since Q is $\operatorname{not} N\left(S_{0}\right)-$ invariant, $N_{K}\left(S_{0}\right)=C_{K}^{\prime}\left(S_{0}\right)$, and it follows from Lemma 11(ii) that $\bar{K}=K / O(K)$ is isomorphic to $P G L(2, q), q$ odd. Since $O(K)$ contains a unique S-invariant Sylow p-subgroup, this must be Q by the maximal nature of Q.

On the other hand, $K \cap P>Q$ as $P>Q$. Let $\bar{P}=\bar{P}_{1} \bar{P}_{2} \bar{P}_{3}$ be the image of $K \cap P$ in $\bar{K}=K / O(K)$. Since $P_{1}<Q, \bar{P}=\bar{P}_{2} \bar{P}_{3}$. But \bar{P}_{2} and \bar{P}_{3} are contained in distinct cyclic Sylow subgroups of \bar{K} and hence generate a p-group only if $\bar{P}_{2}=1$ or $\bar{P}_{3}=1$. Thus $K \cap P_{2}$ or $K \cap P_{3}$ is contained in $O(K)$. Since $\left(K \cap P_{2}\right)^{\gamma}=K \cap P_{3}$ and $O(K)$ is S-invariant, both $K \cap P_{2}$ and $K \cap P_{3}$, and consequently $K \cap P$, are contained in $O(K)$. Thus $K \cap P=Q$, which is a contradiction.

Lemma 21. For each prime p dividing $\left|W_{1}\right|$, let P be the $N\left(S_{0}\right)$-invariant p-subgroup of G constructed in Lemma 19. Then $N(P)$ contains S, V_{1}, and $N\left(S_{1}\right)$.

Proof. The center $Z(P)$ has the S_{0}-decomposition $Z(P)=Z_{1} Z_{2} Z_{3}$, where each $Z_{\mu} \neq 1$. Let $\lambda \in Z_{1}$. Since $E_{1}(p)=1$ by Lemma $20, \lambda \epsilon U_{1}^{\prime}$; hence $M=C^{*}(\lambda)$ has a normal 2-complement. Since both S and P are contained in M, it follows at once that P is S-invariant.

Let π be the set of primes dividing $\left|V_{1}\right|$. Then $E_{1}=F_{1} \times F_{1}^{\prime}$, where F_{1} is the Hall π-subgroup of E_{1} and F_{1}^{\prime} is the complementary subgroup. Thus $V_{1} \times F_{1}$ is a Hall π-subgroup of U_{1} since V_{1} is, by definition, a Hall π-subgroup of U_{1}^{\prime}. Let $q \in \pi$, and let Q_{1} be the Sylow q-subgroup of U_{1}. Let Q be the S-invariant Sylow q-subgroup of $O(M)$. Since $U_{1} \leqq O(M)$, $Q \geqq Q_{1}$. If $Q>Q_{1}$, it follows from Lemma 7 that there exists a nontrivial element in $Q \cap U_{2}$, say, which centralizes Q_{1}, and, in particular, $Q_{1} \cap V_{1}$. This contradicts the definition of V_{1} and shows that $V_{1} F_{1}$ is an abelian Hall subgroup of $O(M)$.

Let $Y=N_{O(M)}\left(V_{1} F_{1}\right)$, and let $Y=Y_{1} Y_{2} Y_{3}$ be the S_{0}-decomposition of Y. Clearly Y_{1} centralizes $V_{1} F_{1}$. Let $\lambda \in V_{1} F_{1}$ and $\sigma \epsilon Y_{\mu}, \mu=2$ or 3.

Then $\lambda^{\sigma} \epsilon V_{1} F_{1} \leqq U_{1}$, whence $\lambda^{\sigma}=\lambda^{\sigma \tau_{1}}=\lambda^{\tau_{1} \sigma^{-1}}=\lambda^{\sigma^{-1}}$. Thus $\lambda^{\sigma^{2}}=\lambda$. Since σ has odd order, it follows that σ commutes with λ and that $V_{1} F_{1}$ is in the center of its normalizer in $O(M)$. Since $V_{1} F_{1}$ is an abelian Hall subgroup of $O(M)$, Burnside's theorem implies that $V_{1} F_{1}$ has a normal complement M_{0} in $O(M) \quad$ By Lemma 1, M_{0} contains an $S V_{1} F_{1}$-invariant Sylow p-subgroup, and this must be P, since P is the unique S-invariant Sylow p-subgroup of $O(M)$. Thus $V_{1} \leqq V_{1} F_{1} \leqq N(P)$.

Suppose next that $E_{1} \neq 1$. Then $H=N\left(E_{1}\right)<G$. Since $N_{H}\left(S_{0}\right)=$ $C_{H}\left(S_{0}\right)$ and $N_{H}\left(S_{1}\right)>C_{H}^{\prime}\left(S_{1}\right)$, we may apply Lemma 13 to H. It follows from parts (iii) and (iv) of that lemma and from Lemma 19 that P is the S-invariant Sylow p-subgroup of $O(H)$. Since $H=O(H) K$, where $K=N_{H}(P), N_{K}\left(S_{1}\right)>C_{K}^{\prime}\left(S_{1}\right)$. Let $\rho_{1} \in N_{K}\left(S_{1}\right)-C_{K}^{\prime}\left(S_{1}\right)$, and let P have the S_{1}-decomposition $P=P_{1} P_{2}^{\prime} P_{3}^{\prime}$. Now $E_{1} \leqq U_{1} \leqq C\left(P_{1}\right)$. We have $E_{1}=E_{1}^{\rho_{1}} \leqq C\left(P_{1}^{\rho_{1}}\right)=C\left(P_{2}^{\prime}\right)$, and similarly $E_{1} \leqq C\left(P_{3}^{\prime}\right)$. Thus $E_{1} \leqq C(P)$. Since $N\left(S_{1}\right)=\left\{\rho_{1}, C^{\prime}\left(S_{1}\right)\right\}, N\left(S_{1}\right) \leqq N(P)$, which proves the lemma in this case.

Assume finally that $E_{1}=1$. Then $C\left(S_{1}\right)=S_{1}$, and $N\left(S_{1}\right)=\left\{\rho_{1}, C^{\prime}\left(S_{1}\right)\right\}$, where ρ_{1} has order 3 . Since P is S-invariant, it has an S_{1}-decomposition $P=P_{1} P_{2}^{\prime} P_{3}^{\prime}$, where P_{μ}^{\prime} is contained in the Sylow p-subgroup of $C\left(\tau_{\mu} \alpha\right)$, $\mu=2,3$. Since G has only one class of involutions, these Sylow p-subgroups are conjugate to P_{1}. Since $|P|=\left|P_{1}\right|^{3}$, we musthave $\left|P_{1}\right|=\left|P_{2}^{\prime}\right|=\left|P_{3}^{\prime}\right|$, and hence P_{μ}^{\prime} is the Sylow p-subgroup of $C\left(\tau_{\mu} \alpha\right), \mu=2,3$. But then $P_{1}^{\rho_{1}}=P_{2}^{\prime}, P_{2}^{\prime \rho_{1}}=P_{3}^{\prime}$, and $P_{3}^{\prime \rho_{1}}=P_{1}$. Thus $P^{\rho_{1}}=P$, and $N\left(S_{1}\right) \leqq$ $N\left(P_{1}\right)$. The lemma is proved.

Proposition 22. Case II. If $W_{1} \neq 1$, there exists a proper subgroup of G containing $C\left(\tau_{1}\right)$ and having no normal subgroups of index 2.

Proof. Let $H=N\left(E_{1}\right)$. Since $E_{1} \neq 1, H<G$. For each prime p dividing $\left|W_{1}\right|$, let P be the $N\left(S_{0}\right)$-invariant p-subgroup constructed in Lemma 19. It follows from Lemma 13 and Lemma 19 that $P \leqq O(H)$. Let K be the subgroup of $O(H)$ generated by the subgroups P for all the primes p dividing $\left|W_{1}\right|$. Then $K \leqq O(H)<G$. By Lemma 21, S, V_{1}, $E_{1}, N\left(S_{0}\right)$, and $N\left(S_{1}\right)$ all are contained in $N(K)$. Hence Lemma 11 implies that $N(K)$ has no normal subgroups of index 2 . Thus $N(K)$ satisfies the requirements of this proposition.

Proposition 23. Case III. For each prime p dividing $\left|W_{1}\right|$, there exists an S-invariant p-subgroup P of G of order $\left|P_{1}\right|^{3}$, where P_{1} is the Sylow p-subgroup of $C\left(\tau_{1}\right)$. If $H=N(P), H$ contains S and V_{1} and has no normal subgroups of index 2. Furthermore, $H / O(H)$ is isomorphic to $\operatorname{PSL}(2, q), q$ odd, and either q is determined independently of p, or $S=S_{0}$ and $V_{1}=1$, in which case $q=3$ or 5 .

Proof. Let P be the $N\left(S_{0}\right)$-invariant p-subgroup of G which was constructed in Lemma 19. The first assertion has been proved in Lemma 19,
and the second in Lemma 21. By Lemma 11, H is isomorphic to $P S L\left(2, q_{p}\right)$ or to A_{7}. As $E_{0}=E_{1}=1, H$ cannot be isomorphic to A_{7}. Thus it remains only to show that q_{p} is independent of p.

We first claim that $U_{1} \cap O(H)=W_{1} \cap H$. Indeed, if R_{1}^{\prime} is a Sylow r-subgroup of $U_{1} \cap H, R_{1}^{\prime}, R_{2}^{\prime}=R_{1}^{\prime \rho_{0}}$, and $R_{3}^{\prime}=R_{2}^{\prime \rho_{0}}$ normalize P, where $\rho_{0} \in N\left(S_{0}\right)-C^{\prime}\left(S_{0}\right)$. If r divides $\left|W_{1}\right|, R_{\mu}^{\prime} \leqq R$, the unique maximal $N\left(S_{0}\right)$-invariant r-subgroup of G constructed in Lemma 19. Hence

$$
R^{\prime}=\left\{R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}\right\}
$$

is an r-group, and $R^{\prime}>R_{1}^{\prime}$. By the usual argument, the image of R^{\prime} in \bar{H} must be the identity. Hence $R^{\prime} \leqq O(H)$. Thus $U_{1} \cap O(H) \geqq W_{1} \cap H$.

Since ρ_{0} normalizes $O(H), O(H)$ admits the S_{0}-decomposition

$$
O(H)=K_{1} K_{2} K_{3}
$$

where $K_{2}=K_{1}^{\rho_{0}}$ and $K_{3}=K_{2}^{\rho_{0}}$. Hence for any prime r dividing $\left|O(H) \cap V_{1}\right|$, the unique S_{0}-invariant Sylow r-subgroup R of $O(H)$ has the S_{0}-decomposition $R=R_{1} R_{2} R_{3}$ where R_{μ} is the Sylow r-subgroup of K_{μ}; and, consequently, $R_{\mu} \neq 1, \mu=1,2,3$. But then by Lemma $7, C\left(R_{1}\right)$ contains a nontrivial element of R_{2} or R_{3}; this contradicts the definition of V_{1}. Thus $U_{1} \cap O(H)=W_{1} \cap H$.

