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SOME REMARKS ON CERNIKOV -GROUPS

BY

:NORMAN BLACKBURN

Following Kurosh [9, vol. II, p. 230], we say that a p-group G is a Cernikov
p-group if G is locally finite and satisfies the minimal condition for subgroups.
A subgroup or factor group of a (ernikov p-group is a (ernikov p-group, and
if G is a group which has a normal subgroup N such that N and GIN are
(ernikov p-groups, then G is a (ernikov p-group. An Abelian p-group is
a (ernikov p-group if and only if it is the direct product of a finite number of
groups which are either cyclic or of type p; this is equivalent to the condition
that the group has a finite number of elements of order p.

This class of groups has been the subject of considerable investigation over
the last twenty years, and the primary aim of this note is to give some improve-
ments on the known results. Thus in 3 we give characterizations of normal
Cernikov p-subgroups of p-groups, and in 4 we generalize the theorem of
(ernikov on locally finite p-groups in which the Abelian subgroups satisfy
the minimal condition. In 5 we continue a previous discussion of the sim-
plest non-nilpotent (ernikov p-groups. The proofs require the applications
of known lemmas, which are described in 1 and 2. Our secondary aim is
to present the theory of (ernikov p-groups in a concise form, which is desirable
since the existing literature on the subject is widely scattered. The proofs of
the known results are therefore sketched.

I should like to thank Professor R. Baer for a number of useful suggestions
and comments, and in particular for suggesting Theorem 2.6.

1. The hypercentre
For any group G we denote by i:(G) the hypercentre of G, defined to be the

intersection of all normal subgroups N of G for which the centre of GIN is the
unit subgroup. The upper central series of G is denoted by

1 ’0(G) <__ I(G) <__ .(G) <_-

this is defined inductively by the property that for n > 0, (G)/,_I(G) is
the centre of G/n_I(G). We also write

i’(G) U=o
It is easy to see that the centre of G/(G) is the unit group, and so if N is a
normal subgroup of G contained in (G), then

(G/N) f(G) IN.
Clearly i’l(G) _<- (G), and so by induction on n, i’n(G) <- (G). Hence
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’(G) -< (G). (G) is in fact the terminal member of the transfinitely con-
tinued upper central series of G.
The following remarks on the hypercentre are well known.

LEMM& 1.1. Let G be a group.
(a) Let M, N be normal subgroups of G such that M < N <= (G). Then

there is an element x lying in N but not in M such that xM e (G/M) and
x, M} is normal in G.
(b) If H <- G, then (H) (G) H, and if H >-_ (G), then

(H)/(G) (H/f(G) ).

(c) If N is a normal subgroup of G contained in (G), then either

N <- r(G) or Nrr+I(G) > Nrr(G) for eachr- 0,1,2, ....
(d) Let N be a normal subgroup of G, let A be a maximal normal Abelian

subgroup of G contained in N, and let C be the centraliser of A in G. Then
C r (G) r N A r (G).

(e) If N is a normal subgroup of G contained in (G), and if (N:I) p
(p prime), then N <- r(G).

All these statements except (b) are proved by virtually the same arguments
as in the case when G is a finite p-group (see e.g. [12], Chap. IV, 3), the
inductions being replaced by applications of Zorn’s Lemma. The proof of
(b) is most simply accomplished by using the subsidiary result that an ele-
ment x of a group G lies in (G) if and only if given any infinite sequence
xl, x, of elements of G there exists an integer n such that the simple
commutator

Ix, xl x. x]

is 1; the proof of this is the same as in the case when :(G) G (see [9], vol.
II, p. 219).
A group G for which (G) G is called a ZA-group. Thus a group G is a

ZA-group if and only if the centre of each nontrivial homomorphic image of
G is nontrivial. We note that such a group G is equal to its derived group
G’ only if G 1, for if G G’, then

[G, ’.(G) [G’, .(G) 1,

and so ’=(G) (G), G is Abelian, and G’ 1. It was proved by Mal’cev
that a ZA-group is locally nilpotent (see [9], vol. II, p. 223). The converse
is not true, for there exist locally finite p-groups G 1 for which ’I(G) 1.
Several examples of such groups have been given; for instance Baumslag [4]
has observed that if r is an infinite group and G is a nontrivial group, then the
wreath product K of 1 and G has trivial centre, whereas of course if I and G
are locally finite p-groups, so is K. In the same paper the following result is
proved.
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LEMM/k 1.2 (Baumslag). If the p-group G has a normal nilpotent subgroup
of finite index and finite exponent, then G is nilpotent.

