CONVERGENCE OF QUANTIFIERS AND MARTINGALES

BY

FRED B. WRIGHT¹

1. Introduction

The theory of quantifiers in a Boolean algebra has wide application in mathematics. As introduced by Halmos [4], quantifiers were designed to give a precise algebraic version of some fundamental results in formal logic. Using this concept in formulating the notion of a polyadic Boolean algebra, Halmos was able to show that the semantic completeness theorem of Gödel is the statement that a polyadic algebra is semisimple, a fact which is remarkably easy to prove [5], [14]. Incompleteness theorems, on the other hand, take the form that certain polyadic algebras are not simple [6].

Quantifiers can be used elsewhere. In ergodic theory, for example, the Poincaré recurrence theorem holds for a measurable transformation if and only if the transformation generates a quantifier [16]. Starting from duality theory, the notion of a quantifier can be linearized to apply to real functions. This linearized form has an intimate connection with the Weierstrass-Stone theorem. The logical concept of a constant for a quantifier linearizes into the notion of a generalized mean, which is a kind of interpolating operator. The linearized version and its Boolean prototype meet in the study of bounded measurable functions, yielding some generalizations of the notion of conditional expectation [17].

In this paper, we consider an application of these ideas to the convergence of martingales in probability theory. A class of mappings of a Boolean algebra even more general than quantifiers will be considered. We show that the underlying nature of martingale convergence is as much order-theoretic as it is measure-theoretic. The convergence of conditional expectations is, in fact, a consequence of the convergence of certain existential and universal quantifiers.

2. Mappings of partially ordered sets

Let S be any partially ordered set, and let f be a mapping of S into itself. The mapping f is called *extensive* if $p \leq fp$ for each p in S, *idempotent* if ffp = fp for each p in S, and *isotone* if $p \leq q$ implies $fp \leq fq$ for any p, q in S. An extensive, idempotent, and isotone mapping is called an *extensional closure* on the set S.

These concepts originated with E. H. Moore [11], who considered such mappings in the Boolean algebra of all subsets of a given set. For general lattices, they have been considered by M. Ward [13]. Extensional closures

Received March 6, 1961.

¹Research Fellow of the Alfred P. Sloan Foundation.

are usually called, simply, closures. We prefer to use the latter term for a more restricted class of mappings which are closer in nature to the properties of a closure in the topological sense. In this usage we follow Tarski [7], [10] and Halmos [4].

A subset B of a partially ordered set S is called *relatively complete* if, for each element p of S, the set $B(p) = \{q \in B : p \leq q\}$ has a smallest member. This terminology is from Halmos [4], who considered the relatively complete subalgebras of a Boolean algebra. The following extends theorems of E. H. Moore, M. Ward, and Halmos; the obvious proof may be omitted.

THEOREM. Let f be an extensional closure of a partially ordered set S, and let $B = \{p \in S : fp = p\}$ be the range of f. Then B is a relatively complete subset of S. Conversely, if B is a relatively complete subset of a partially ordered set S, then the mapping f which assigns to each p in S the smallest member of B(p) is an extensional closure of S. This correspondence is one-one.

Let S be a partially ordered set containing a smallest element 0 (that is, $0 \leq p$ for each p in S). A mapping f of S into itself will be called *normal ized* if f0 = 0. A subset B of S will be called normalized if 0 is a member of B. It is clear that an extensional closure is normalized if and only if its range is a normalized subset.

A semilattice is a partially ordered set S in which every pair p, q of elements of S has a greatest lower bound, or infimum, denoted by $p \land q$. A complete semilattice is a partially ordered set in which every nonempty subset P has a greatest lower bound, or infimum, which will be denoted either as $\land P$ or as inf P. A subset B of a semilattice S is called a subsemilattice of S if B is not empty and if $p, q \in B$ imply $p \land q \in B$. A subsemilattice B of a complete semilattice S is called a complete subsemilattice of S if, for each nonempty subset P of B, the element inf P, as computed in S, belongs to B. Note that a complete semilattice always has a least element 0.

THEOREM. If S is a complete semilattice, a subset B of S is a relatively complete subset of S if and only if B is a complete subsemilattice of S.

Proof. If S is a complete semilattice, and if B is a relatively complete subset of S, let P be any nonempty subset of B, and let $a = \inf P$. Let f be the extensional closure defined by B. Since $a \leq p$ for each p in P, then $fa \leq fp = p$ for each p in P. Then $fa \leq a$, and since $a \leq fa$, we have a = fa. Therefore a is in B. The converse is trivial.

In any complete semilattice S, the intersection of an arbitrary collection of complete subsemilattices forms a complete subsemilattice. Hence any subset of S is contained in a least complete subsemilattice of S, which we shall call the complete subsemilattice generated by the set.