It follows that in $\bar{H}=H / O(H), C_{\bar{H}}\left(\bar{\tau}_{1}\right)=\bar{S}_{1} \bar{V}_{1}$ is isomorphic to $S V_{1}$. From §4(A), it follows that

$$
|\bar{H}|=\frac{1}{2} q_{p}\left(q_{p}+1\right)\left(q_{p}-1\right)
$$

where $q_{p}=2^{a+1} v+\varepsilon_{p}, \varepsilon_{p}= \pm 1$, and $v=\left|V_{1}\right|$.
Let $M=\left\{S, V_{1}, N\left(S_{0}\right), N\left(S_{1}\right)\right\}$. Then $M \leqq H$ and by Lemma 11 has no normal subgroups of index 2. Hence $\bar{M}=M / O(M)$ is isomorphic to $\operatorname{PSL}(2, q), q$ is odd (A_{7} is not allowed as $E_{0}=E_{1}=1$). Certainly $M \cap O(H) \leqq M \cap O(M)$; hence $|\bar{M}|$ divides $|\bar{H}|$. As above, $C_{\bar{M}}\left(\bar{\tau}_{1}\right)$ is isomorphic to $S V_{1}$. Hence $|\bar{M}|=\frac{1}{2} q(q+1)(q-1)$, where $q=2^{a+1} v+\varepsilon$, $\varepsilon= \pm 1$. If $\varepsilon \neq \varepsilon_{p}$, we must have $\varepsilon_{p}=1$ and $\varepsilon=-1$ since $|\bar{M}| \leqq|\bar{H}|$. But then $q_{p}=q+2$, and $(q+3)(q+2)(q+1) /(q+1) q(q-1)$ must be an integer. This implies that q divides 6 . Since q is odd, the only solution is $q=3$, in which case \bar{M} is isomorphic to $\operatorname{PSL}(2,3)$, and \bar{H} to $\operatorname{PSL}(2,5)$. In this case $S=S_{0}$ and $V_{1}=1$. For every other choice of $q,|\bar{M}|=|\bar{H}|$ and $q_{p}=q$. Since M is determined independently of the choice of p, the proof is complete.

Corollary 24. Case III with $W_{1} \neq 1$. Set $\left|V_{1}\right|=v,\left|W_{1}\right|=w$, and $q=2^{a+1} v+\varepsilon$, where $\varepsilon= \pm 1$. When $V_{1}>1$, or $S>S_{0}, g$ is divisible by $g_{1}=\frac{1}{2} q\left(q^{2}-1\right) w^{3}$ for suitable choice of ε. When $V_{1}=1$ and $S=S_{0}, g$ is divisible by $12 w^{3}$.

Proof. When $V_{1}>1$ or $S>S_{0}, \frac{1}{2} q_{p}\left(q_{p}^{2}-1\right) w_{p}^{3}$ divides g, where w_{p} is the highest power of a prime p dividing w. Since q_{p} is determined independently of p, we may set $q=q_{p}$ and easily obtain that g_{1} divides g.

When $V_{1}=1$ and $S=S_{0}$, the group \vec{H} constructed in the proof of Proposition 23 is isomorphic to $\operatorname{PSL}(2,3)$ or $\operatorname{PSL}(2,5)$. Hence $|\vec{H}|=12$ or 60 . The result now follows.

Remark. If for each p dividing $\left|W_{1}\right|$ the corresponding $N\left(S_{0}\right)$-invariant p-subgroups of G constructed in Lemma 19 were pairwise permutable, they would generate a group of odd order by a theorem of P. Hall [13, p. 144], and it would follow also in Case III with $W_{1} \neq 1$ that G possesses a proper subgroup $H=N(K)$ having no normal subgroups of index 2 and containing $C\left(\tau_{1}\right)$. Indeed, this would be the case if it were known that a group of odd order which admits the four-group as a fixed-point-free group of automorphisms is solvable. ${ }^{9}$

To see this, let p and q be two primes dividing $\left|W_{1}\right|$, and let P, Q be the corresponding $N\left(S_{0}\right)$-invariant subgroups. Then if $\sigma \epsilon Z(P) \cap U_{1}, C^{*}(\sigma)$ has a normal 2 -complement M containing P and U_{1}; and M would be solvable by the above proposition. But then M would contain a unique S_{0}-invariant Hall (p, q)-subgroup $P Q_{1}^{\prime}$, where $Q \cap U_{1} \leqq Q_{1}^{\prime} \leqq Q$, and it would follow that P is permutable with $Q_{1}^{\prime \rho_{0} i}$, where $\rho_{0} \in N\left(S_{0}\right)-C\left(S_{0}\right)$. Consequently P would be permutable with $Q=\left\{Q_{1}^{\prime}, Q_{1}^{\prime \rho_{0}}, Q_{1}^{\prime \rho_{0} 2}\right\}$.

Part III. Character Theory

11. General character theory

In this part, we treat the theory of exceptional characters. This theory has been developed principally by R. Brauer and M. Suzuki (cf. [2], [5], and [19]). Its object is to develop at least part of the character table of G. In our case we apply it to compute formulas for the order of G and to obtain certain congruences for the degrees of the irreducible characters of G. In the following sections, this will be done with just the assumption that G contains a dihedral Sylow 2 -subgroup and no normal subgroups of index 2 . We will also obtain slightly stronger results in particular cases when G is an L-group.

In this section, we will present a refinement of the technique of Suzuki [19] which was obtained by comparing his approach with that of Brauer in [5]. We summarize Suzuki's work omitting the proofs given there.

Let G be a finite group with a subgroup H. We say that a set of conjugate classes of H are special classes if the following two conditions are satisfied: (a) If x belongs to a special class, then $C_{G}(x) \leqq H$. (b) If x and y belong

[^3]to special classes and are conjugate in G, then they belong to the same class of H.

We will assume that H possesses a set of special classes; designate by D the elements of these classes. We let D^{G} be the set of elements of G which are conjugate to elements of D. Let M_{G} and M_{H} be the modules of generalized characters of G and H, respectively. Let $M_{H}(D)$ be the submodule of M_{H} which consists of those generalized characters which vanish outside of D. Let ξ^{*} be the (generalized) character of G that is induced by a character ξ of H, and let $M_{H}(D)^{*}$ be the submodule of M_{G} consisting of the character ξ^{*} where $\xi \in M_{H}(D)$.

The principal results about the characters of $M_{H}(D)$ are the following. It follows from the definition of the special classes that if $\xi \in M_{H}(D)$ and $\sigma \in D$,

$$
\begin{equation*}
\xi^{*}(\sigma)=\xi(\sigma) \tag{32}
\end{equation*}
$$

Set

$$
\begin{equation*}
\langle\xi, \eta\rangle_{H}=(1 / h) \sum_{\sigma \epsilon H} \xi(\sigma) \overline{\eta(\sigma)}, \quad\langle\xi, \eta\rangle_{G}=(1 / g) \sum_{\sigma \epsilon G} \xi(\sigma) \overline{\eta(\sigma)} \tag{33}
\end{equation*}
$$ where ξ and η are characters of H or G as the case may be and $g=|G|$ and $h=|H|$. The weight $w(\xi)$ of a character is the integer $\langle\xi, \xi\rangle_{\boldsymbol{H}}$ or $\langle\xi, \xi\rangle_{\boldsymbol{G}}$ as the case may be. If ξ and η are in $M_{H}(D)$,

$$
\begin{equation*}
\langle\xi, \eta\rangle_{H}=\left\langle\xi^{*}, \eta^{*}\right\rangle_{G} \tag{34}
\end{equation*}
$$

The rank of the module $M_{H}(D)$ is the number of special classes that can be formed from the elements of $D\left[19\right.$, Theorem 2]. If $\eta \in M_{H}$, then $\eta(\sigma)=0$ for all $\sigma \epsilon D$ if and only if $\langle\xi, \eta\rangle_{H}=0$ for all $\xi \in M_{H}(D)$. (See [19, Theorem 3].)

We now wish to make a more careful investigation of the structure of the modules $M_{H}(D)$ and $M_{G}\left(D^{G}\right)$. We say that a character ξ of M_{H} belongs to a p-block B of H if it is the sum of irreducible characters of H belonging to B. The set of such characters form a submodule $M_{H}(D, B)$ of $M_{H}(D)$. If \bar{B} is a p-block of G, we similarly form the submodule $M_{G}\left(D^{G}, \bar{B}\right)$. It is our purpose to compare the modules $M_{H}(D, B)$ and $M_{G}\left(D^{G}, \bar{B}\right)$. To do this we make use of the mapping $B \rightarrow B^{G}$ of the p-blocks of H into the p-blocks of G established by Brauer [3], [4]. We say that D is complete if it contains along with any p-singular element $\pi \sigma=\sigma \pi$ all p-singular elements in the centralizer $C(\pi)$ of the p-component π of $\pi \sigma$.

Proposition 25. Let D be a subset of the subgroup H which determines a set of special classes and which consists of p-singular elements. Assume that D is complete. Suppose that

$$
\begin{equation*}
M_{H}(D)=\oplus_{i=1}^{k} M_{H}\left(D, B_{i}\right) \tag{35}
\end{equation*}
$$

where the summation is over all p-blocks of H. Then $M_{G}\left(D^{G}, \bar{B}\right)$ is generated
by those submodules $M_{H}\left(D, B_{i}\right)^{*}$ for which $B_{i}^{G}=\bar{B}$, and

$$
\begin{equation*}
M_{G}\left(D^{G}\right)=\oplus_{i=1}^{l} M_{G}\left(D^{G}, \bar{B}_{i}\right) \tag{36}
\end{equation*}
$$

where the summation is over all p-blocks \bar{B}_{i} of G of the form $\bar{B}_{i}=B_{G}$ where B is a p-block of H.

Proof. We may choose a basis ξ_{t} for $M_{H}(D)$ such that for $m_{i-1} \leqq t<m_{i}$, $i=1,2, \cdots, k, \xi_{t}$ belongs to the module $M_{H}\left(D, B_{i}\right)$. Then

$$
\begin{equation*}
\xi_{t}=\sum_{r=1}^{m} a_{t r} \phi_{r} \tag{37}
\end{equation*}
$$

where the ϕ_{r} are irreducible characters of H and $a_{t r} \neq 0$ only if ξ_{t} and ϕ_{r} belong to the same p-block. Set

$$
\begin{equation*}
\xi_{t}^{*}=\sum_{r=1}^{n} c_{t r} \Phi_{r} \tag{38}
\end{equation*}
$$

where the Φ_{r} are irreducible characters of G. We shall show that $c_{t r} \neq 0$ only if Φ_{r} belongs to the block B^{G} where B is the p-block of H to which ξ_{t} belongs.