The following remark is of a similar nature.

LEMMA 1.3. Let G be a locally nilpotent group generated by a normal subgroup
N and a finite number of elements xl, x., xr. Then (G) >= (N). In
particular if N is a ZA-group, so is G.

Let K i:(G) n :(N). If K < (N), then the centre L/K of N/K is not
the unit group, and so L > K. L is a normal subgroup of G contained in
(N). If a is an element of L which does not lie in K, let H be the group
generated by a, xl, x, xr and K. Since G is locally nilpotent, H/K is
nilpotent. But L H/K is a normal subgroup of H/K and is not the unit
group since a e L H, a e K; hence by Lemma 1.1(a) there is an element b
lying in L a H but not in K such that bK (H/K). Thus bK commutes
with each xK (j 1, 2, r). But since b e L, bK commutes with each
element of N/K. Hence bK commutes with all generators of G/K, and
bK (G/K). Since b K but b L __< (N), it follows that if.

(N)/g I(G/K) M/K,

then M > K. But since K -_< (G), we have M __< i:(G)" thus

M -< (G) n (N) K,

which is a contradiction. Hence K :(N) and (N) -< :(G), as required.
If N is a ZA-group, we obtain (G) _-> N. But G(G) has trivial centre, and
GIN is nilpotent" hence G/(G) is the unit group, and G is a ZA-group.

2. Lemmas on p-groups
In this section we give the lemmas which are fundamental for the theory

of Cernikov p-groups.

LEMM. 2.1 (McLain). A minimal normal subgroup of a. locally nilpotent
group G is contained in the centre of G and is of prime order.

The proof is given in [10].
If G is a p-group, we denote by r(G) the subgroup of G generated by all

elements of order at most pr (r 0, 1, 2, ...). ,(G) is a characteristic
subgroup of G, and if G is Abelian, ),(G) consists precisely of the elements of
G of order at most p. The following lemma is well known (cf. [3], p. 525).

LEMM 2.2.
subgroup of G.

Let G be a p-group, and let A be a normal divisible Abelian
Then A and h(A have the same centralisers in G.

For if this is false, there is an element x which lies in the centraliser K of
(A), such that x lies in the centraliser C of A but x e C, since C, K are
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normal subgroups of G. Now if is any element of A, then [t, x] e A, and so

[t, x] t-(tv) t-v(t) t-v(t[t, x]) v [t, x] ’.
Since x C, we can choose an element y of A of the smallest possible order
such that [y, x] 1. Then [y, x] [y, x] 1. Since A is divisible,
y z for some z e A, and [z, x] [z, x] [y, x]. Hence [z, x] e },.(A) and
[z,x,x] 1. Thus

Ix, z]- x-(x)’- x-(x*) --- x-(x[x, z])- [x, z] Ix, Yl 1.

But x e C, and so Ix, z] 1, which gives a contradiction.

COROLL,RY. Suppose that the p-group G has a normal Abelian subgroup A
which is a Cernikov p-group. Then the centraliser C of A has finite index in G.

A is the direct product of a divisible subgroup D and a finite group F;
moreoverD is a characteristic subgroup of A and is therefore normal in G. By
Lemma 2.2 the centraliser H of D is the same as that of (D). Also ),(D)
is finite since A is a (ernikov p-group. But G/H is isomorphic to a group
of automorphisms of h(D) and is therefore finite. Now H/C is isomorphic
to a group of automorphisms of A which leave invariant the elements of D.
Such an automorphism a is completely determined by its effect on F and
therefore by its effect on hr(A), where (F" 1) pr. Since k(A) is finite,
it follows that H/C is finite. Hence G/C is finite.