Manifestly, the notion of a semilattice has a dual, in which the greatest lower bound (infimum) is replaced by the least upper bound (supremum), and where the least element 0 is replaced by the greatest element 1. We

shall refer to such an object as a *dual semilattice*. Suprema will be denoted by $p \lor q$, and by $\lor P$ or sup P. A *lattice* is a partially ordered set which is both a semilattice and a dual semilattice. We need waste no time in explaining terminology for lattices.

One word of caution for the expert in lattice theory: if S is a complete semilattice, and if f is an extensional closure on S, then the range B of f is not only a complete subsemilattice of S, but is also a complete lattice in a natural manner. In lattice theory, it is customary to consider B as a lattice; in this note we explicitly avoid doing this. The reason is that if S is a complete lattice, and if B is a complete subsemilattice, B need not even be a sublattice of S, although it is a complete lattice in its own right.

The set of all mappings of a partially ordered set S into itself may be regarded as a partially ordered set. We define $f \leq g$ to mean $fp \leq gp$ for each p in S. If S is a semilattice, dual semilattice, or lattice, then the set of all mappings of S into itself is likewise a semilattice, dual semilattice, or lattice, or lattice, under the usual pointwise rules. If S is complete, then the set of all mappings is also complete.

A mapping f of a dual semilattice S into itself is called *additive* if

for each p, q in S.

$$f(p \lor q) = fp \lor fq$$

THEOREM. Let L be a lattice, f an extensional closure in L, and B the range of f. Then f is additive if and only if B is a sublattice of L.

Proof. Suppose B is a sublattice of L. For any two elements p, q in L, we have fp and fq in B, so that $fp \lor fq$ is in B. Since $p \leq fp, q \leq fq$, then $p \lor q \leq fp \lor fq$, so that $fp \lor fq \epsilon B(p \lor q)$. Thus $f(p \lor q) \leq fp \lor fq$. On the other hand $p \leq p \lor q$ implies that $fp \leq f(p \lor q)$, and $q \leq p \lor q$ implies that $fq \leq f(p \lor q)$. Hence $fp \lor fq \leq f(p \lor q)$. Then $fp \lor fq = f(p \lor q)$, and f is additive. Conversely, if f is additive and if $p, q \epsilon B$, then $p \lor q = fp \lor fq = f(p \lor q) \epsilon B$.

A dual semilattice can be characterized as a commutative semigroup in which every element is idempotent. The greatest element of a dual semilattice, if one exists, is a "zero" for the semigroup; the least element, if one exists, is an identity element for the semigroup. An additive mapping of a dual semilattice is an endomorphism of the semigroup. If the dual semilattice has a least element 0, the requirement that a mapping be normalized is merely the requirement that the identity element of the semigroup be mapped onto itself. The notion of a normalized additive mapping [7] of a dual semilattice is consequently a natural one in the semigroup setting; we shall call such a mapping a *hemimorphism*. This word was coined by Halmos [4] to describe mappings of a Boolean algebra which are roughly "half of a homomorphism."

A mapping h of a partially ordered set S into itself is called *antitone* if $p \leq q$ implies $hq \leq hp$.

THEOREM. Let h be an antitone mapping of a partially ordered set S, and let f be an extensional closure in S, with range B. Then the following are equivalent statements: (a) $fhf \leq h$; (b) fhf = hf; (c) $q \in Bq$ implies $hq \in B$.

Proof. Suppose (a) is true; let q belong to B. Then fq = q, so that hfq = hq, and hence fhfq = fhq. By (a) we thus have $fhq \leq hq$. But $hq \leq fhq$, because f is extensive, so that fhq = hq; this means that hq belongs to B. Therefore (a) implies (c). If (c) is true, let p be any element of S; then fp is in B, so that hfp is also in B, and hence fhfp = hfp. Therefore (c) implies (b). That (b) implies (a) is trivial.

Let L be a lattice with least element 0. By a *closure* in L is meant an extensive, idempotent hemimorphism f of L. A closure therefore satisfies the following: f0 = 0, $p \leq fp$, ffp = fp, $f(p \lor q) = fp \lor fq$. It follows easily that $p \leq q$ implies $fp \leq fq$, so that every closure is an extensional closure; the converse is not true in general.

The most important lattices are the Boolean algebras. If A is a Boolean algebra, we denote the complement of an element p of A by p'. The mapping of an element onto its complement is an antitone mapping of a Boolean algebra.

