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1. Introduction
In the course of thinking about a very suggestive conjecture [1], [2] con-

cerning periodic transformations on the three-sphere, I ran across some in-
teresting four-manifolds, W, which are of the homotopy type of S, but pos-
sibly not topologically equivalent to S. The conjecture claims that if a
periodic transformation on the three-sphere has a circle as fixed-point set,
then that circle must be unknotted. On these four-manifolds, W, that are
.constructed, one may exhibit an action of the circle group S, with fixed-point
set a two-sphere 2;. The fundamental group of the complement, rl(W- 2)
is a split extension of the integers by a nontrivial group , and therefore the
two-sphere is knotted. (It cannot bound a flat disc.) The two-sphere 2;

does however bound a one-parameter family of Poincar cells (i.e., manifolds
with trivial homology and with as fundamental group) whose interiors are
disjoint and which sweep out the space W.
The construction of these manifolds W involves the use of homology

spheres with specific kinds of symmetries. Manifolds of that sort, I call
symmetric homology spheres. The Poincar icosahedral space is an example
.of such an object.
By employing a recent (as yet unpublished) characterization of Euclidean

n-space (n __> 5) by Stallings, and using the above construction, an action
of the circle on S may be obtained, with a knotted three-sphere 2" as fixed-
point set, whose knot group is again a split extension of the group of integers
by the group, r.

It should also be remarked that may be taken to be the icosahedral group,
thus exhibiting a phenomenon which cannot occur with knotted imbeddings
of S in S": the knot group of 2" contains elements of finite order.

2. Terminology
All manifolds and maps in this paper will be combinatorial. Thus homeo-

morphism will mean combinatorial homeomorphism.
I denotes the unit interval, D" the n-cell, S" the n-sphere. If M is an

n-manifold, OM is its boundary and int M its interior. M* will denote M
with a point removed; M0 will denote M with the interior of a closed n-cell
removed. A flat disc D in M" is one which may be thrown onto the standard
k-cell in a closed n-cell D c M by a global automorphism of M". If X, Y
are spaces, f:X Y a map, f: r,(X) --. r(Y) will be the induced homo-
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morphism on the fundamental groups. R, Z will stand for the real numbers
and integers respectively.
A Poincar6 cell will be a manifold with trivial homology and nontrivial

fundamental group, whose boundary is a sphere. The icosahedral group.
will be denoted by A, and the Poincar6 icosahedral space is the homogeneous
space S3/A where S is considered as the quaternions of norm 1, and A C S
is considered as a subgroup in a natural manner. More useful for our purposes
will be the description of S/A given in [3], or by its Heegard diagram (Figure.
1).

DEFINITION 1. A symmetric homology n-sphere is a manifold M such that
(i) H(M) H(S’) for all g.
(ii) There is an orientation-preserving automorphism

with the following properties"
(a)
(b)

r’M ---) M

(c)

It is periodic (i.e., r I for some ).
It leaves some point p e M fixed"

r(p) p.

It trivializes the fundamental group of M. That is, if N rl(M) is
the normal subgroup generated by elements of the form

{’r, a.o- a e rl(M)},

where r:rl(M) -- rl(M) is the homomorphism induced by r, then

N--- -(M).

Given a symmetric homology n-sphere, M, one may construct a manifold
W which is of the homotopy type of Sn+, with rather interesting properties.

3. The construction of W
Let M be a symmetric homology n-sphere, and r’M -- M its automorphism.

Let
S M

be the space I M after one identifies 0 X M with 1 M via the identifi-
cation

" (0, m) -- (1, r(m)).

Let B’I M --, S , M be the identification map. One may calculate
r(S X, M) simply by observing that S )<, M is a fibre bundle over S,
possessing the cross-section

r {(t, p) ZeI},
where p is the fixed point of r (guaranteed to exist, by (ii b) of the definition
of symmetric homology n-sphere). Therefore, by the homotopy exact
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sequence of a bundle,

(1) 0 --, r(M) -- r(S M) - r(S) -- 0,

and r(S X, M) is a split extension of r(M) by r(S) Z. Moreover, if
i" represents the appropriate generator of r(S) in r(S )<, M), one has the
commutativity relations

tt- , for a r(i) ( ,M).

One must now perform a bit of "surgery" on S X, M. Let F S )<, M
be the curve described before. Let F X D be a "thickening" of I (a tubular
neighborhood). Such a tubular neighborhood may be considered I )< D
.simply because (ii) r is orientation-preserving. I may also assume that
I )< D is the image of I X D I X M for some D M under the identifi-
.cation map

B:I )< M-- S X M.

Let W be the manifold S M with the interior of I )< D removed.
Thus

oW r X S’-.

Consider a space W2 D X Sn-l, and a homeomorphism

:0W2 --+ OW,
where

Call W W u W.
: (OD X 0) --, r X 0 for fixed

This is the manifold which is of interest.