Now we have for the restriction of Φ_{r} to H

$$
\begin{equation*}
\left.\Phi_{r}\right|_{H}=\sum_{s=1}^{m} y_{r s} \phi_{s} \tag{39}
\end{equation*}
$$

Using the Frobenius reciprocity law, we obtain that

$$
\begin{equation*}
C=A X \tag{40}
\end{equation*}
$$

where $C=\left(c_{t r}\right), A=\left(a_{t s}\right)$, and $X=\left(x_{s r}\right)$ is the transpose of the matrix $Y=\left(y_{r s}\right)$. In particular, we have for $\sigma \epsilon D$,

$$
\begin{equation*}
\Phi_{r}(\sigma)=\sum_{s=1}^{m} x_{s r} \phi_{s}(\sigma) \tag{41}
\end{equation*}
$$

However, as Suzuki shows, the matrix X is not uniquely determined by the conditions (41) alone. More than this, any matrix $X^{\prime}=\left(x_{s r}^{\prime}\right)$ satisfying (41) also satisfies (40). We shall make use of this and choose an appropriate matrix to analyze the matrix C.

Now if π is a p-element of D and σ is a p-regular element in $C_{G}(\pi) \leqq H$, then

$$
\begin{equation*}
\Phi_{r}(\pi \sigma)=\sum_{j=1}^{v} d_{r j}^{\pi} \zeta_{j}^{\pi}(\sigma) \tag{42}
\end{equation*}
$$

where the $d_{r j}^{\pi}$ are the generalized decomposition numbers of G, and ζ_{j}^{π} are the modular irreducible characters of $C_{G}(\pi)$. Likewise

$$
\begin{equation*}
\phi_{s}(\pi \sigma)=\sum_{j=1}^{v} e_{s j}^{\pi} \zeta_{j}^{\pi}(\sigma), \tag{43}
\end{equation*}
$$

where now $e_{s j}^{\pi}$ are the generalized decomposition numbers of H. Using the linear independence of the modular characters and the completeness of D, we obtain from (41), (42), and (43) that

$$
\begin{equation*}
d_{r j}^{\pi}=\sum_{s=1}^{m} x_{s r} e_{s j}^{\pi} \tag{44}
\end{equation*}
$$

Now let \widetilde{B} be a p-block of $C(\pi)$. We can then form $\widetilde{B}^{H}=B$ and \widetilde{B}^{G},
the p-blocks of H and G, respectively, determined by \widetilde{B}, and $\widetilde{B}^{G}=B^{G}$, according to [4, (2A), (2B)]. Now the Principal Theorem of [4] (Theorem $(6 \mathrm{~A})$) asserts that $e_{s j} \neq 0$ only if ϕ_{s} belongs to the block $B=\widetilde{B}^{H}$ where \widetilde{B} is the block to which ζ_{j}^{π} belongs. Likewise $d_{r j} \neq 0$ only if Φ_{r} belongs to the block $B^{G}=\widetilde{B}^{G}$. Hence if we replace $X=\left(x_{s r}\right)$ by a matrix $X^{\prime}=\left(x_{s r}^{\prime}\right)$, where $x_{s r}^{\prime}=0$ if $\phi_{s} \in B$ and $\Phi_{r} \notin B^{G}$ and $x_{s r}^{\prime}=x_{s r}$ otherwise, equation (44) still holds, so that we obtain

$$
\begin{equation*}
d_{r j}=\sum_{s=1}^{m} x_{s r}^{\prime} e_{s j} \tag{45}
\end{equation*}
$$

Now using (43) and (45) in (42), we obtain for $\sigma \epsilon D$

$$
\begin{equation*}
\Phi_{r}(\sigma)=\sum_{s=1}^{m} x_{s r}^{\prime} \phi_{s}(\sigma) \tag{46}
\end{equation*}
$$

and hence that $C=A X^{\prime}$. Then

$$
\begin{equation*}
c_{l r}=\sum_{s=1}^{m} a_{t s} x_{s r}^{\prime} \tag{47}
\end{equation*}
$$

is nonzero only if ϕ_{s} belongs to the block B of H to which ξ_{t} belongs and Φ_{r} belongs to the block B^{G} determined by the block B to which ϕ_{s} belongs. This shows that if $\xi_{t} \in B$, then $\xi_{t}^{*} \in B^{\sigma}$. Hence

$$
\begin{equation*}
M_{G}\left(D^{G}, \bar{B}\right) \geqq M_{H}\left(D, B_{i}\right)^{*} \tag{48}
\end{equation*}
$$

where $B_{i}^{G}=\bar{B}$. Also

$$
\begin{equation*}
M_{G}\left(D^{G}\right) \geqq \oplus_{i=1}^{l} M_{G}\left(D^{G}, \bar{B}_{i}\right) \tag{49}
\end{equation*}
$$

On the other hand, (32) implies that every character of $M_{G}\left(D^{G}\right)$ agrees on G with the character of G induced by its restriction on H. Thus

$$
\begin{equation*}
M_{G}\left(D^{G}\right)=M_{H}(D)^{*}=\sum_{i=1}^{k} M_{H}\left(D, B_{i}\right)^{*} \tag{50}
\end{equation*}
$$

Thus (48), (49), and (50) imply that $M_{G}\left(D^{G}, \bar{B}\right)$ is generated by those submodules $M_{H}\left(D, B_{i}\right)^{*}$ for which $B_{i}^{G}=\bar{B}$, and (36) follows.

12. Character theory of $C\left(\tau_{1}\right)$

We now apply these results to the case where G contains a dihedral Sylow 2 -subgroup S and no normal subgroups of index 2 . We also consider the case G is an L-group in Case II with $W_{1}=1$ or in Case III.

Lemma 26. The set $D=A U_{1}-U_{1}$ determines a set of special classes of $C\left(\tau_{1}\right)$. When G is an L-group in Case II with $W_{1}=1$ or in Case III, the set $D^{\prime}=A U_{1}-X_{1}$ also determines a set of special classes.

Proof. Let x have even order. Then $x^{n}=\tau_{1}$ for some integer n, and $C(x) \leqq C\left(\tau_{1}\right)$.

Let x have odd order. This can occur only if G is an L-group and $x \epsilon D^{\prime}-D$. Hence we are in Case II or III. First consider Case II, where $W_{1}=1$. Then $x \in V_{1} E_{1}-E_{1}$. By Lemma $16, C^{*}(x)$ has an S_{0}-invariant normal 2 -complement K. Let $K=K_{1} K_{2} K_{3}$ be its S_{0}-decomposition. Then
$K \geqq U_{1}$. Hence $K_{1}=U_{1}$, and $\left|K_{2}\right|$ and $\left|K_{3}\right|$ divide $\left|K_{1}\right|$. But then for any prime p dividing $\left|K_{2}\right|$ or $\left|K_{3}\right|$, there exists an S_{0}-invariant p-subgroup P of K with S_{0}-decomposition $P=P_{1} P_{2} P_{3} . \quad$ Since $P_{1} \neq 1$ and $P_{2} P_{3} \neq 1$, Lemma 7 implies p divides $\left|W_{1}\right|$. Hence $K_{2}=K_{3}=1$, and $C(x) \leqq S U_{1}=$ $C\left(\tau_{1}\right)$.

In Case III, $x \in V_{1} W_{1}-W_{1}$. Since by definition $\left(\left|V_{1}\right|,\left|W_{1}\right|\right)=1$, some power $x^{n} \neq 1$ is in V_{1}. But then $C(x) \leqq C\left(x^{n}\right) \leqq C\left(\tau_{1}\right)$.

We next show that if $y^{-1} x y \epsilon C\left(\tau_{1}\right)$ for $x \epsilon D^{\prime}$ and $y \epsilon G$, then $y \epsilon C\left(\tau_{1}\right)$. In any event, $y^{-1} x^{n} y$ is also in $C\left(\tau_{1}\right)$ for any power x^{n} of x. Hence if x has even order, it follows that $y \epsilon C\left(\tau_{1}\right)$ since τ_{1} is the only involution in $A U_{1}$. If x has odd order, then $x \in U_{1}-X_{1}$; hence some power $x^{n} \neq 1$ is in the unique Sylow p-subgroup P_{1} of U_{1} corresponding to a prime p which divides $\left|V_{1}\right|$.

We claim that $H=N\left(P_{1}\right) \leqq C\left(\tau_{1}\right)$. Since P_{1} is the unique Sylow p-subgroup of U_{1}, S is a Sylow 2-subgroup of H. Also $N_{H}\left(S_{0}\right)=C_{H}^{\prime}\left(S_{0}\right)$. Should $N_{H}\left(S_{1}\right)>C_{H}^{\prime}\left(S_{1}^{\prime}\right)$, Lemma 13 implies that $P=E_{1}(p) \times P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$. Since $P_{1} \cap V_{1} \neq 1, P_{1}^{\prime} \neq 1$, and also $P_{2}^{\prime} P_{3}^{\prime} \neq 1$. Lemma 7 then shows that there exists $\lambda \in P_{2}^{\prime} P_{3}^{\prime}$ which centralizes $P_{1} \geqq P_{1} \cap V_{1}$. This is a contradiction. Hence $N_{H}\left(S_{1}\right)=C_{H}^{\prime}\left(S_{1}\right)$, and H contains a normal 2 -complement K. Then K is S_{0}-invariant and possesses the S_{0}-decomposition $K=K_{1} K_{2} K_{3}$. Let σ be in $K_{\mu}, \mu=2$ or 3 , and $z \in P_{1}$. Then $z^{\sigma} \in P_{1}$, so that $z^{\sigma}=z^{\sigma \tau_{1}}=z^{\tau_{1} \sigma^{-1}}=$ $z^{\sigma^{-1}}$. Hence σ^{2} and thus σ centralize P_{1}. But as $P_{1} \cap V_{1} \neq 1$, the definition of V_{1} forces $\sigma=1$. Hence $K=K_{1} \leqq U_{1}$. This means that $H \leqq C\left(\tau_{1}\right)$.

But if $H=N\left(P_{1}\right) \leqq C\left(\tau_{1}\right)$, then P_{1} is a Sylow subgroup of $N\left(P_{1}\right)$ and hence of G. Because P_{1} is abelian, a theorem of Burnside [14, p. 203] implies that there exists z in $N\left(P_{1}\right)$ such that $y^{-1} x y=z^{-1} x z$. Then both z and $z y^{-1}$ are in $C\left(\tau_{1}\right)$. Thus $y \in C\left(\tau_{1}\right)$.

We now shall obtain a maximal linearly independent subset in $M_{C\left(\tau_{1}\right)}(D)$ and, when G is an L-group in Case II with $W_{1}=1$ and in Case III, in $M_{C\left(\tau_{1}\right)}\left(D^{\prime}\right)$.