By an existential quantifier f in a Boolean algebra A is meant a closure in A which satisfies the condition $f((fp)') \leq p'$ for each p in A. This definition [15] of an existential quantifier is equivalent to the original one given by Halmos [4]. We have at once the following facts about closures and quantifiers.

THEOREM. Let f be an extensional closure, with range B, in a lattice L. Then f is a closure if and only if B is a normalized sublattice of L.

THEOEM. Let f be an extensional closure with range B in a Boolean algebra A. Then f is an existential quantifier if and only if B is a Boolean subalgebra of A.

3. Martingales

By a directed set we shall mean a set T with a transitive and reflexive relation \geq such that, for any s and t in T, there is an element r in T with $r \geq s$ and $r \geq t$. By a net in a set S we shall mean a pair consisting of a directed set T and a mapping $t \to p_t$ of T into S; we denote such a net by $\{p_t : t \in T\}$. A net $\{p_t : t \in T\}$ in a partially ordered set S is said to be *increasing* if $s \geq t$ implies $p_s \geq p_t$, and decreasing if $s \geq t$ implies $p_s \leq p_t$.

A net $\{f_t : t \in T\}$ of mappings of any set S into itself will be called a martingale if $s \ge t$ implies $f_s f_t p = f_t p$ for each p in S.

THEOREM. Let $\{f_t : t \in T\}$ be a net of mappings of a partially ordered set S. (a) If $\{f_t : t \in T\}$ is a martingale, each f_t is idempotent. (b) If $\{f_t : t \in T\}$ is a martingale of isotone and extensive mappings, then $\{f_t : t \in T\}$ is a decreasing net. (c) If $\{f_t : t \in T\}$ is a decreasing net of idempotent and extensive mappings, then $\{f_t : t \in T\}$ is a martingale. (d) If $\{f_t : t \in T\}$ is a net of extensional closures, then the net is a martingale if and only if it is a decreasing net.

Proof. (a) Since $t \ge t$, we have $f_t f_t p = f_t p$. (b) Since $p \le f_t p$, and since f_s is isotone, we have $f_s p \le f_s f_t p$. If $s \ge t$, then $f_s f_t p = f_t p$, so that $f_s p \le f_t p$. (c) Since f_s is extensive, we obtain $f_t p \le f_s f_t p$. If $s \ge t$, we have $f_s q \le f_t q$ for any q in S; set $q = f_t p$, and get $f_s f_t p \le f_t f_t p = f_t p$. Hence $s \ge t$ implies $f_s f_t p = f_t p$. (d) This follows at once from the previous parts of the theorem.

COROLLARY. Let $\{f_t : t \in T\}$ be a net of extensional closures in a partially ordered set S, and let B_t be the range of f_t . Then $\{f_t : t \in T\}$ is a martingale if and only if the net $\{B_t : t \in T\}$ of subsets of S is increasing.

4. Order convergence

If $\{p_t : t \in T\}$ is a net in a complete lattice L, the limits superior and inferior are defined by

 $\limsup_{t} p_t = \inf_s \sup_{t \ge s} p_t \text{ and } \liminf_{t} = \sup_s \inf_{t \ge s} p_t.$

The inequalities

 $\inf_t p_t \leq \liminf_t p_t \leq \limsup_t p_t \leq \sup_t p_t$

always hold. The net $\{p_t : t \in T\}$ is said to converge if

 $\liminf_t p_t = \limsup_t p_t;$

we refer to convergence in this sense as *order-convergence*. If a net converges, the common value of its lim sup and lim inf is denoted by $\lim_{t} p_t$.

A conditionally complete lattice is a lattice in which any bounded set has an infimum and a supremum. If $\{p_t : t \in T\}$ is a bounded net in a conditionally complete lattice, the considerations of the preceding paragraph may be applied to the net.

THEOREM. If $\{p_t : t \in T\}$ is a bounded decreasing net in a conditionally complete lattice L, then $\lim_t p_t = \inf_t p_t$; if $\{p_t : t \in T\}$ is a bounded increasing net in a conditionally complete lattice L, then $\lim_t p_t = \sup_t p_t$.

Proof. If the net is decreasing, then for $t \ge s$, $p_t \le p_s$, so that $\sup_{t\ge s} p_t = p_s$, and therefore $\inf_s \sup_{t\ge s} p_t = \inf_s p_s$. That is,

$$\limsup_t p_t = \inf_s p_s \leq \liminf_t p_t,$$

and hence $\lim_{t} p_t = \inf_{t} p_t$. The other half of the theorem is similar.