It is easy to deduce the well-known fact that a p-group G is a ernikov
p-group if and only if G has a divisible Abelian normal subgroup D of finite
index and D is the direct product of a finite number of groups of type p. For a
group with this structure clearly satisfies the minimal condition for subgroups
and is locally finite. Suppose conversely that G is a Cernikov p-group. By
Lemma 2.1, G is a ZA-group. Hence if A is a maximal normal Abelian sub-
group of G, A is its own centraliser by Lemma 1.1 (d). It follows from Lemma
2.2, Corollary that G/A is finite. Also the maximal divisible subgroup D
of A is of finite index and is normal in G. Since D satisfies the minimal
condition, D is the direct product of a finite number ]c of groups of type p.
We observe that D contains any divisible subgroup H of G, for HD/D, being
both finite and divisible, must be the unit group. D is therefore a char-
acteristic subgroup of G. We write ]c (G); this is an invariant" of G.
The following lemma was proved in [6].

LEMM/k 2.3 ((ernikov).
subgroup A of finite index.

Let G be a p-group which has an Abelian normal
If (G) is a ernikov p-group, so is G.

It is necessary to show that A satisfies the minimal condition for sub-
groups. If this is not so, there is a maximal normal subgroup K of G such
that A _<- K -< G and Z ’I(K) does not satisfy the minimal condition for
subgroups. By hypothesis K G, and so there is a normal subgroup H of
G such that H > K and H/K is of order p. Write H {s, K}, E },I(Z),
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J s, E} note that E is an infinite normal subgroup of G. Hence by Lemma
1.2, J is nilpotent. Thus there is a smallest integer n > 0 such that E n i’(J)
s infinite. Let F be the finite group E n -z(J), and let tz, t be an
infinite set of elements of E (J), no two of which lie in the same coset of F.
Then [tr, s] e F, and so there exist indices i, j such that [t, s] [t s]. Hence
t t. commutes with s, and so t t e E z(J) Since -zt t. F, it follows that
n 1, and E i’z(J) is infinite. But E z(J) -< E __< i’z(K) and JK H;
thus E n z(J) -< i’z(H), and },z{ z(H) is infinite. This contradicts the
definition of K.

For any p-group G we denote by pr(G) the group generated by all pr-th
powers of elements of G. This is a characteristic subgroup of G. The follow-
ing useful lemma is proved in [7].

LEMM/k 2.4 ((ernikov). Let G be a nilpotent p-group of class c.
(a) An element x of G of order p’ commutes with all elements of
(b) [’1,= p(g) _< (G)
(c) Every divisible subgroup of G is contained in z(G).

We prove (a) by induction on c. Thus we may assume that c > 1 and
that if y e G and y(-)", then [x, t] e i’z(G). Hence for any integers a, t,

Ix", ] Ix, t]".
In particular

Ix, ’] Ix, t]" Ix’, t] 1,

as required. (b) and (c) are immediate consequences of (a).
The following is an easy consequence of this.

THEOREM 2.5. If G is a Cernilcov p-group, then ,(G)/z(G) is finite
(n- 1, 2, ..-).

Let D be the maximal divisible subgroup of G, let D D (G), and
let D* be the maximal divisible subgroup of D. Since D* =< i’(G), the
group H generated by D* and any element a of G is nilpotent. Hence by
Lemm 2.4, D* -< i’z(H). Thus [D*, a] 1 and D* =< i’(G). Hence

D* -< Dz(G)

and D,/Dz is finite. And (G)/D,, being isomorphic to ,(G)D/D, is
finite. Thus ,,(G)/Dz and i’(G)/z(G) are finite.

COROLLXRY. If G is a nilpotent ernikov p-group, G has a finite character-
istic subgroup K such that G/K is a divisible Abelian group.