In order to do this, we first describe the irreducible characters of $A U_{1}$ and then form a basis of $M_{A U_{1}}(D)$. The relations between the irreducible characters of $A U_{1}$ and those of the normal subgroup U_{1} are described by Clifford [$9, \mathrm{p} .547$] in the case that $A U_{1} / U_{1}$ is cyclic; we summarize these results here. We shall denote by $\bar{\nu}$ the character of $A U_{1}$ induced by a character ν of a subgroup. Associated with each irreducible character μ of U_{1} is its stability group $A(\mu) U_{1}$, where $A(\mu)$ is a subgroup of A and $A(\mu) U_{1}$ consists of those elements σ of $A U_{1}$ such that $\mu^{\sigma}=\mu$. There exists $|A(\mu)|$ extensions of μ to $A(\mu) U_{1}$ which are of the form $\lambda \mu^{\prime}$, where λ is a linear character of $A(\mu) U_{1} / U_{1}$ and μ^{\prime} is the extension of μ to $A(\mu) U_{1}$ obtained by setting $\mu^{\prime}(\sigma)=\operatorname{deg} \mu$ for $\sigma \in A(\mu)$. The character $\lambda \mu^{\prime}$ is irreducible, and $\overline{\lambda_{1} \mu_{1}^{\prime}}=\overline{\lambda_{2} \mu_{2}^{\prime}}$ if and only if $\mu_{2}=\mu_{1}^{\sigma}, A\left(\mu_{1}\right)=A\left(\mu_{2}\right)$, and $\lambda_{1}=\lambda_{2}$. All the distinct irreducible characters of $A U_{1}$ are obtained in this way. If $|A(\mu)|=2^{d_{\mu}}$ and $u=\operatorname{deg} \mu, \operatorname{deg} \overline{\lambda \mu^{\prime}}=|A: A(\mu)| u=2^{a-d_{\mu}} u$.

The number of irreducible characters of $A U_{1}$ is, of course, the number of
classes in $A U_{1}$. But also the number of irreducible characters of $A U_{1}$ of the form $\overline{\mu^{\prime}}$, where μ is a character of U_{1}, is the number of classes of $A U_{1}$ contained in U_{1}. This can be seen from the fact that $\overline{\mu_{1}^{\prime}}=\overline{\mu_{2}^{\prime}}$ if and only if $\mu_{1}^{\sigma}=\mu_{2}$ for some σ in $A U_{1}$. Thus the number of generalized characters of $A U_{1}$ of the form $\xi(\lambda, \mu)=\overline{\mu^{\prime}}-\overline{\lambda \mu^{\prime}}$, where λ and μ are irreducible characters of $A(\mu) U_{1} / U_{1}$ and of U_{1}, respectively, is precisely the number of classes in $A U_{1}-U_{1}$. By [16, Theorem 2], this is the rank of $M_{A U_{1}}(D)$. Then since $\xi(\lambda, \mu)$ are independent elements of $M_{A U_{1}}(D)$, they form a maximal linearly independent subset of $M_{A U_{1}}(D)$.

Denote by $\nu^{\#}$ the character of $C\left(\tau_{1}\right)=S U_{1}$ induced by a character ν of a subgroup. Then the characters $\xi(\lambda, \mu)^{\#}$ induced on $S U_{1}$ by the characters $\xi(\lambda, \mu)$ form a basis for $M_{S U_{1}}(D)$. We wish to describe their decomposition into irreducible characters. Let $\overline{\lambda \mu^{\prime}}$ be an irreducible character of $A U_{1}$. Then $\overline{\left(\lambda \mu^{\prime}\right)}{ }^{\#}$ is reducible if and only if $\overline{\left(\lambda \mu^{\prime}\right)^{\tau_{2}}}=\overline{\lambda \mu^{\prime}}$. This will be the case if and only if $\lambda^{\tau_{2}}=\lambda$ and $\overline{\mu^{\prime} \tau_{2}}=\overline{\mu^{\prime}}$.

Let $B(\mu)$ be the normal subgroup of index 2 in $A(\mu)$. Because $\mu^{\tau_{1}}=\mu$, we must have $A(\mu) \neq 1$. Hence $B(\mu)$ always exists. Let $1_{A(\mu)}$ be the identity character of $A(\mu) U_{1}$, and let $\varepsilon_{A(\mu)}$ be the character whose kernel is $B(\mu) U_{1}$. Then $\lambda^{\tau_{2}}=\lambda$ if and only if $\lambda=1_{A(\mu)}$ or $\lambda=\varepsilon_{A(\mu)}$.

If $\overline{\mu^{\prime} \tau_{2}}=\overline{\mu^{\prime}}$, then $\mu^{\prime \sigma}=\mu^{\prime}$ for some $\sigma \epsilon S U_{1}-A(\mu) U_{1}$. But for $\sigma \in A U_{1}-A(\mu) U_{1}, \mu^{\prime \sigma} \neq \mu^{\prime}$. Hence $\mu^{\prime \sigma}=\mu^{\prime}$ implies that σ may be taken to be in $S-A$. Thus $\sigma=\tau_{2} \alpha^{i}$ is an involution. Let $S(\mu)$ be the dihedral subgroup $\left\{A(\mu), \tau_{2} \alpha^{i}\right\}$. Then μ^{\prime} may be extended to a character $\mu^{\prime \prime}$ of $S(\mu) U_{1}$ of the same degree. Let $\phi_{1 \mu}, \phi_{2 \mu}$, and $\phi_{3 \mu}$ be the linear characters of $S(\mu) U_{1}$ with kernels $A(\mu),\left\{B(\mu), \tau_{2}\right\}$, and $\left\{B(\mu), \tau_{1} \tau_{2}\right\}$, respectively. In particular, when $S(\mu)=S$, set $\phi_{i}=\phi_{i \mu}, i=1,2,3$. These characters will be extended to $S U_{1}$ by setting $\phi_{i \mu}(\sigma)=0$ for $\sigma \in S U_{1}-S(\mu) U_{1}$ if necessary. An irreducible character $\mu^{\prime}=1_{A(\mu)} \mu^{\prime}$ of $A(\mu) U_{1}$ now induces the character $\left(1+\phi_{1 \mu}\right) \mu^{\prime \prime}$ of $S(\mu) U_{1}$. Likewise $\varepsilon_{A(\mu)} \mu^{\prime}$ induces the char$\operatorname{acter}\left(\phi_{2 \mu}+\phi_{3 \mu}\right) \mu^{\prime \prime}$. Thus $\mu^{\prime \#}=\left(1+\phi_{1 \mu}\right) \mu^{\prime \prime \prime}$; and so

$$
\operatorname{deg} \mu^{\prime \prime \#}=|S: S(\mu)| \operatorname{deg} \mu^{\prime \prime}=2^{a-d_{\mu}} u
$$

where $2^{d_{\mu}}=|A(\mu)|$ and $u=\operatorname{deg} \mu$.
When $\mu^{\tau_{2}}=\mu$ but $\lambda^{\tau_{2}} \neq \lambda, \overline{\left(\lambda \mu^{\prime}\right)^{\#}}=\left(\lambda \mu^{\prime}\right)^{\#}$ is irreducible. Because the characters $\overline{\lambda \mu^{\prime}}$ induced on $A U_{1}$ are distinct for distinct characters λ of $A(\mu)$ and because $\overline{\left(\lambda^{\tau} \mu^{\prime}\right)^{\#}}=\left(\lambda^{\left.\tau_{2} \mu^{\prime}\right)^{\#}}=\left(\lambda \mu^{\prime}\right)^{\#}=\overline{\left(\lambda \mu^{\prime}\right)^{\#}}\right.$, two characters $\left(\lambda_{1} \mu^{\prime}\right)^{\#}$ and $\left(\lambda_{2} \mu^{\prime}\right)^{\#}$ are the same if and only if $\lambda_{2}=\lambda_{1}^{\tau 2}$. Thus there are $\frac{1}{2}|A(\mu)|-1$ distinct irreducible characters of the form $\left(\lambda \mu^{\prime}\right)^{\#}$ where $\lambda^{\tau_{2}} \neq \lambda$. Here $\operatorname{deg}\left(\lambda \mu^{\prime}\right)^{\#}=2 \operatorname{deg}\left(\mu^{\prime \prime}\right)^{\#}=2^{a-d_{\mu}+1} u$.

When $\mu^{\tau_{2}} \neq \mu,\left(\lambda \mu^{\prime}\right)^{\#}$ again is irreducible. Suppose that $\left(\lambda_{1} \mu^{\prime}\right)^{\#}=\left(\lambda_{2} \mu^{\prime}\right)^{\#}$. Then for $\sigma \epsilon A(\mu) U_{1}$

$$
\lambda_{1}(\sigma) \mu^{\prime}(\sigma)+\lambda_{1}^{\tau_{2}}(\sigma) \mu^{\prime \tau_{2}}(\sigma)=\lambda_{2}(\sigma) \mu^{\prime}(\sigma)+\lambda_{2}^{\tau_{2}}(\sigma) \mu^{\prime \tau_{2}}(\sigma)
$$

Hence $\lambda_{1}=\lambda_{2}$. Thus there are $|A(\mu)|$ irreducible characters of the form
$\left(\lambda \mu^{\prime}\right)^{\#}$ when $\mu^{\tau_{2}} \neq \mu$. Also in this case

$$
\operatorname{deg}\left(\lambda \mu^{\prime}\right)^{\#}=|S: A(\mu)| \operatorname{deg} \mu^{\prime}=2^{a-d_{\mu}+1} u
$$

where $u=\operatorname{deg} \mu$.
Thus the characters $\zeta(\lambda, \mu)^{\#}$ have three types of decompositions, namely

$$
\begin{align*}
\theta(\mu) & \left.=1+\phi_{1 \mu}-\phi_{2 \mu}-\phi_{3 \mu}\right)\left(\mu^{\prime \prime}\right)^{\#}, \tag{51}\\
\eta(\lambda, \mu) & =\left(1+\phi_{1 \mu}\right)\left(\mu^{\prime \prime}\right)^{\#}-\left(\lambda \mu^{\prime}\right)^{\#}, \tag{52}\\
\pi(\lambda, \mu) & =\left(\mu^{\prime}\right)^{\#}-\left(\lambda \mu^{\prime}\right)^{\#} . \tag{53}
\end{align*}
$$

Here λ is a character of $A(\mu)$ such that $\lambda \neq 1$ and in (52), $\lambda \neq \varepsilon_{A(\mu)}$. For $\mu^{\tau_{2}}=\mu$, (51) and (52) apply. For $\mu^{\tau_{2}} \neq \mu$, (53) applies. There are $\frac{1}{2}|A(\mu)|-1$ characters of the form (52) for each μ. Hence if $|A(\mu)|=2$, $\eta(\lambda, \mu)$ does not exist. When $\mu=1, A(\mu)=A$. In this case we distinguish $\theta_{0}=\theta(1)$ and $\eta(\lambda)=\eta(\lambda, 1):$

$$
\begin{align*}
\theta_{0} & =1+\phi_{1}-\phi_{2}-\phi_{3}, \tag{54}\\
\eta(\lambda) & =1+\phi_{1}-\lambda^{\#} \tag{55}
\end{align*}
$$

where $\operatorname{deg} \lambda^{\#}=2$. The characters $\eta(\lambda)$ exist if and only if $|S|>4$.
The central character of H that is determined by an irreducible character ϕ of H is the function

$$
\begin{equation*}
\omega(\sigma)=\frac{|H| \phi(\sigma)}{\left|C_{H}(\sigma)\right| \phi(1)} \tag{56}
\end{equation*}
$$

It is known that two characters of H belong to the same 2-block if the central characters which they determine are equivalent modulo a prime ideal divisor of 2 in the field of $|H|^{\text {th }}$ roots of unity. Applying this criterion to the components of $\theta(\mu), \eta(\lambda, \mu)$, and $\pi(\lambda, \mu)$, we see that the characters of the form $\theta(\mu)$ and $\eta(\lambda, \mu)$ for a fixed character μ of U_{1} belong to the same 2-block. Likewise the characters $\pi(\lambda, \mu)$ for a fixed character μ belong to the same 2-block. The distinct sets of characters just described belong to distinct 2-blocks of H.