If $\{f_t : t \in T\}$ is a decreasing net of mappings of a complete lattice L into itself, then for each element p of L, the net $\{f_t p : t \in T\}$ is a decreasing net in L, and consequently $\lim_t f_t p = \inf_t f_t p$. In other words, a decreasing net of mappings of a complete lattice converges pointwise. The convergence theorems for martingales, proved below, identify the limit mappings so defined, for certain special martingales. THEOREM 1. If $\{f_t : t \in T\}$ is a martingale of extensional closures in a complete lattice L, and if $\lim_t f_t p = fp$ for each p in L, then f is an extensional closure. Moreover, if B_t is the range of f_t , then f is the extensional closure associated with the complete subsemilattice generated by all the B_t , $t \in T$.

Proof. We know that $fp = \lim_{t} f_t p = \inf_t f_t p$. Since $p \leq f_t p$ for each t, then $p \leq fp$. If $p \leq q$, then $f_t p \leq f_t q$, so that $fp \leq fq$. Finally, $fp \leq f_t p$ for any t, so that $f_t fp \leq f_t f_t p = f_t p$. Hence $ffp \leq fp$; since $fp \leq ffp$, we have ffp = fp. Therefore f is an extensional closure. Let B be the complete subsemilattice generated by all the B_t , and let C be the range of f. If p belongs to B_t , then $f_t p = p$, so that fp = p, and hence p belongs to C. Therefore $B_t \subset C$; since this holds for each t, then $B \subset C$. On the other hand, if p belongs to C, then $p = fp = \inf_t f_t p$; since $f_t p$ belongs to B_t , the infimum belongs to the least complete subsemilattice B generated by all the B_t . Therefore B = C.

A complete lattice L will be called a *continuous lattice* if it satisfies the two conditions: (i) for any increasing net $\{p_t : t \in T\}$ in L and any element q in L, $q \land \lim_t p_t = \lim_t (q \land p_t)$; (ii) for any decreasing net $\{p_t : t \in T\}$ in L and any element q in L, $q \lor \lim_t p_t = \lim_t (q \lor p_t)$. (This terminology is that used by von Neumann [12]; it is a concise way of saying that L is a topological lattice in its order topology [1, page 63].) There exist complete lattices which are not continuous.

THEOREM 2. Let $\{f_t : t \in T\}$ be a martingale of closures in a continuous lattice L. If $fp = \lim_{t \to t} f_t p$ for each p in L, then f is a closure.

Proof. That f0 = 0 is obvious. We need to show that $f(p \lor q) = fp \lor fq$ for each p and q in L. We have $fp \leq f_t p \leq f_t p \lor f_t q = f_t(p \lor q)$, so that $fp \leq f(p \lor q) = \inf_t f_t(p \lor q)$. Interchanging p and q yields

$$fq \leq f(p \lor q),$$

so that $fp \lor fq \leq f(p \lor q)$. Since L is a continuous lattice, we have $fp \lor fq = fp \lor \inf_r f_r q = \inf_r (fp \lor f_r q)$. Also,

$$fp \lor f_r q = (\liminf_i f_i p) \lor f_r q$$

$$= (\sup_s \inf_{t \ge s} f_t p) \lor f_r q \ge (\inf_{t \ge r} f_t p) \lor f_r q$$

$$= \inf_{t \ge r} (f_t p \lor f_r q) = \inf_{t \ge r} (f_t p \lor f_t f_r p)$$

$$= \inf_{t \ge r} f_t (p \lor f_r q) \ge \inf_{t \ge r} f_t (p \lor q)$$

$$\ge \inf_t f_t (p \lor q) = f(p \lor q).$$

Thus $fp \lor f_r q \ge f(p \lor q)$ for any r in T, and therefore $fp \lor fq \ge f(p \lor q)$. The proof is complete.

Any complete Boolean algebra is a continuous lattice (von Neumann [12]; see also [1, page 165]). Consequently the limit of a martingale of closures

in a complete Boolean algebra is a closure. We turn next to the question of convergence of quantifiers, and we shall use the traditional notation \exists to denote an existential quantifier.

THEOREM 3. Let $\{ \exists_t : t \in T \}$ be a martingale of existential quantifiers in a complete Boolean algebra A. If $fp = \lim_t \exists_t p$ for each p in A, then f is an existential quantifier.