This follows almost at once from the Schur-Baer Theorem ([1], p. 396),
but can also be simply deduced by induction on the class c of G. It is clear
for c 1. If c > 1, let M i’(G). By Theorem 2.5, M/z(M) is finite.
Suppose that M is generated by z(M) and the elements
The finitely many commutators [x, x.] will then lie in a finite characteristic
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subgroup L of i’l(M). M/L is Abelian and therefore has a characteristic
subgroup NIL of finite order such that M/N is divisible. By Lemma 2.4(c)
M/N <- I(G/N), and so [’2(G), G] _-< N. Hence GIN has class less than c,
and the result follows from the inductive hypothesis.
A number of other properties of (ernikov p-groups are special cases of

results in [2]. For instance if G isa (ernikov p-group, ’(G) consists precisely
of those elements of G which have only a finite number of conjugates, and
i’(G) contains its centraliser in G.
The well-known fact that a locally finite p-group is a Cernikov p-group if

and only if it satisfies the minimal condition for normal subgroups is proved in
[10], and is easily deduced from more general results in [2]. It also follows
immediately from Lemma 2.1 and the following theorem.

THEOREM 2.6. Let I be a p-group of automorphisms of the p-group G.
Suppose that G and ?I are ZA-groups and that G satisfies the minimal condition

for I-invariant subgroups. Then G is a Cernikov p-group.

Suppose that this is false. Then there is a minimal /-invariant subgroup
M of G which is not a (ernikov p-group. Since G is a ZA-group, M M,
and so M is a (ernikov p-group, on account of the definition of M. Now
?l induces a p-group of automorphisms of M/M’. Also ! is a ZA-group,
and M/M satisfies the minimal condition for !-invariant subgroups. Thus
! 1, since otherwise M/M’ is a Cernikov p-group and hence so is M.

Let A M/M’, and let B be the subgroup of the holomorph of A generated
by A and !. Since ! 1 and ! is a ZA-group, there is a normal subgroup
C/A of B/A of order p. By Lemma 2.3, ’1(C) is not a (ernikov p-group.
Hence if K/M’ (C) n A, K/M’ is not a (ernikov p-group, but since i’1 (C)
is a normal subgroup of B, K is an invariant subgroup of M. It follows that
K is not a Cernikov p-group, and so by the definition of M, K M. Hence
A __< ’(C). But A is its own centraliser in its holomorph, and so we have a
contradiction. Thus G is a (ernikov p-group.

3. Normal Cernikov p-subgroups
THEOREM 3.1. Let G be a p-group, let N be a normal subgroup of G con-

tained in (G), and let C be the centraliser of N in G. Then N is a Cerni]cov

p-group if and only if G/C and N n (G) are Cernilcov p-groups.

We deal first with the case when G/C and N (G) are (ernikov p-groups.
This is a generalization of Lemma 2.3, for by Lemma 1.3 the group of Lemma
2.3 is a ZA-group. We observe that N/(N n C), being isomorphic to NC/C,
is a (ernikov p-group, and it is therefore only necessary to show that the
Abelian group N n C is a (ernikov p-group. Let A ),I(N C); this is
normal in G. Let D/C be the maximal divisible subgroup of the (ernikov
p-group G/C; D is a normal subgroup of finite index in G. If As A n ’.(G),
we show by induction on n that [Am, D] 1. This is clear for n 1, and
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for n > 1 we have [An-1, D] 1. If b e D, there exist elements x e D, y e C
such that b x’y, since K/C is divisible. For any element a e An, [x, a]
lies in An_I and therefore commutes with x. Hence

Ix, a] x-P(xa) p x-P(x[x, a]) v [x, a] 1.

But since a e N and y C, a and y commute; hence a commutes with x’y b,
and[An,D] l as required. Thus ifAo O=0An,[Ao,D] 1.