When G is an L-group in Case II with $W_{1}=1$ or in Case III, we modify our development to replace the role of U_{1} by $X_{1}=W_{1} E_{1}$ and $A(\mu)$ by $A(\mu) V_{1}$. Since V_{1} is cyclic, $A V_{1}$ is cyclic and the above analysis applies. We thus consider μ to be a character of the normal subgroup $W_{1} E_{1}=X_{1}$. Because of Lemma 12, $V_{1} \leqq Z\left(A U_{1}\right)$. Hence $\mu^{\sigma}=\mu$ for all $\sigma \epsilon V_{1}$. Thus the stability group of μ now always contains V_{1} and is of the form $\left(A(\mu) V_{1}\right) X_{1}$. Because $\tau_{1} \in Z\left(A U_{1}\right), A(\mu) \neq 1$. Thus the characters λ now are taken to be characters of the cyclic group $A(\mu) V_{1}$. Hence, for each μ, there will now be $\frac{1}{2}\left|A(\mu) V_{1}\right|-1$ characters of the form (53) for each character μ of X_{1} such that $\mu^{\tau_{2}}=\mu$. There also will be $\left|A(\mu) V_{1}\right|-1$ characters of the form (53) for each μ such that $\mu^{\tau_{2}} \neq \mu$.

13. Induced characters of G

Now form the characters $\theta(\mu)^{*}, \eta(\lambda, \mu)^{*}$, and $\pi(\lambda, \mu)^{*}$. By virtue of (34) and (52) they have the respective weights 4,3 , and 2 . From the Frobenius reciprocity theorem, the character 1 appears only in θ_{0}^{*} and $\eta(\lambda)^{*}$. Using the fact that $w\left(\theta_{0}^{*}-\eta_{0}(\lambda)^{*}\right)=w\left(\theta_{0}-\eta(\lambda)\right)=3$, and that $\eta_{0}(\lambda)^{*}(1)=\eta_{0}(\lambda)(1)=0$, we obtain the expansions into distinct irreducible characters of G :

$$
\begin{align*}
\theta_{0}^{*} & =1+\delta_{1} \chi_{1}+\delta_{2} \chi_{2}+\delta_{2} \chi_{3} \tag{57}\\
\eta(\lambda)^{*} & =1+\delta_{1} \chi_{1}-\delta_{1} \Lambda_{\lambda} . \tag{58}
\end{align*}
$$

where $\delta_{i}= \pm 1$. The remaining characters $\theta(\mu)^{*}, \eta(\lambda, \mu)^{*}$, and $\pi(\lambda, \mu)$ decompose into sums of 4,3 , and 2 irreducible characters.

Let $f_{i}=\operatorname{deg} \chi_{i}, i=1,2,3$, and let $f_{4}=\operatorname{deg} \Lambda_{\lambda}$. Equation (58) shows that f_{4} is determined independently of λ, and

$$
\begin{gather*}
1+\delta_{1} f_{1}+\delta_{2} f_{2}+\delta_{3} f_{3}=0 \tag{59}\\
1+\delta_{1} f_{1}=\delta_{1} f_{4} \tag{60}
\end{gather*}
$$

The character χ_{1} is distinguished by the fact that it appears in both (57) and (58) when $|S| \geqq 8$. In case $|S|=4$, we argue that χ_{1} can be chosen so that $f_{1} \neq f_{j}, j=2,3$. Indeed, should $f_{1}=f_{2}=f_{3}$, then by (59), $f_{i}=1$, $i=1,2,3$. On the other hand as G has no normal subgroups of index 2 , $\chi_{i}\left(\tau_{1}\right)=f_{i}=1$ for $i=1,2,3$. But then

$$
4=\theta_{0}\left(\tau_{1}\right)=\theta_{0}\left(\tau_{1}\right)^{*}=1+\delta_{1}+\delta_{2}+\delta_{3}=\theta_{0}^{*}(1)=\theta_{0}(1)=0
$$

which is a contradiction. Hence when $|S|=4$, we choose χ_{1} so that $f_{1} \neq f_{j}, j=1,2$.

We next show that the characters $1, \chi_{i}$ and Λ_{λ} appear only in the decomposition of the two characters θ_{0}^{*} and $\eta(\lambda)^{*}$. The characters θ_{0} and $\eta(\lambda)$ are the only characters of the form (51), (52), and (53) which belong to the first 2-block B_{1} of H. By virtue of Proposition 25, the characters θ_{0}^{*} and $\eta(\lambda)^{*}$ belong to the block B_{1}^{G} of G. Since 1 is a component of θ_{0}^{*}, this is the first 2 -block \bar{B}_{1}. We must show that none of the characters $\theta(\mu)^{*}, \eta(\lambda, \mu)^{*}$, or $\pi(\lambda, \mu)^{*}$ for $\mu \neq 1$ belong to \bar{B}_{1}. To do this it suffices to show that, for any 2-block $B \neq B_{1}$ of $H, B^{G} \neq \bar{B}_{1}$ by virtue of Proposition 25.

An important result of Brauer ([13, (12A)] and [4, (2D)]) shows in the case we are considering that to each block with defect group S there corresponds a character of $C(S) / S$. Furthermore, two blocks of $C\left(\tau_{1}\right)$ with defect group S will correspond to the same block in G if and only if the corresponding characters of $C(S) / S$ are associated in $N(S) / S$. But, of course, the principal character, which determines B_{1}, is associated only with itself. Since $B^{G}=\bar{B}_{1}$ implies that B has defect group S, we have that $B=B_{1}$.

Now we are in a position to prove the following result.

Lemma 27. The characters χ_{1}, χ_{2}, and χ_{3} have the values

$$
\begin{equation*}
\chi_{1}(\sigma)=\delta_{1}=\delta_{1} \phi_{1} ; \quad \chi_{2}(\sigma)=-\delta_{2} \phi_{2}(\sigma) ; \quad \chi_{3}(\sigma)=-\delta_{3} \phi_{3}(\sigma) \tag{61}
\end{equation*}
$$

for $\sigma \in D$ or for $\sigma \epsilon D^{\prime}$ if G is an L-group in Case II with $W_{1}=1$ or in Case III. In particular, when $|S|=4$,

$$
\begin{equation*}
\chi_{1}\left(\tau_{1}\right)=\delta_{1} ; \quad \chi_{2}\left(\tau_{1}\right)=\delta_{2} ; \quad \chi_{3}\left(\tau_{1}\right)=\delta_{3} \tag{62}
\end{equation*}
$$

When $|S|>4$,

$$
\begin{equation*}
\chi_{1}\left(\tau_{1}\right)=\delta_{1} ; \quad \chi_{2}\left(\tau_{1}\right)=-\delta_{2} ; \quad \chi_{3}\left(\tau_{1}\right)=-\delta_{3} \tag{63}
\end{equation*}
$$

Proof. We have shown that $\chi_{1}, \chi_{2}, \chi_{3}$ appear only in the characters θ_{0}^{*} and $\eta(\lambda)^{*}$. Also ϕ_{1}, ϕ_{2}, and ϕ_{3} appear only in the characters θ_{0} and $\eta(\lambda)$. Thus from the Frobenius reciprocity law, we have that

$$
\begin{equation*}
\left\langle\left.\chi_{1}\right|_{C\left(\tau_{1}\right)}-\delta_{1} \phi_{1}, \theta(\mu)\right\rangle_{C\left(\tau_{1}\right)}=\left\langle\chi_{1}, \theta(\mu)^{*}\right\rangle_{G}-\delta_{1}\left\langle\phi_{1}, \theta(\mu)\right\rangle_{C\left(\tau_{1}\right)}=0 \tag{64}
\end{equation*}
$$

Similarly,

$$
\left\langle\left.\chi_{1}\right|_{c\left(\tau_{1}\right)}-\delta_{1} \phi_{1}, \eta(\lambda, \mu)\right\rangle_{c\left(\tau_{1}\right)}=\left\langle\left.\chi_{1}\right|_{c\left(\tau_{1}\right)}-\delta_{1} \phi_{1}, \pi(\lambda, \mu)\right\rangle=0
$$

Thus $\left.\chi_{1}\right|_{c\left(\tau_{1}\right)}-\delta_{1} \phi_{1}$ is orthogonal to a maximal linearly independent subset of $M_{C\left(\tau_{1}\right)}(D)$. Then by [19, Theorem 3], $\chi_{1}(\sigma)=\delta_{1} \phi_{1}(\sigma)$ for $\sigma \epsilon D$. In the case that G is an L-group in Case II with $W_{1}=1$ or in Case III, we can form a maximal linearly independent subset for $M_{C\left(\tau_{1}\right)}\left(D^{\prime}\right)$ by adding to the set of characters $\theta(\mu), \eta(\lambda, \mu)$, and $\pi(\lambda, \mu)$, the characters $\eta(\lambda)=1+\phi_{1}-\lambda^{\#}$ where now λ is an irreducible character of $A U_{1} / X_{1}$. Using the orthogonality relations (34), we obtain

$$
\eta(\lambda)^{*}=1+\delta_{1} \chi_{1}-\delta_{1} \Lambda_{\lambda}
$$

One may verify that $\left.\chi_{1}\right|_{c_{\left(\tau_{1}\right)}}-\delta_{1} \phi_{1}$ is now orthogonal to all elements of $M_{C\left(\tau_{1}\right)}\left(D^{\prime}\right)$. Thus $\chi_{1}(\sigma)=\delta_{1} \phi_{1}(\sigma)$ for all $\sigma \epsilon D^{\prime}$. A similar argument verifies the other equalities in (61). Of course, (62) and (63) are special cases of (61).