Proof. For this we need the terminology and results of [15] concerning duality in Boolean algebras and spaces. Since each \exists_t is a quantifier, its adjoint \exists_t^* is an equivalence relation, and therefore $\bigcap_t \exists_t^*$ is an equivalence relation. To show that f is a quantifier, it suffices to show that $f^* = \bigcap_t \exists_t^*$. Since $fp \leq \exists_t p$ for each t and p, then $f^* \subset \exists_t^*$ for each t [15, Theorem 4]; thus $f^* \subset \bigcap_t \exists_t^*$. Applying [15, Theorems 1, 6], we have

$$f = f^{**} \leq (\bigcap_t \mathbf{J}_t^*)^*.$$

Since $\bigcap_{t} \exists_{t}^{*} \subset \exists_{s}^{*}$, then $(\bigcap_{t} \exists_{t}^{*})^{*} \leq \exists_{s}^{**} = \exists_{s}$. Then $(\bigcap_{t} \exists_{t}^{*}) \leq f$, and hence $(\bigcap_{t} \exists_{t}^{*})^{*} = f$. In particular, $\bigcap_{t} \exists_{t}^{*}$ is a Boolean relation [15, Theorem 2], so that $\bigcap_{t} \exists_{t}^{*} = (\bigcap_{t} \exists_{t}^{*})^{**} = f^{*}$. This proves the theorem.

Associated with every existential quantifier \exists is its dual universal quantifier \forall , defined by $\forall p = (\exists (p'))'$. If $\{\exists_t : t \in T\}$ is a martingale of existential quantifiers, then the net $\{\forall_t : t \in T\}$ is also a martingale. For any p in A, the net $\{\forall_t p : t \in T\}$ is an increasing net. We may now state the full convergence theorem for martingales of quantifiers.

THEOREM 4. Let A be a complete Boolean algebra, let $\{C_t : t \in T\}$ be an increasing net of complete subalgebras of A, and let C be the complete subalgebra of A, generated by all the C_t . Let \exists_t and \forall_t be the existential and universal quantifiers associated with C_t , and let \exists and \forall be the quantifiers associated with C. Then, for any element p of A,

 $\exists p = \lim_t \exists_t p = \inf_t \exists_t p \text{ and } \forall p = \lim_t \forall_t p = \sup_t \forall_t p.$

These convergence theorems have a variety of applications. If, for instance, a set X has defined on it certain operations making it an abstract algebra, then an extensional closure can be defined in the Boolean algebra 2^x of all subsets of X. The closure of any subset of X is the smallest subalgebra of X containing that set. Theorem 1 is therefore connected with the notion of "species of algebraic structures" [3]. A closure in 2^x arises whenever X is a topological space; Theorem 2 is concerned with the convergence of topologies which tend toward the discrete. In the remainder of this paper, we shall be interested in situations involving Theorems 3 and 4. We will see below that, in probability theory, Theorem 4 is nearly equivalent to the martingale convergence theorem of probability theory.

5. Convergence of extremal and intermediate values

The concept of a quantifier for a Boolean algebra has an analogue in the theory of continuous real-valued functions [17]. In this section, we extend

Theorem 4 above to this analogue. Let X be a compact, extremally disconnected, Hausdorff space, let R(X) denote the algebra of all continuous real-valued functions on X, and let A denote the Boolean algebra of all idempotents in R(X). Then A is a complete Boolean algebra. For any complete Boolean subalgebra B of A, let [B] denote the smallest uniformly closed subalgebra of R(X) which contains B. Then, for any φ in R(X), there exist functions $M\varphi$ and $m\varphi$ in [B] such that $m\varphi \leq \varphi \leq M\varphi$, and such that, if ψ_1, ψ_2 belong to [B] and satisfy $\psi_1 \leq \varphi \leq \psi_2$, then $\psi_1 \leq m\varphi$ and $M\varphi \leq \psi_2$. The mappings M and m of R(X) into [B] are extensions of the quantifiers \exists and \forall which map A into B. We shall call M and m the extremal operators associated with B, or with [B]. Note that if X is a compact, extremally disconnected, Hausdorff space, then R(X) is a conditionally complete lattice.

THEOREM 5. Let X be an extremally disconnected, compact, Hausdorff space, let R(X) be the algebra of all continuous, real-valued functions on X, and let A be the complete Boolean algebra of idempotents in R(X). Let $\{B_t : t \in T\}$ be an increasing net of complete Boolean subalgebras of A, and let B be the complete subalgebra of A generated by all the B_t . Let M_t , m_t be the extremal mappings associated with B_t , and let M, m be the extremal mappings associated with B. Then, for any element φ of R(X),

 $M\varphi = \lim_{t} M_{t}\varphi = \inf_{t} M_{t}\varphi, \quad and \quad m\varphi = \lim_{t} m_{t}\varphi = \sup_{t} m_{t}\varphi,$

where the limit is understood to be in the sense of order-convergence in R(X).