Since G/D is finite, there is a finite set of elements x, x., xr which
together with D generate G. Let H be the group generated by x, x., xr
and Ao. Since [Ao, D] 1, ’(H) n Ao

_
’I(G) n N; hence ’(H) n Ao

is finite, since it is a (ernikov p-group of exponent p. But H/Ao is finite;
hence ’I(H) is finite. Thus by Lemma 2.3, H is a (ernikov p-group, and
so A is finite. Hence A A for some integer r, and so A n ’+I(G)
A n ’(G). Thus by Lemma 1.1(c), A =< i’(G), since A -< i=(G). This
shows that A A is finite, and since A Xl(N n C), N n C is a (ernikov
p-group, as required.
Now suppose conversely that N is a (ernikov p-group. Clearly N n (G)

is a (ernikov p-group. Let D be the maximal divisible Abelian subgroup of
N, and let H be the centraliser of D in G. D and H are normal in G, and
by Lemma 2.2, H is the centraliser of X.(D). But X(D) is finite, and so
G/H is finite. Next let KID be the centraliser of N/D in HID. Since
N/D is finite, H/K is finite. Now by Hall’s Three Subgroup Theorem (see
e.g. [12], Chap. II, Theorem 14)

[K’, N] <- [K, N, K] <- [D, K] 1,

and so K’ =< C. Hence G/C has an Abelian subgroup K/C of finite index,
and it is only necessary to show that K/C has only a finite number of ele-
ments of order p. To do this we prove that the number of automorphisms
a of N of order p which centralise N/D and D is finite. If N is generated by
elements x, x, x together with D, a is determined by its effect on
each x., and x x. y. (j 1, 2, r), where y. is an element of D of
order p. Hence the number of automorphisms a is at most p*(). This
completes the proof of Theorem 3.1.
We also prove the following generalization of a theorem of Muhammedan

[111.

THEOREM 3.2. Suppose that the p-group G is a ZA-group and that N is a
normal subgroup of G. Each of the following conditions is necessary and suj-
cient for N to be a Oernikov p-group.

(1) N n n(G) is a Oernikov p-group for each n 1, 2, ....
(2) For each finite elementary Abelian normal subgroup K of G contained

in N, (G/K) n N/K is a ernikov p-group.

It is clear that if N is a ernikov p-group, (1) is satisfied. To show that
(1) implies (2), we observe that if K is a normal subgroup of G of order p
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and K =< N, then by Lemma 1.1(e), K -< i%(G), since G is a ZA-group.
Hence

1(G/K) n N/K <= + G) N)K/K

(G) N/+(G) K,
and so (G/K) N/K is a (ernikov p-group.

It therefore remains to show that if N satisfies (2), then N is a Cernikov
p-group. Under this assumption let K be a maximal normal Abelian subgroup
of G contained in N, let E (K), and let En E a i’n(G) (n 0, 1, ).
The groups E, E are normal in G. We shall assume that E is infinite and
obtain a contradiction. First we show that E is finite by induction on n.
This is clear for n 0, and for n > 0, En- is finite. The condition (2) shows
that (G/En_I) N/E,_ is a (ernikov p-group. Since En/E,_ is con-
rained in this group and is of exponent p, it follows that E,/En_ is finite, as
required.
Now let be a set of suffixes, and let (E0)0e be a chain of infinite normal

subgroups of G contained in E. Put D 0e E. Since En is finite, E0
cannot be contained in En, and hence cannot be contained in i’n(G). Hence
by Lemma 1.1(c), E0 a +I(G) > E n i’(G), that is, E a En+l > E a E.
But now we may choose e ) such that E, En+ is minimal. Since (E)
is a chain, it follows that for each (, E En+ >= E En+. Hence

D En+ E n En+ > E n En >= D En
Thus D is infinite.
Hence by Zorn’s lemma there is a minimal infinite Abelian normal sub-

group A of G contained in E, Let C be the centraliser of A in G. Since A
is infinite and E is finite, C < G. And since G is a ZA-group, there is a
normal subgroup B of G such that B >_- C and (B :C) p. Then i’(B) n A is
a normal subgroup of G properly contained in A, and so by the definition of
A, ’(B) n A is finite. By Theorem 3.1, A is therefore a Cernikov p-group,
and we have a contradiction.