14. Formulas for the order of G

The groups E, E_{0}, and E_{1} are defined in general in the same way as in $\S 6$ where U_{1} is abelian. Throughout the remainder of the paper we use the following notation:

$$
\begin{equation*}
e=|E|, \quad e_{0}=\left|E_{0}: E\right|, \quad e_{1}=\left|E_{1}: E\right|, \quad u=\left|C_{U_{1}}(\alpha): E\right| \tag{65}
\end{equation*}
$$

When $|S|=4, e_{0}=e_{1}=1$. When G is an L-group, we also have

$$
\begin{equation*}
u=\left|U_{1}^{\prime}\right|, \quad v=\left|V_{1}\right|, \quad w=\left|W_{1}\right|, \quad u=v w \tag{66}
\end{equation*}
$$

Using [23, Beispiel (3.1)], we have

$$
\left|C\left(\tau_{1}\right)\right|=2^{a+1} u e_{0} e_{1} e, \quad\left|C\left(S_{0}\right)\right|=4 e_{0} e, \quad \text { and } \quad\left|C\left(S_{1}\right)\right|=4 e_{1} e
$$

We shall employ Suzuki's formula (**) developed in [19], which we repeat here:

$$
\begin{align*}
& g \sum_{i}\left(T_{G}\left(\chi_{i}\right)^{2} / D_{g} \chi_{i}\right)\left\langle\chi_{i}, \zeta(\mu)^{*}\right\rangle_{G} \tag{67}\\
&=\left|C\left(\tau_{1}\right)\right| \sum_{j}\left(T_{C\left(\tau_{1}\right)}\left(\phi_{j}\right)^{2} / D_{g} \phi_{j}\right)\left\langle\phi_{j}, \zeta(\mu)\right\rangle_{C\left(\tau_{1}\right)}
\end{align*}
$$

where the summations are taken over all the irreducible characters χ_{i} of G and all the irreducible characters ϕ_{j} of $C\left(\tau_{1}\right)$, and

$$
\begin{align*}
T_{G}\left(\chi_{i}\right) & =\chi_{i}\left(\tau_{1}\right) /\left|C\left(\tau_{1}\right)\right| \tag{68}\\
T_{C\left(\tau_{1}\right)}\left(\phi_{j}\right) & =\phi_{j}\left(\tau_{1}\right) /\left|C\left(\tau_{1}\right)\right|+\phi_{j}\left(\tau_{2}\right) /\left|C\left(S_{0}\right)\right|+\phi_{j}\left(\tau_{3}\right) /\left|C\left(S_{1}\right)\right| \tag{69}
\end{align*}
$$

Proposition 28. When $|S|>4$ or G is an L-group in Case III with $\left|S V_{1}\right|>4$, we have

$$
\begin{equation*}
g=2^{3 a} u^{3} e_{0} e_{1}\left(e_{0}+e_{1}\right)^{2} e \frac{f_{1}\left(f_{1}+\delta_{1}\right)}{\left(f_{1}-\delta_{1}\right)^{2}} \tag{70}
\end{equation*}
$$

In general, we have

$$
\begin{equation*}
g=2^{3 a+2} u^{3} e_{0}^{2} e_{1}^{2} e \frac{f_{1} f_{2} f_{3}}{\left(f_{1}+\delta_{1}\right)\left(f_{2}+\delta_{2}\right)\left(f_{3}+\delta_{3}\right)} \tag{71}
\end{equation*}
$$

Proof. To derive these formulas, we shall use the characters θ_{0} and $\eta(\lambda)$ for $\zeta(\mu)$ in (67), where λ is a linear character of A for which $\lambda\left(\tau_{1}\right)=-1$. Such a character $\eta(\lambda)$ exists if either $|S|>4$ or G is an L-group in Case III with $\left|S V_{1}\right|>4$.
$\operatorname{Now} \phi_{1}\left(\tau_{1}\right)=\phi_{2}\left(\tau_{2}\right)=\phi_{3}\left(\tau_{3}\right)=1, \phi_{1}\left(\tau_{2}\right)=\phi_{1}\left(\tau_{3}\right)=\phi_{2}\left(\tau_{3}\right)=\phi_{3}\left(\tau_{2}\right)=-1$, and $\phi_{2}\left(\tau_{1}\right)=\phi_{3}\left(\tau_{1}\right)= \pm 1$ according as $|S|>4$ or $|S|=4$. By Lemma 27, $\chi_{1}\left(\tau_{1}\right)=\delta_{1}$. Furthermore $\eta(\lambda)^{*}\left(\tau_{1}\right)=-2$, and hence by (32) and (58), we obtain $\Lambda_{\lambda}\left(\tau_{1}\right)=2 \delta_{1}$.

Substituting $\eta(\mu)=\zeta(\lambda)$ in (67) and using these values, we obtain after simplification

$$
\begin{equation*}
g\left(1+\delta_{1} / f_{1}-\delta_{1} / f_{4}\right)=2^{3 a} u^{3} e_{0} e_{1}\left(e_{0}+e_{1}\right)^{2} e \tag{72}
\end{equation*}
$$

Formula (70) now follows at once if we use (60).
On the other hand, in all cases it follows from Lemma 27 that $\chi_{i}\left(\tau_{1}\right)= \pm \delta_{i}, i=1,2,3$. Substituting $\zeta(\mu)=\theta_{0}$ in (67) and using these values, we obtain

$$
\begin{equation*}
g\left(1+\delta_{1} / f_{1}+\delta_{2} / f_{2}+\delta_{3} / f_{3}\right)=2^{3 a+2} u^{3} e_{0}^{2} e_{1}^{2} e \tag{73}
\end{equation*}
$$

Formula (71) now follows at once if we use (59).
Formula (70) has been derived by Suzuki in [19] under the assumption that $a=2, e_{0}=e=1$ and $u=1$. Formulas (70) and (71) have been derived previously by Brauer in [5].

When G is an L-group in Case II with $W_{1}=1$ and in Case III, we shall need congruences for the degrees f_{i} of $\chi_{i}, i=1,2,3$. These are easily ob-
tained by using the orthogonality relations in evaluating $\sum_{\sigma \epsilon S V_{1}} \chi_{i}(\sigma)$ and using Lemma 27. These calculations yield

$$
\begin{align*}
f_{1} & =\delta_{1}+2^{a+1} v r \tag{74}\\
f_{2} & =-\delta_{2}+2^{a} v(2 s+1) \tag{75}\\
f_{3} & =-\delta_{3}+2^{a} v(2 t+1) \tag{76}
\end{align*}
$$

where r is a positive integer and s, t are nonnegative integers.
When G is isomorphic to $\operatorname{PSL}(2, q)$, we remark that $r=1, s=t=0$, and $\delta_{1}=-\delta_{2}=-\delta_{3}=\varepsilon$, where $\varepsilon= \pm 1$ and $\varepsilon \equiv q(\bmod 4)$. Also in this case $u=v, w=e_{0}=e_{1}=e=1$.

Part IV. Completion of the Proof of Theorem I and an Application

15. Application of the formulas for the order of G

We shall apply the results of Part III to the three cases which we have considered in Part II. We shall continue to use the notation $\chi_{1}, \chi_{2}, \chi_{3}$, and Λ_{λ} for the irreducible characters of G constructed in $\S 12$. We shall still denote their degrees by f_{1}, f_{2}, f_{3}, and f_{4}, and use δ_{1}, δ_{2}, and δ_{3} for the signs occurring in (59) and (60). If H is a proper subgroup of G containing $S V_{1}$ and having no normal subgroups of index 2 , the preceding discussion applies to H, and we shall use the notation $\chi_{1}^{\prime}, \chi_{2}^{\prime}, \chi_{3}^{\prime}, \Lambda_{\lambda}^{\prime}$ for the irreducible characters of $H, f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$, and f_{4}^{\prime} for their degrees, and $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \delta_{3}^{\prime}$ for the corresponding signs.

Lemma 29. In proving Theorem I we may assume that

$$
\begin{equation*}
f_{i} \geqq 5 \tag{77}
\end{equation*}
$$

for $i=1,2,3$.
Proof. Since G is simple, each $f_{i}>1$. By (74), (75), and (76) each f_{i} is odd. If G possesses an irreducible representation of degree 3 , a result given by Blichfeldt [1, p. 112] shows that G is isomorphic to $\operatorname{PSL}(2, q)$ where $q=5,7$, or 9 . The theorem is verified in this case, and the lemma is proved.

Proposition 30. There exists no proper subgroup of G which contains the centralizer of an involution and no normal subgroups of index 2. Consequently Case I and Case II where $W_{1} \neq 1$ do not occur.

Proof. Let H be a proper subgroup of G containing $C\left(\tau_{1}\right)$ and having no normal subgroups of index 2. Suppose that $|S|>4$. Then (70) applies to H as well as G. Set

$$
\begin{align*}
& \psi\left(f_{1}, \delta_{1}\right)=f_{1}\left(f_{1}+\delta_{1}\right) /\left(f_{1}-\delta_{1}\right)^{2} \tag{78}\\
& \psi\left(f_{1}^{\prime}, \delta_{1}^{\prime}\right)=f_{1}^{\prime}\left(f_{1}^{\prime}+\delta_{1}^{\prime}\right) /\left(f_{1}^{\prime}-\delta_{1}^{\prime}\right)^{2} \tag{79}
\end{align*}
$$

Then by (71), inasmuch as $C_{H}\left(\tau_{1}\right)=C_{G}\left(\tau_{1}\right),|G: H|=\psi\left(f_{1}, \delta_{1}\right) / \psi\left(f_{1}^{\prime}, \delta_{1}^{\prime}\right)$.

From Lemma 29, we see that $\psi\left(f_{1}, \delta_{1}\right) \leqq \frac{15}{8}$. On the other hand, the minimum value of $\psi\left(f_{1}^{\prime}, \delta_{1}^{\prime}\right)$ occurs when $H / O(H)$ is isomorphic to $P S L(2,3)$, in which case $f_{1}^{\prime}=3$ and $\delta_{1}=-1$. Hence $\psi\left(f_{1}^{\prime}, \delta_{1}^{\prime}\right) \geqq \frac{3}{8}$. Thus

$$
|G: H| \leqq 5
$$

and it follows that G has a representation in the symmetric group S_{5}, which must be faithful as G is simple. But S_{5} contains no L-subgroup H with $O(H) \neq 1$. When $|S|=4$, a similar argument using (71) yields the same contradiction.

The last statement of the proposition now follows from Propositions 15 and 22.

Proposition 31. Case II, $W_{1}=1$. The group G is isomorphic to the alternating group A_{7}.

Proof. Equating (70) and (71) and setting $e=e_{0}=w=1$, we obtain after simplification

$$
\begin{equation*}
4 e_{1}=\left(1+e_{1}\right)^{2}\left(1+\delta_{2} / f_{2}\right)\left(1+\delta_{3} / f_{3}\right)\left(1+2 \delta_{1} /\left(f_{1}-\delta_{1}\right)\right) \tag{80}
\end{equation*}
$$

Since $E_{0}=1$ and $E_{1} \neq 1, S>S_{0}$; hence $2^{a+1} \geqq 8$. We first treat the case $2^{a+1} v>8$. Using (74), (75), and (76), we find that

$$
\begin{equation*}
1+\delta_{2} / f_{2} \geqq \frac{8}{9}, \quad 1+\delta_{3} / f_{3} \geqq \frac{8}{9}, \quad \text { and } \quad 1+2 \delta_{1} /\left(f_{1}-\delta_{1}\right) \geqq \frac{7}{8} \tag{81}
\end{equation*}
$$

However, by (59), at least one $\delta_{i}=1, i=1,2,3$; so at least one of the expressions in (81) is actually greater than 1 . Thus (80) yields the inequality

$$
\begin{equation*}
4 e_{1} \geqq \frac{8}{9}\left(\frac{7}{8}\right)^{2}\left(1+e_{1}\right)^{2} \tag{82}
\end{equation*}
$$

Since the resulting quadratic equation has a largest solution less than 5 , the only possibility for e_{1} is $e_{1}=3$.