Proof. For any real $a \ge 0$ and any φ in R(X), we have $M(a\varphi) = aM(\varphi)$ and $m(a\varphi) = am(\varphi)$. It therefore suffices to consider the case $\|\varphi\| \le 1$; in this case we also have $\|M\varphi\| \le 1$ and $\|m\varphi\| \le 1$, by [17, Theorem 4.4]. Recalling that $\|\varphi\| \le 1$ if and only if $-1 \le \varphi \le 1$, we see that it is sufficient to consider the complete lattice $L = \{\varphi \in R(X): -1 \le \varphi \le 1\}$, and the mappings M_t and m_t of L into itself. It is well-known, and easily seen, that L is a continuous lattice. By [17, Theorem 4.3], the mapping M is a closure in the lattice L. The range of M_t is clearly $L \cap [B_t]$. By Theorem 2, the mapping f of L into itself defined by $f\varphi = \lim_t M_t \varphi$ is again a closure on L, whose range is $L \cap [B]$. Since the range of M is the same thing, we have $f\varphi = M\varphi$ for each φ in L. The other half of the theorem follows from the identity $M\varphi = -m(-\varphi)$ for extremal operators.

If B is a complete Boolean subalgebra of A, by an *intermediate evaluation* for R(X) with respect to B we shall mean any mapping h of R(X) into [B] satisfying $m\varphi \leq h\varphi \leq M\varphi$ for each φ in R(X). We do not require h to be linear; if it is linear, it is a generalized mean in the sense of [17].

THEOREM 6. Let X be an extremally disconnected, compact, Hausdorff space, and let $\{\exists_t : t \in T\}$ be a martingale of existential quantifiers in the Boolean algebra A of idempotents in R(X). Let h_t be an intermediate evaluation for R(X) with respect to the range B_t of \exists_t . Then $\{h_t : t \in T\}$ is a martingale of mappings of R(X). If $\lim_t \exists_t p = \exists p$, if B is the range of \exists , and if h is an intermediate evaluation of R(X) with respect to B, such that $h_t h\varphi = h_t \varphi$ for each t in T and each φ in R(X), then $\lim_t h_t \varphi = h\varphi$, in the sense of orderconvergence in R(X).

Proof. Since $s \ge t$ implies $B_s \supset B_t$, then $s \ge t$ implies $[B_s] \supset [B_t]$. This clearly implies that the nets $\{M_t : t \in T\}$ and $\{m_t : t \in T\}$ are martingales. Moreover $M_t h_t \varphi = h_t \varphi$ and $m_t h_t \varphi = h_t \varphi$ for any t and φ . Then, if $s \ge t$, we have $m_s h_t \varphi = m_s m_t h_t \varphi = m_t h_t \varphi = h_t \varphi$; similarly

$$M_s h_t \varphi = h_t \varphi$$

Hence, for $s \ge t$, we have $h_t \varphi = m_s h_t \varphi \le h_s h_t \varphi \le M_s h_t \varphi = h_t \varphi$, so that $h_s h_t = h_t$. This says that $\{h_t : t \in T\}$ is a martingale.

Now suppose that the intermediate evaluation h described in the hypothesis exists. For any φ in R(X), set $\psi = h\varphi$. Then ψ belongs to [B], $h\psi = \psi = h\varphi$, and $h_t\psi = h_th\varphi = h_t\varphi$. It suffices, then, to show that $\lim_t h_t\psi = \psi$. But we have $m_t\psi \leq h_t\psi \leq M_t\psi$, and since ψ belongs to [B], Theorem 5 implies $\sup_t m_t\psi = \psi = \inf_t M_t\psi$. Hence $\lim_t h_t\psi = \psi$, and the proof is complete.

In the special case of Theorem 6 in which $\lim_t \exists_t p = p$ for each p in A, we have B = A, and hence [B] = R(X). The only intermediate evaluation for R(X) in this case is the identity mapping of R(X). This fulfils the condition imposed on h in the theorem, so that $\lim_t h_t \varphi = \varphi$ for each φ in R(X).

6. Probability theory

Let (Ω, α, P) be a probability space. For any subfield \mathfrak{B} of \mathfrak{A} , let $E(\varphi \mid \mathfrak{B})$ denote the conditional expectation of the integrable function φ with respect to the subfield \mathfrak{B} . A directed family $\{\varphi_t : t \in T\}$ of integrable functions is called a (closed) martingale if there are an increasing net $\{\mathfrak{B}_t : t \in T\}$ of subfields of \mathfrak{A} and an integrable function ψ such that $\varphi_t = E(\psi \mid \mathfrak{B}_t)$ for each t in T; cf. [2].