It follows that E is finite and K is a ernikov p-group. By Lemma 1.1 (d),
K is its own centraliser in N. Hence by Lemma 2.2, Corollary, N/K is
finite and N is a (ernikov p-group.

4. Maximal Abelian subgroups
In this section we prove the following theorem.

THEOREM 4.1. Suppose that G is a locally finite p-group, and that there is a
maximal Abelian subgroup A of exponent p of G which is finite of order p.
Then G is a ernilcov p-group, and (G) <= p-l. This bound is best possible.

This is a generalization of a theorem of (ernikov [7], which asserts that
if G is a locally finite p-group and all Abelian subgroups of G are (ernikov
p-groups, then G is a (ernikov p-group. It is of course not sufficient to
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assume that G is locally finite and one maximal Abelian subgroup is a (ernikov
p-group, as the wreath product of a group of type p with a cyclic group of
order p shows. Under this hypothesis, however, Cernikov has shown [8]
that the hypercentre of G is a (ernikov p-group. We shall prove this first
of all.

THEOREM 4.2 ((ernikov). Suppose that the p-group G is a ZA-group and
has a maximal Abelian subgroup A which is a ernikov p-group. Then G is
a Cernikov p-group.

Let N be a maximal normal Abelian subgroup of G, and let H NA.
Then A is a maximal Abelian subgroup of H, and so A __> i’l(H); hence
N n ’I(H) is a (ernikov p-group. Since also H is a ZA-group and H/N is
(ernikov p-group, we deduce from Theorem 3.1 that N is a (ernikov p-group.
By Lemma 1.1(d), N is its own centraliser, and so by Lemma 2.2, Corollary,
G/N is finite. Hence G is a (ernikov p-group.
To prove Theorem 4.1 let H be a maximal subgroup such that H _-> A (G)

and H/(G) is Abelian of exponent p. By Lemma 1.1(b), H is a ZA-group.
If B is a maximal Abelian subgroup of H containing A, then B has only a finite
number of elements of order p, since such an element must lie in A. Hence
B is a (ernikov p-group, and by Theorem 4.2, H is a (ernikov p-group.
Thus I H/(G) is finite.
Put( G/(G). IfG 1, then/ 1;letxl,x,... ,xbetheele-

ments of/ other than 1. Since i’() 1, there exist elements yl, y., y
.such that [x, y] 1. Let K be the group generated by x,... ,x,
yl, y Since G is locally finite, : is finite. Also : 1, and so i’1(/)
.contains an element z of order p. By the definition of/, z /. But {z,/}
is Abelian of exponent p, which contradicts the definition of H. Hence
G (G) H is a ernikov p-group.
To show that (G) -< pr-, let D be the maximal divisible subgroup of G.

We need only apply the following lemma to A,(D).

LEMMA 4.3. Let G be a finite p-group of the form G AN, where N is a
normal elementary Abelian p-group and A is a maximal elementary Abelian
subgroup. If A 1) pr, then N" 1) <__

The proof is by induction on r. The result is trivial if r 1 or if A =< i’(G).
.Otherwise if x e i’(G), write x yz, where y e A, z e N. For each element
t e A, x x yz and soz z. Hence z e I(G), and {z, A} is elementary
Abelian. Thus z e A and x e A. Hence i’(G) < A. Let A be a maximal
subgroup of A containing i’(G), and choose an element a of A which does
not lie in A. The centraliser C of a in N is normal in G. Let G C1 A,
.and let B1 be the centraliser of A in G. Then since G is contained in the
centraliserofa, B