From (70) and (74) we obtain

$$
\begin{equation*}
g=2^{a-1} v e_{1}\left(e_{1}+1\right)^{2}\left(2^{a+1} v r+\delta_{1}\right)\left(2^{a} v r+\delta_{1}\right) / r^{2} \tag{83}
\end{equation*}
$$

Now $\left|G: C\left(\tau_{1}\right)\right|$ is an odd integer. Since $\left|C\left(\tau_{1}\right)\right|=2^{a+1} v e_{1}$, it follows from (83) that $\left(e_{1}+1\right) / 2 r$ must be an odd integer. Since $e_{1}=3$, this forces $r=2$.

Substituting $e_{1}=3$ in (80), we find that

$$
\begin{align*}
& \frac{3}{4} \geqq\left(1+\delta_{2} / f_{2}\right)\left(1+\delta_{3} / f_{3}\right) \quad \text { or } \\
& \frac{3}{4} \geqq\left(1+\delta_{2} / f_{2}\right)\left(1+2 \delta_{1} /\left(f_{1}-\delta_{1}\right)\right)^{2} \tag{84}
\end{align*}
$$

according as $\delta_{1}=1$ or $\delta_{3}=1$. The first inequality gives $\frac{3}{4} \geqq\left(\frac{8}{9}\right)^{2}$, and the second $\frac{3}{4} \geqq\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)^{2}$, since $r=2$, both of which are contradictions.

Hence $2^{a+1} v \leqq 8$. Since $2^{a+1} \geqq 8$, we must have $2^{a+1}=8, v=1$. But this is precisely the case considered by Suzuki in [16, pp. 265-266]; and there he showed that G is isomorphic to A_{7}.

Thus to complete the proof of Theorem I, it remains to treat Case III. We begin with the following lemma.

Lemma 32. Assume $S V_{1}>S_{0}$, and let H be a subgroup of G containing $S V_{1}$ and having no normal subgroups of index 2. If $f_{1}=f_{1}^{\prime}$ and $\delta_{1}=\delta_{1}^{\prime}$, then $O(H)=1$.

Proof. Let W_{1}^{\prime} be the S-invariant complement of $W_{1} \cap H$ in W_{1}. Then $U_{1}=\left(U_{1} \cap H\right) \times W_{1}^{\prime}$, and W_{1}^{\prime} is a normal subgroup of $C\left(\tau_{1}\right)$. Hence $C_{H}\left(\tau_{1}\right)$ is isomorphic to $C\left(\tau_{1}\right) / W_{1}^{\prime}$. This means that the module $M^{\prime}=M_{c_{H}\left(\tau_{1}\right)}\left(D^{\prime} \cap H\right)$ of characters of $C_{H}\left(\tau_{1}\right)$ which vanish outside of the set $D^{\prime} \cap H$ is the submodule of $M_{c_{\left(\tau_{1}\right)}}\left(D^{\prime}\right)$ which is generated by the characters which vanish on W_{1}^{\prime}. In particular the character $\eta(\lambda)$ vanishes on $U_{1} \geqq W_{1}^{\prime}$ and belongs to $M_{C\left(\tau_{1}\right)}\left(D^{\prime}\right)$ since $S V_{1}>S_{0}$. Thus $\eta(\lambda)$ is in M^{\prime}. Let χ_{1}^{\prime} and $\Lambda_{\lambda}^{\prime}$ be the irreducible characters of H appearing in the expansion of the induced character $\tilde{\eta}(\lambda)$ of $\eta(\lambda)$ to H, so that

$$
\begin{equation*}
\tilde{\eta}(\lambda)=1+\varepsilon^{\prime} \chi_{1}^{\prime}-\varepsilon^{\prime} \Lambda_{\lambda}^{\prime} \tag{85}
\end{equation*}
$$

We next observe that if an element σ of H is conjugate in G to an element σ^{\prime} of a special class, then σ is already conjugate to that element in H. Indeed, σ will be in the centralizer of an involution τ^{\prime} in G. Since H has no normal subgroups of index $2, \tau^{\prime}$ is conjugate to τ_{1} in H, and σ is conjugate to an element of $C\left(\tau_{1}\right) \cap H=C_{H}\left(\tau_{1}\right)$. Thus we may suppose that σ is in $C_{H}\left(\tau_{1}\right)$. By Lemma 26, σ and σ^{\prime} already are conjugate in $C\left(\tau_{1}\right)$. But then they will be conjugate by an element of $S \leqq H$, which is what we asserted.

Thus because of (33), $\eta(\lambda)$ and $\eta(\lambda)^{*}$ agree on all elements of H which are conjugate to an element of a special class, and they vanish on the remaining elements of H. Then $\left.\eta(\lambda)^{*}\right|_{H}=\tilde{\eta}(\lambda)$. Because $f_{1}=f_{1}^{\prime}$ and $\delta_{1}=\delta_{1}^{\prime}$, it follows from (60) that $f_{4}=f_{4}^{\prime}$. But then neither $\left.\chi_{1}\right|_{H}$ nor $\left.\Lambda_{\lambda}\right|_{H}$ can be reducible. Hence $\left.\chi_{1}\right|_{H}=\chi_{1}^{\prime}$.

Now χ_{1}^{\prime} is the character of H defined from a character of $H / O(H)$. Hence χ_{1}^{\prime} has $O(H)$ in its kernel. Then the same is true of χ_{1}. Therefore, since G is simple, $O(H)=1$.

Proposition 33. Case III. The subgroup $W_{1}=1$.
Proof. Suppose that $W_{1} \neq 1$, and let p be any prime dividing $\left|W_{1}\right|$. Let H be the subgroup constructed in Proposition 23 for the prime p. Then H contains $S V_{1}$ and has no normal subgroups of index 2. Now $\bar{H}=H / O(H)$ is isomorphic to $\operatorname{PSL}(2, q)$ where $q=2^{a+1} v+\varepsilon$ by Corollary 24. Hence $\varepsilon=\delta_{1}^{\prime}=-\delta_{2}^{\prime}=-\delta_{3}^{\prime}$.

$$
\begin{equation*}
f_{1}^{\prime}=2^{a+1} v+\varepsilon, \quad f_{2}^{\prime}=2^{a} v+\varepsilon, \quad f_{3}^{\prime}=2^{a} v+\varepsilon \tag{86}
\end{equation*}
$$

We now divide the proof into two cases.
Case A. Assume $\left|S V_{1}\right|>4$. By Corollary $24, g / g_{1}$ is an integer. Using the value of g given by (70) (with $e=e_{0}=e_{1}=1$), the value of
f_{1} given by (74), and the value of g_{1} given by Corollary 24 , we obtain that

$$
\begin{equation*}
\frac{\left(2^{a+1} v r+\delta_{1}\right)\left(2^{a} v r+\delta_{1}\right)}{r^{2}\left(2^{a+1} v+\varepsilon\right)\left(2^{a} v+\varepsilon\right)} \tag{87}
\end{equation*}
$$

is an integer. But this is possible only if $r=1$ and $\delta_{1}=\varepsilon$. Hence by (74) and (86), $f_{1}=f_{1}^{\prime}$ and $\delta_{1}=\delta_{1}^{\prime}=\varepsilon$. But Lemma 32 implies $O(H)=1$, contrary to the fact that $O(H)$ contains the p-group P constructed in Proposition 23.

Case B. Assume $\left|S V_{1}\right|=4$. Then $|S|=4$ and $\left|V_{1}\right|=1 . \quad$ By Corollary $24, g / 12 w^{3}$ is an integer. It follows then from (71) that

$$
\begin{equation*}
\frac{32}{12} \frac{f_{1} f_{2} f_{3}}{\left(f_{1}+\delta_{1}\right)\left(f_{2}+\delta_{2}\right)\left(f_{3}+\delta_{3}\right)}=\frac{32}{12} \frac{\left(\delta_{1} f_{1}\right)\left(\delta_{2} f_{2}\right)\left(\delta_{3} f_{3}\right)}{\left(\delta_{1} f_{1}+1\right)\left(\delta_{2} f_{2}+1\right)\left(\delta_{3} f_{3}+1\right)} \tag{88}
\end{equation*}
$$

is an odd integer. In (74), (75), and (76), set $x=2 r \delta_{1}, y=(2 s+1) \delta_{2}$, and $z=(2 t+1) \delta_{3}$. From (88) we obtain that

$$
\begin{align*}
& \phi(x, y, z)=\frac{2 x+1}{x+1} \cdot \frac{2 y-1}{y} \cdot \frac{2 z-1}{z} \\
&=\left(2-\frac{1}{x-1}\right)\left(2+\frac{1}{y}\right)\left(2+\frac{1}{z}\right) \tag{89}
\end{align*}
$$

is an odd multiple of 3 .
From Lemma 29 we see that $x \neq 0,-2, y \neq \pm 1$, and $z \neq \pm 1$. Also formula (59) gives

$$
\begin{equation*}
x+y+z=0 \tag{90}
\end{equation*}
$$

Now from (89), $3<\left(\frac{5}{3}\right)^{3} \leqq \phi(x, y, z) \leqq\left(\frac{7}{3}\right)^{3}<13$. Hence

$$
\begin{equation*}
\phi(x, y, z)=9 \tag{91}
\end{equation*}
$$

Suppose that $x>0$. Because of (90) we may suppose $z<0$. If $y<0$, then certainly $\phi(x, y, z)<8$ by (89), which contradicts (91). Hence $y>0$. Then from (89) and (91), $2+1 / y>\frac{9}{4}$, whence $0<y<4$. Thus $y=3$. This gives $(2-1 /(x+1))(2+1 / z)=\frac{27}{7}$. Substituting $z=-x-3$, we obtain a quadratic equation with nonintegral solutions. Consider then the case $x<0$. As above we immediately reduce to the case $y>0, z<0$. This time (89) and (91) yield

$$
\begin{equation*}
\left(2-\frac{1}{x+1}\right)\left(2-\frac{1}{y}\right)>\frac{9}{2} \tag{92}
\end{equation*}
$$

Now by (90), $(1+x)+y=1-z>0$. Hence $2-1 /(x+1)>2-1 / y$, and so $(2-1 /(x+1))^{2}>\frac{9}{2}$. This yields $x>-9.2$, whence $x \geqq-8$, and the possibilities for x are $-4,-6,-8$. Substituting $x=-4,-6,-8$ in (89) and using (90) and (91), we again obtain quadratic equations for y with nonintegral solutions. Hence this case is not possible.