Let A be the measure algebra of the probability space, and let X be the Boolean representation space of A. Then the algebra $L^{\infty}(\mathfrak{A})$ of all essentially bounded real functions which are measurable (\mathfrak{A}) is isomorphic and isometric with R(X). If \mathfrak{B} is any subfield of \mathfrak{A} , then \mathfrak{B} defines a complete subalgebra of A, and vice versa. The conditional expectation with respect to \mathfrak{B} clearly defines an intermediate evaluation in the sense of this note. For an increasing net $\{\mathfrak{B}_t : t \in T\}$ of subfields of \mathfrak{A} , generating the subfield \mathfrak{B} , we have the identity $E(E(\varphi \mid \mathfrak{B}) \mid \mathfrak{B}_t) = E(\varphi \mid \mathfrak{B}_t)$. We can therefore apply Theorem 6 at once, and assert that $\lim_t E(\varphi \mid \mathfrak{B}_t) = E(\varphi \mid \mathfrak{B})$, in the sense of order-convergence.

The extremal mappings of R(X) defined by a complete subalgebra of A can be carried over to $L^{\infty}(\mathfrak{A})$ via the isomorphism. If \mathfrak{B} is a subfield of \mathfrak{A} , the extremal mappings are denoted by $\max(\varphi \mid \mathfrak{B})$ and $\min(\varphi \mid \mathfrak{B})$, and are called the conditional maximum and minimum of φ with respect to \mathfrak{B} [17,

Definition 8.2]. Applying Theorem 5, we may assert that

 $\lim_{t} \max(\varphi \mid \mathfrak{B}_{t}) = \max(\varphi \mid \mathfrak{B}) \quad \text{and} \quad \lim_{t} \min(\varphi \mid \mathfrak{B}_{t}) = \min(\varphi \mid \mathfrak{B}),$

in the sense of order convergence.

In probability theory, however, we are concerned primarily with convergence in mean and convergence pointwise almost everywhere. Convergence in mean follows at once from order-convergence, by virtue of the generalized monotone convergence theorem. In fact, the mapping which assigns to the real, integrable function φ on Ω the real number $\int_{\Omega} \varphi \, dP$ is an isotone, positive valuation, in the sense of [1, page 74]. This makes the space L^1 of integrable functions a complete metric lattice, and the generalized Lebesgue monotone convergence theorem [1, page 82, ex. 4(a) and Theorem 16] asserts that order-convergence of increasing (or decreasing) nets in L^1 is equivalent to metric convergence. This leads at once to the following.

THEOREM 7. Let $\{\mathfrak{B}_t : t \in T\}$ be an increasing net of subfields of the field \mathfrak{A} in the probability space $(\mathfrak{Q}, \mathfrak{A}, P)$, and let \mathfrak{B} be the subfield generated by all the \mathfrak{B}_t . For any φ in $L^{\infty}(\mathfrak{A})$,

$$\lim_{t} \int_{\Omega} |\max(\varphi | \mathfrak{B}_{t}) - \max(\varphi | \mathfrak{B})| dP = 0,$$
$$\lim_{t} \int_{\Omega} |\min(\varphi | \mathfrak{B}_{t}) - \min(\varphi | \mathfrak{B})| dP = 0,$$
$$\lim_{t} \int_{\Omega} |E(\varphi | \mathfrak{B}_{t}) - E(\varphi | \mathfrak{B})| dP = 0.$$

Proof. The order convergence given by Theorem 5 and the monotone convergence theorem cited above yield the first two assertions. To prove convergence of conditional expectations, we observe that it suffices to consider the case where φ belongs to $L^{\infty}(\mathfrak{A})$, as in the proof of Theorem 6, and to show that $E(\varphi \mid \mathfrak{B}_t) \to \varphi$ in mean. Since

and

$$\min(\varphi \mid \mathfrak{B}_t) \leq \varphi \leq \max(\varphi \mid \mathfrak{B}_t)$$

$$\min(\varphi \mid \mathfrak{B}_t) \leq E(\varphi \mid \mathfrak{B}_t) \leq \max(\varphi \mid \mathfrak{B}_t),$$

the mean convergence of the conditional maxima and minima implies the mean convergence of the conditional expectations.

For convergence in mean of order p > 1, it suffices to note that the space L^{p} is an example of the UMB-lattices of G. Birkhoff, and that order-convergence implies metric convergence [1, pages 248-249]. We omit the details.

Pointwise convergence a.e. presents more difficulties, and involves the nature of the directed set T. For considerations of this kind, see Doob [2, page 51 et seq.] and Krickeberg [8]. If T is the set of natural numbers in the

usual ordering, then we are dealing with the convergence of ordinary se-For this case, the order-convergence of Theorem 5 at once implies quences. the almost sure pointwise convergence of the conditional maxima and minima, and the order-convergence of intermediate evaluations given by Theorem 6 implies the pointwise convergence of conditional expectations. (Convergence in mean, in this case, is a consequence of convergence a.e. and the usual Lebesgue monotone convergence and bounded convergence theorems.) We therefore have the following result.