_
A. ButAaGI <= (N n A)A <= (G)A A and

so B A. Thus A1 is a maximal elementary Abelian subgroup of G, and
by the inductive hypothesis (C1" 1) -< pr
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We now define a series of subgroups C1 =< C. -< Ca =< of N inductively,
C being the set of elements x of N for which Ix, a]e C_1 (i 2, 3,.--).
Now suppose that for some i => 1, el, e2, en are elements of G whose
cosets modulo C form a minimal basis for C+1. If b [e, a] and

ban,2 C-1 (0 < o < p),

then [t;l[ala22 e"n, a] e Ci-1 so that 1 2 e e Ci nd al as
pr--2

a 0. Hence (el Ci-1) Ci+l Ci) and (Ci+l Ci) (el 1) p
ButC N, forifxeN, sincea 1, a (a) (a[a, x]). Thus

av 1 2 ap,

where al [a, x] and a, Jan-l, a] for n > 1. Thus a 1, and x e C,
--1

asrequired. Hence(N’l) __< pvr

The fact that the bound in Theorem 4.1 is best possible is seen by observing
that the wreath product of an elementary Abelian group of order pr-1 with a
group of type p has a maximal elementary Abelian subgroup of order pr.

5. Some species[ Cemikov p-groups
In [5] it was shown that if G is a p-group and

(G’,,(G)) (’,+I(G)’’,(G)) p (n 0, 1, 2,...),

then G is isomorphic to one of two groups, which have generators s, sl, s2,
and defining relations

%()s, -l’..sn_+l 1 (n p, p 1,.-.),
v 1s’ s’ s_ [s, s’] 1,

[81, 8] 1, [Sn 8] 8n--1 (T 2, 3, "’’),

sv 1 or 81.

These groups are precisely the (nontrivial) direct limits of p-groups of maxi-
mal class and will be referred to as such. Such a group G is a ernikov
p-group, and ti(G) p 1. On the other hand (ernikov has shown [4]
that if G is a non-nilpotent (ernikov p-group, then ti(G) -> p 1. In this
section we investigate the case ti (G) p 1 and give some characterizations
of the direct limits of p-groups of maximal class.

THEOREM 5.1. Let G be a ernikov p-group for which (G) <= p 1. Then
either G/I(G) is finite, or G has a finite normal subgroup N such that G/N is a
direct limit of p-groups of maximal class.

To prove this we need the following lemma.

LEMMA 5.2. Let G be a non-Abelian p-group which has a normal subgroup
N of index p, and suppose that N is the direct product of at most p 1 groups
of type p.O. Then G is a direct limit of p-groups of maximal class.
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Since G is non-Abelian, N $ l(G), and so by Lemma 2.4, G is not nil-
potent. Now G satisfies the minimal condition for subgroups, and so the
lower central series of G terminates after a finite number of steps in a group
K for which [K, G] K. G/K is nilpotent, but G is not nilpotent; hence
K $ i%(G) for any n 0, 1, 2, .... Let L be the maximal divisible sub-
group of K. L is normal in G, and K/L is a finite normal subgroup of G/L.
Hence by Lemma 1.1(e), K/L <- r(G/L) for some integer r. Thus
[K, G, G] -< L. Since [K, G] K, it follows that K L is divisible.
Let s be an element which together with N generates G. We show next that

each element x of K can be written in the form x [y, s] for some y e K.
The normaliser of [K, s] contains s and N and is therefore G. Again the
centraliser of K/[K, s] contains s and N and is therefore G. Thus
K-- [K,G] _-< [K,s]. Hence

x [yl, s]’[y2, s] [yr, s]r

for some yl, y., y e K and e =t=l. Since K is Abelian,

X tYl y2 Yr 8],
as required.
Now choose an element sl 1 in K n (G). We may define inductively

elements s, sa, of K by the rule

s,_ Is,, s] (n 2, 3,...).
Since sT e N, we have

s (s) (g) (ss_) s( ()
8n--1 O-n--9 8n--p)

where we interpret So s-1 s_. 1, Thus

o(f)
8n--1.3n--2 8n--p 1.

In particular
8p p pp p --1

82 8 --1 17 8p 81

Since s 1, K n -I(G) is of exponent p.
Let E (K). E is a normal subgroup of N, and by hypothesis (E’I) -<

p-. But s_ e E and s__2(G). Hence E $ _2(G), and so by
Lemma 1.1 (c),

E n v_(G) > E n ’,_2(G) > > E n ’(G) > 1.