4. W is simply connected

It is obvious that r(W) r(S X, M) since the removal of int (r X D)
from S XM does not affect the fundamental group as long as n -> 3. Add-
ing W. to W has the effect of trivializing . Thus the injection i"W --* W
induces an epimorphism i,:r(W) --+ (W) where i,() 1. But then

i.(a-a-) 1 for all a e (W),

and i.(N) 1, where N is as in (ii c), takinginto account the fact that

a- r, a for a e t(W).

It follows from (ii c), formula (1), and the fact the i, is onto, that

r(W) {1}.

It is easy to check that W is a homology (n + 1)-sphere, and therefore it is
a simple consequence of the Hurewicz theorem that W is of the homotopy type
of S"+.
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5. The "knotted" (n 1)-sphere Z"-z in W

Let Zn-1 be the (n 1) -sphere

0 S-zD Sn-z= Ws W,

Dwhere 0 e is the center of the disc.
This ZE-z is knotted in W in the sense that its complement is homeomorphic

with
S M int W,

where M* is M with a point removed. By formul (1),

(S X M)

is n extension of v(S) by the group, z(M).
If z(M) is nontrivil, therefore, Zn- is knotted (i.e., Zn- does not bound

a flt disc in W). Notice, however, that X- does bound one-prmeter
fmily of homology cells homeomorphic with M0, which spn W.

6. The action of R on W
Let ’W W for r e R be the utomorphism obtained from the auto-

morphism : S M S M defined s follows:

(, ) ( + r [r], ),
where [r] is the greatest integer in r. It is clear that determines continu-
ous ction of R on S M.

Moreover, r restricts to W nd my be extended to n ction of

W W u W
by radial extension of r to D W for ech fixed e S-, being l-
redy defined on OD W n W. Moreover, it is lso clear that the
set of points fixed for ll (r e R) is Z-.

Since r is periodic, of period X, we hve

and so determines ctully n ction of the circle

R/xZ
The circle group S hs - s fixed-point set, ndon the manifold W.

M0 as orbit space.

PROPOSITION I.
three-sphere.

The Poincar$ manifold S3/A is a symmetric homology

Proof. There is a Heegard diagram of S3/A on a five-holed torus T (see
Figure 1). The torus T may be represented as a five-spoked wheel, the holes
being arranged symmetrically in a regular pentagon about the center so that
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Figure 1

the entire Heegard diagram is brought into itself by the rotation of T about its
center through the angle 2r/5. One-fifth of the Heegard diagram of S/A is
shown in Figure 1. The curves on the five-holed torus are given by linking
together, in the indicated way, the five strands, which form five disjoint simple
closed curves on T. I am thankful to Arnold Shapiro for this representation
of S/A. This rotation induces an automorphism

which is of period five, orientation-preserving, clearly leaves a point p (in
fact an entire circle) fixed. Since r permutes the five holes of T, it permutes
the five generators of the representation of

(Z/)

which this Heegard diagram induces. Thus

,:,(/) - ,(/)is not the identity isomorphism. Using the fact that A is a simple group,
it is immediate that r satisfies condition (ii c) of Definition 1.

Actually, this could also be proved rather easily without resorting to the
simplicity of A. Therefore, S/A is symmetric. In fact, any homology
manifold obtainable via such a cyclically permutable Heegard diagram would
be symmetric.

In this case, the constructed manifold W is four-dimensional, and 2 is the
"common" two-sphere boundary of a one-parameter family of Poincar
cells which sweep out W. The circle group S acts on W by revolving the
family of Poincar cells. It leaves 2 fixed. The orbit of a "general" point
p e W is a circle S which rotates "five times" about 2. In connection with
remark made in the introduction, the commutator subgroup of r(W



is finite and nontrivil, wheres knot groups of one-spheres in three-space
contain no nontrivil elements of finite order [4]. I might remark that in this
cse, r(W 2) is isomorphic with the direct product of the integers nd the
icoshedrl group. This my be seea as follows"
The isoshedrl group is subgroup of index 2 in its utomorphism group,

which is the symmetric group on five letters. Therefore, ny automorphism
of period 5 (in prticulr, r) must be n inner automorphism. Let p e A be
n element such that - r(x) for all x e A.p’X’p

Define, then, an isomorphism i’Z z -- r(W 2) by

(z, x) (-, x),
where z is a generator of Z.

Let q be a point of 2:. Then the circle group acts on W {q}. Extend
this action to the space

L (W-{q}) XR
by letting the circle group ct trivially on the R factor. This space is homeo-
morphic to R, according to Stallings. Taking the one-point compactifica-
tion of L, L’, one obtains a space homeomorphic to S on which the circle
group acts with fixed-point set, 2a, a three-sphere, such that

r(L’ Z) r(W- 2).

This space L’ can be given a combinatorial structure of S which is almost
the ordinary combinatorial structure of S, and with respect to which the
circle group acts in a combinatorial manner. The combinatorial structure
given to L’ is such that there is a point x for which L’ {x} is combinatorially
equivalent to R.
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