THEOREM 8. If $\{\mathfrak{B}_n\}$ is an increasing sequence of subfields of the field \mathfrak{A} of the probability space (Ω, α, P) , generating the subfield \mathfrak{B} , then, for any φ in $L^{\infty}(\alpha)$,

$$\max(\varphi \mid \mathfrak{G}_n) \to \max(\varphi \mid \mathfrak{G}) \quad \text{a.e.,}$$
$$\min(\varphi \mid \mathfrak{G}_n) \to \min(\varphi \mid \mathfrak{G}) \quad \text{a.e.,}$$
$$E(\varphi \mid \mathfrak{G}_n) \to E(\varphi \mid \mathfrak{G}) \quad \text{a.e.}$$

and

The convergence of conditional expectations, as given in Theorems 7 and 8, represents a typical case of the martingale convergence theorems of Lévy [9], Doob [2], and Krickeberg [8]. If we consider the special case of a characteristic function $\varphi = \chi_F$ of a set F in α , we obtain the original theorem of Lévy. In this case, we can be more explicit about the nature of $\max(\chi_F \mid \mathcal{B})$ and $\min(\chi_F \mid \mathfrak{B})$. It is easily seen that both of these are characteristic functions of sets F_* and F^* in \mathfrak{B} ; F_* and F^* represent the existentially and universally quantified versions of F, using the quantifiers determined in the measure algebra by the subfield \mathfrak{B} . If $P(F \mid \mathfrak{B}) = E(\chi_F \mid \mathfrak{B})$ is the conditional probability of F with respect to \mathcal{B} , then

$$F^* = \{\omega \epsilon \Omega : P(F \mid \mathfrak{G})(\omega) > 0\}$$
$$F_* = \{\omega \epsilon \Omega : P(F \mid \mathfrak{G})(\omega) = 1\}.$$

This means that the convergence of $\max(\chi_F \mid \mathfrak{B}_n)$ and $\min(\chi_F \mid \mathfrak{B}_n)$, as given in Theorem 8, can be deduced from the convergence of $P(F \mid \mathfrak{B}_n)$, as given by Lévy's theorem. Thus Theorem 8 and Lévy's theorem are equivalent for characteristic functions. (Theorem 8, restricted to characteristic functions, is the measure-theoretic specialization of the sequential version of Theorem I am indebted to Professor Doob for these observations. 4.)

References

- 1. G. BIRKHOFF, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, 1948.
- 2. J. L. DOOB, Stochastic processes, New York, Wiley, 1953.

- 3. C. EHRESMANN, Structures locales, Ann. Mat. Pura Appl. (4), vol. 36 (1954), pp. 133-142.
- 4. P. R. HALMOS, Algebraic logic, I, Compositio Math., vol. 12 (1955), pp. 217-249.
- 5. ——, Algebraic logic (II), Fund. Math., vol. 43 (1957), pp. 255-325.

- 6. ——, The basic concepts of algebraic logic, Amer. Math. Monthly, vol. 63 (1956), pp. 363-387.
- B. JÓNSSON AND A. TARSKI, Boolean algebras with operators, Amer. J. Math., vol. 73 (1951), pp. 891–939.
- K. KRICKEBERG, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc., vol. 83 (1956), pp. 313-337.
- 9. P. LÉVY, Théorie de l'addition des variables aléatoires, Paris, 1937.
- 10. J. C. C. MCKINSEY AND A. TARSKI, The algebra of topology, Ann. of Math. (2), vol. 45 (1944), pp. 141–191.
- E. H. MOORE, Introduction to a form of general analysis, The New Haven Mathematical Colloquium, 1910 (Amer. Math. Soc. Colloquium Publications, vol. 2), pp. 1-150.
- 12. J. VON NEUMANN, Continuous geometry, Princeton, 1960.
- 13. M. WARD, The closure operators of a lattice, Ann. of Math. (2), vol. 43 (1942), pp. 191-196.
- 14. F. B. WRIGHT, Ideals in a polyadic algebra, Proc. Amer. Math. Soc., vol. 8 (1957), pp. 544-546.
- 15. ——, Some remarks on Boolean duality, Portugal. Math., vol. 16 (1957), pp. 109-117.
- methods and operators on Boolean algebras, Proc. London Math. Soc. (3), vol. 11 (1961), pp. 385-401.
- 17. -----, Generalized means, Trans. Amer. Math. Soc., vol. 98 (1961), pp. 187-203.

TULANE UNIVERSITY

NEW ORLEANS, LOUISIANA