Hence (E n 1(G)’1) p and (E’I) pV-. K therefore contains
elements of N of order p, and since K is divisible, it follows that K N by
a well-known theorem on Abelian groups [9, vol. I, p. 163]. Hence N n l(G)
is of exponent p and is thus contained in E n ’,(G). But obviously (G) =< N,
and so i’l(G) is of order p. It follows by induction that n(G) <-_ N and
,,(G)/,,_I(G) is of orderp (n 1, 2,...). For eachr 1,2,... ,h,(N)
is finite, and so by Lemma 1.1(e), h,(N) =< (G). Thus N =< ’(G).



Since ,(G) -<_ N for each n 1, 2, we have N (G), and G/(G)
is of order p. Thus G is a direct limit of p-groups of maximal class.
To prove Theorem 5.1 let G be a Cernikov p-group for which (G) -< p 1,

and let D be the maximal divisible subgroup of G. By Theorem 2.6 we may
assume that G is not nilpotent, and so the centraliser C of D is a proper sub-
group of G. C is nilpotent, and so by Theorem 2.5, Corollary there is a
finite characteristic subgroup K of C such that C/K is divisible. If C*/K
is the centraliser of C/K, then C*/K is nilpotent. Hence C* is nilpotent,
and by Lemma 2.4, D -<_ 1(C*). Hence C* C, and C/K is its own cen-
traliser in G/K.
We may assume without loss of generality that K 1 and C is its own

centrMiser in G. Thus if x is any element of order p modulo C, the group X
generated by x and C is not nilpotent, and so by Lemma 5.2, X is a direct
limit of p-groups of maximal class. Now for/c > 0

r(G) n c _<_ r(G) n x __< r(x),

and (f(X) "1) pk. By Lemma 1.1, (C n fk(G)’l) _>- p since C f(G).
Hence f(X) f(G) n C, and fk(X) is a normal subgroup of G. Suppose
that f2(X) is generated by fl(X) and s2, and put [x, s] s. Then given
y e G, [y, s] e f(X), and so [y, s:] s for some integer . Hence z yx-commutes with both s and s. This implies that z e C, for otherwise some
power of z would generate together with C a direct limit of p-groups of maxi-
mal class, and this could not have both s. and sl in its centre. Hence y e X,
and so G X, as required.

THEOREM 5.3. Suppose that the locally finite p-group G has a normal sub-
group N which is the direct product of at most p 1 groups of type p. Then
the centraliser of N has index at most p in G.

If this is false, let C be the centrMiser of N, and let J/C be a subgroup of
G/C of order p. If J is generated by x, y, and C, let H be the group gen-
erated by x, y, and N. Then H is a non-nilpotent Cernikov p-group and
i(H) -< p 1. By Theorem 5.1 there is a finite normal subgroup K of H
such that H/K is a direct limit of p-groups of maximal class. Since NK/K
is Abelian, NK is nilpotent, and so by Lemma 2.4, NK <- C. But NK/K
is the maximal divisible subgroup of H/K, and so (H’NK) p. Thus
(H’C n H) <- p, and since CH J, J" C) <- p, a contradiction.

THEOREM 5.4. If G is a locally finite p-group, and for some integer r >- p
all subgroups of G of order p can be generated by fewer than p elements, then
either G/(G) is finite, or G is a direct limit of p-groups of maximal class.

Since r __> p, G has no elementary Abelian subgroup of order p, and so by
Theorem 4.1, G is a (ernikov p-group. If G is nilpotent, GIft(G) is finite.
Otherwise let D be the maximal divisible subgroup of G, and let K be a normal
subgroup of G of order pr-- contained in D. Let G/K, D D/K.
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Then is not nilpotent and has no elementary Abelian subgroup of order
Hence by Theorem 5.1, i(G) (G) p 1. Now D is its own centraliser
in (, for if /) and [4,/)] 1, then/ {,/} is Abelian and is thus the
direct product of the divisible group /) and a nontrivial group, so
that ()1(/)"1) pP. Thus by Theorem 5.3, (G’D) (’) p. Since
(G) p 1, it follows from Lemma 5.2 that G is a direct limit of p-groups
of mximl class.
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