Proposition 34. Case III. The group G is isomorphic to $\operatorname{PSL}(2, q), q$ odd.
Proof. Since $W_{1}=1, C\left(\tau_{1}\right)=S V_{1}$. Hence for any element $\sigma \neq 1$ of V_{1} we have $C(\sigma) \leqq C\left(\tau_{1}\right)$. Since τ_{2} inverts V_{1}, the conditions of the theorem of Brauer, Suzuki, and Wall ${ }^{5}$ are satisfied, and it follows that G is isomorphic to $\operatorname{PSL}(2, q), q$ odd.

This completes the proof of Theorem I.

16. An application of Theorem I

In [16] Suzuki has investigated groups which contain a cyclic subgroup of order 4 which is its own centralizer. Combining his results with Theorem I and a theorem of Brauer and Suzuki [6] on the structure of groups whose Sylow 2-subgroups are generalized quaternion groups, we are able to obtain the following generalization of Suzuki's results:

Theorem II. Let G be a finite group containing a subgroup of order 4 which is its own centralizer in G. Then either
(i) G has no normal subgroups of index 2, and a Sylow 2-subgroup of G is generated by elements α, β satisfying the relations

$$
\beta^{2}=1, \quad \alpha^{2 a}=1, \quad \beta \alpha \beta^{-1}=\alpha^{-1+2^{a-1}}
$$

(ii) G contains a normal subgroup G_{0} of index less than or equal to 2 , and $G_{0} / O\left(G_{0}\right)$ is isomorphic to one of the groups $\operatorname{SL}(2, q), \operatorname{PGL}(2, q), \operatorname{PSL}(2, q)$, q odd, or A_{7}; or
(iii) G possesses a normal 2-complement.

Proof. Let S_{0} be a self-centralizing subgroup of order 4 in G. In [14] and [16] Suzuki has determined the structure of a 2-group S which contains such a subgroup S_{0}. Taking each of these possibilities for S in turn as a Sylow 2 -subgroup of G, Suzuki shows in [14] and [16] by means of Grün's theorem that one of the following conditions must hold:
(a) $S=\{\alpha, \beta\}$, where $\beta^{2}=1, \alpha^{2^{a}}=1$, and $\beta \alpha \beta^{-1}=\alpha^{-1+2^{a-1}}$, and G has no normal subgroups of index 2;
(b) G contains a normal subgroup G_{0} of index less than or equal to 2 whose Sylow 2-subgroups are dihedral groups;
(c) The Sylow 2 -subgroups of G are of the form (a), and G contains a normal subgroup G_{0} of index 2 whose Sylow 2 -subgroups are generalized quaternion groups;
(d) G has no normal subgroups of index 2, and the Sylow 2 -subgroups of G are quaternion groups of order 8;
(e) G has a normal 2-complement.

In Case (b) if τ_{1} denotes the central involution of $S \cap G_{0}$ (which is a Sylow 2-subgroup of G_{0}), then $\left|C_{G}\left(\tau_{1}\right): C_{G_{0}}\left(\tau_{1}\right)\right| \leqq 2$, and $C_{G_{0}}\left(\tau_{1}\right)$ has a normal 2-complement U_{1} which is normalized by S_{0}. Since $C_{G}\left(S_{0}\right)=S_{0}$ and τ_{1} cen-
tralizes U_{1}, S_{0} must contain an element π which inverts U_{1}, so U_{1} is abelian. This holds whether S_{0} is cyclic or a four-group. It follows then from Theorem I that $G_{0} / O\left(G_{0}\right)$ is isomorphic to $\operatorname{PGL}(2, q), P S L(2, q), q$ odd, or A_{7}, or else has a normal 2 -complement.

On the other hand, in Case (c) it follows from [6] that $G_{0} / O\left(G_{0}\right)$ contains a unique element of order 2, and hence that G possesses a normal subgroup $K>O\left(G_{0}\right)$ such that $\left|K: O\left(G_{0}\right)\right|=2$. Furthermore $\bar{G}=G / K$ has a dihedral Sylow 2 -subgroup and contains a normal subgroup \bar{G}_{0} of index 2. It follows as in (b) that \bar{G} satisfies the hypotheses of Theorem I. Since $O(\bar{G})=1, \bar{G}_{0}$ is either isomorphic to $\operatorname{PSL}(2, q)$ or else has a normal 2-complement. In the first case $G_{0} / O\left(G_{0}\right)$ is isomorphic to $S L(2, q)$ by a theorem of Schur, and in the second G has a normal 2 -complement.

Finally in Case (d), $G / O(G)$ is isomorphic to $S L(2,3)$ or $S L(2,5)$ by [16].
Remarks. Theorem I is not sufficient to classify groups which satisfy condition (i), for it is known that these include the groups $\operatorname{PSL}(3, q)$, $q \equiv 3(\bmod 4)$, among others.

Theorem II does give, however, as a special case, a classification of groups which admit an automorphism ϕ of order 2 with exactly two fixed points, which was previously obtained by Zassenhaus [24]. In fact, if G_{0} is such a group and G denotes the holomorph of G_{0} and ϕ, then G possesses a subgroup of order 4 which is its own centralizer in G; and hence G satisfies either condition (ii) or (iii) of the theorem.

Finally we remark that when $S_{0}=\{\pi\}$ is cyclic, Theorem II can be considerably sharpened. In fact, in this case Suzuki shows that when G has no normal subgroups of index 2, either G is isomorphic to A_{7}, or $G / O(G)$ is isomorphic to $P S L(2,7), P S L(2,9), S L(2,3)$, or $S L(2,5)$, and that $O(G)$ is abelian. Furthermore π induces an automorphism of $O(G)$ leaving only the identity element fixed, so that by a result of Gorenstein and Herstein [12], $O(G)$ is always solvable, and its commutator subgroup is nilpotent. If G has a normal subgroup of index 2 but not a normal 2-complement, it follows easily from Theorem I that $G / O(G)$ is isomorphic to S_{4} or S_{5}.

Bibliography

1. H. F. Blichfeldt, Finite collineation groups, Chicago, University of Chicago Press, 1917.
2. R. Brauer, On the structure of groups of finite order, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, vol. I, pp. 209-217.
3. ——, Zur Darstellungstheorie der Gruppen endlicher Ordnung, Math. Zeitschrift, vol. 63 (1956), pp. 406-444.
4. - Z Zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeitschrift, vol. 72 (1959), pp. 25-46.
5. -- Les groupes d'ordre fini et leurs caractères, Séminaire P. Dubreil, M.-L. Du-breil-Jacotin et C. Pisot, 1958/59, Paris, 1960, pp. 6-01 to 6-16.
6. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 1757-1759.
7. R. Brauer, M. Suzuki, and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois J. Math., vol. 2 (1958), pp. 718-745.
8. A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2), vol. 38 (1937), pp. 533-550.
9. L. E. Dickson, Linear groups, with an exposition of the Galois field theory, Leipzig, B. G. Teubner, 1901.
10. J. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete (n.F.), Heft 5, Berlin, Springer, 1955.
11. W. Feit, A characterization of the simple groups $S L\left(2,2^{a}\right)$, Amer. J. Math., vol. 82 (1960), pp. 281-300.
12. D. Gorenstein and I. N. Herstein, Finite groups admitting a fixed-point-free automorphism of order 4, Amer. J. Math., vol. 83 (1961), pp. 71-78.
13. M. Hall, Jr., The theory of groups, New York, Macmillan, 1959.
14. M. Suzuki, A characterization of simple groups $L F(2, p)$, J. Fac. Sci. Univ. Tokyo, Sect. I, vol. 6 (1951), pp. 259-293.
15. -, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., vol. 77 (1955), pp. 657-691.
16. - On finite groups containing an element of order four which commutes only with its powers, Illinois J. Math., vol. 3 (1959), pp. 255-271.
17. -—, On characterizations of linear groups, I, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 191-204.
18. -——, On characterizations of linear groups, II, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 205-219.
19. -- Applications of group characters, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., vol. 1, 1959, pp. 88-99.
20. --, Investigations on finite groups, Proc. Nat. Acad. Sci. U.S.A., vol. 46 (1960), pp. 1611-1614.
21. J. H. Walter, On the characterizations of linear and projective linear groups. I, Trans. Amer. Math. Soc., vol. 100 (1961), pp. 481-529.
22. -- On the characterization of linear and projective linear groups. II, Trans. Amer. Math. Soc., vol. 101 (1961), pp. 107-123.
23. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Zeitschrift, vol. 73 (1960), pp. 146-158.
24. H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, vol. 11 (1936), pp. 17-40.

Clark University
Worcester, Massachusetts
The University of Chicago
Chicago, Illinois
University of Illinois
Urbana, Illinois

[^0]: Received July 17, 1961; received in revised form March 20, 1962.
 ${ }^{1}$ This paper was written while the first author was supported by the National Science Foundation. Both authors feel indebted to the University of Chicago for its sponsorship of a year's gathering of mathematicians in the field of finite groups. Correspondingly we are indebted to many of our colleagues with whom we had valuable discussions. In particular, we mention Professors Walter Feit, Michio Suzuki, and John Thompson. We are indebted to Professor Richard Brauer for explaining and communicating to us some of his results, which affected our development of the character theory in this paper.
 ${ }^{2} \mathrm{An}$ involution is understood to be an element of order 2.
 ${ }^{3}$ These are the groups of unimodular projectivities of a projective line defined with a finite coordinate field F_{q} of q elements. The groups $\operatorname{PGL}(2, q)$ are the groups of projectivities of the projective line defined over F_{q}. Also $\operatorname{PSL}(2, q)$ and $P G L(2, q)$ are the homomorphic images of the unimodular group $S L(2, q)$ and the general linear group $G L(2, q)$ by the homomorphism of $G L(2, q)$ onto $G L(2, q) / Z_{2}$ where Z_{2} is the subgroup of scalar transformations.
 ${ }^{4}$ We also understand that an elementary abelian group of type $(2,2)$ is a dihedral group. Such groups will be called four-groups in this paper.

[^1]: ${ }^{5}$ Actually they assume, in addition, that the group U is cyclic. The generalization to the abelian case, which we need, has been carried out and, in fact, can be obtained by making minor adjustments in their arguments.

[^2]: ${ }^{6}$ This assumption of solvability is necessary to secure the well-known result on the existence of invariant Sylow p-groups which we include in the statement of this lemma.
 ${ }^{7}$ A subset H of a group K is said to be left invariant by a group T of automorphisms of K if $H^{T}=H$; if $x^{\sigma}=x$ for all x in H and σ in T, then H is said to be left fixed by T.
 ${ }^{8}$ An element x of G is said to be inverted by an element σ if $x^{\sigma}=x^{-1}$. A subset is said to be inverted by σ if each of its elements is inverted by σ.

[^3]: ${ }^{9}$ Added in proof. Now that Walter Feit and John Thompson have proved that all groups of odd order are solvable, it follows from this remark that an alternative proof could be given for Case III with $W_{1} \neq 1$ by using Proposition 30 instead of Lemma 32 and Proposition 33.

