SYMMETRIC HOMOLOGY SPHERES

BY
Barry Mazur
\section*{1. Introduction}

In the course of thinking about a very suggestive conjecture [1], [2] concerning periodic transformations on the three-sphere, I ran across some interesting four-manifolds, W, which are of the homotopy type of S^{4}, but possibly not topologically equivalent to S^{4}. The conjecture claims that if a periodic transformation on the three-sphere has a circle as fixed-point set, then that circle must be unknotted. On these four-manifolds, W, that are constructed, one may exhibit an action of the circle group S, with fixed-point set a two-sphere Σ. The fundamental group of the complement, $\pi_{1}(W-\Sigma)$ is a split extension of the integers by a nontrivial group π, and therefore the two-sphere is knotted. (It cannot bound a flat disc.) The two-sphere Σ does however bound a one-parameter family of Poincaré cells (i.e., manifolds with trivial homology and with π as fundamental group) whose interiors are disjoint and which sweep out the space W.

The construction of these manifolds W involves the use of homology spheres with specific kinds of symmetries. Manifolds of that sort, I call symmetric homology spheres. The Poincaré icosahedral space is an example of such an object.

By employing a recent (as yet unpublished) characterization of Euclidean n-space ($n \geqq 5$) by Stallings, and using the above construction, an action of the circle on S^{5} may be obtained, with a knotted three-sphere Σ^{3} as fixedpoint set, whose knot group is again a split extension of the group of integers by the group, π.

It should also be remarked that π may be taken to be the icosahedral group, thus exhibiting a phenomenon which cannot occur with knotted imbeddings of S^{1} in S^{3} : the knot group of Σ^{3} contains elements of finite order.

2. Terminology

All manifolds and maps in this paper will be combinatorial. Thus homeomorphism will mean combinatorial homeomorphism.
I denotes the unit interval, D^{n} the n-cell, S^{n} the n-sphere. If M is an n-manifold, ∂M is its boundary and int M its interior. M^{*} will denote M with a point removed; M_{0} will denote M with the interior of a closed n-cell removed. A flat disc D^{k} in M^{n} is one which may be thrown onto the standard k-cell in a closed n-cell $D^{n} \subset M^{n}$ by a global automorphism of M^{n}. If X, Y are spaces, $f: X \rightarrow Y$ a map, $f: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ will be the induced homo-
morphism on the fundamental groups. R, Z will stand for the real numbers and integers respectively.

A Poincaré cell will be a manifold with trivial homology and nontrivial fundamental group, whose boundary is a sphere. The icosahedral group will be denoted by Δ, and the Poincaré icosahedral space is the homogeneous space S^{3} / Δ where S^{3} is considered as the quaternions of norm 1 , and $\Delta \subset S^{3}$ is considered as a subgroup in a natural manner. More useful for our purposes will be the description of S^{3} / Δ given in [3], or by its Heegard diagram (Figure $1)$.

Definition 1. A symmetric homology n-sphere is a manifold M such that
(i) $H_{g}(M) \approx H_{g}\left(S^{n}\right)$ for all g.
(ii) There is an orientation-preserving automorphism

$$
\tau: M \rightarrow M
$$

with the following properties:
(a) It is periodic (i.e., $\tau^{\lambda}=1$ for some λ).
(b) It leaves some point $p \in M$ fixed:

$$
\tau(p)=p
$$

(c) It trivializes the fundamental group of M. That is, if $N \subset \pi_{1}(M)$ is the normal subgroup generated by elements of the form

$$
\left\{\tau_{*} \alpha \cdot \alpha^{-1} \mid \alpha \in \pi_{1}(M)\right\}
$$

where $\tau: \pi_{1}(M) \rightarrow \pi_{1}(M)$ is the homomorphism induced by τ, then

$$
N=\pi_{1}(M)
$$

Given a symmetric homology n-sphere, M, one may construct a manifold W which is of the homotopy type of S^{n+1}, with rather interesting properties.

3. The construction of W

Let M be a symmetric homology n-sphere, and $\tau: M \rightarrow M$ its automorphism. Let

$$
S^{1} \times_{\tau} M
$$

be the space $I \times M$ after one identifies $O \times M$ with $1 \times M$ via the identification

$$
\hat{\tau}:(O, m) \rightarrow(1, \tau(m))
$$

Let $\beta: I \times M \rightarrow S^{1} \times_{\tau} M$ be the identification map. One may calculate $\pi_{1}\left(S^{1} \times_{\tau} M\right)$ simply by observing that $S^{1} \times_{\tau} M$ is a fibre bundle over S^{1}, possessing the cross-section

$$
\Gamma=\{(t, p) \mid Z \in I\}
$$

where p is the fixed point of τ (guaranteed to exist, by (ii b) of the definition of symmetric homology n-sphere). Therefore, by the homotopy exact
sequence of a bundle,

$$
\begin{equation*}
0 \rightarrow \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1} \times_{\tau} M\right) \rightleftarrows \pi_{1}\left(S^{1}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

and $\pi_{1}\left(S^{1} \times_{\tau} M\right)$ is a split extension of $\pi_{1}(M)$ by $\pi_{1}\left(S^{1}\right) \approx Z$. Moreover, if ζ represents the appropriate generator of $\pi_{1}\left(S^{1}\right)$ in $\pi_{1}\left(S^{1} \times_{\tau} M\right)$, one has the commutativity relations

$$
\zeta \alpha \zeta^{-1}=\tau_{*} \alpha \quad \text { for } \alpha \epsilon \pi_{1}(M) \subset \pi_{1}\left(S^{1} \times_{\tau} M\right)
$$

One must now perform a bit of "surgery" on $S^{1} \times_{\tau} M$. Let $\Gamma \subset S^{1} \times_{\tau} M$ be the curve described before. Let $\Gamma \times D^{n}$ be a "thickening" of Γ (a tubular neighborhood). Such a tubular neighborhood may be considered $\Gamma \times D^{n}$ simply because (ii) τ is orientation-preserving. I may also assume that $\Gamma \times D^{n}$ is the image of $I \times D^{n} \subset I \times M$ for some $D^{n} \subset M$ under the identification map

$$
\beta: I \times M \rightarrow S^{1} \times_{\tau} M
$$

Let W_{1} be the manifold $S^{1} \times_{\tau} M$ with the interior of $\Gamma \times D^{n}$ removed. Thus

$$
\partial W_{1}=\Gamma \times S^{n-1}
$$

Consider a space $W_{2}=D^{2} \times S^{n-1}$, and a homeomorphism

$$
\phi: \partial W_{2} \rightarrow \partial W_{1}
$$

where

$$
\phi:\left(\partial D^{2} \times \theta\right) \rightarrow \Gamma \times \theta \quad \text { for fixed } \theta \in S^{n-1}
$$

Call $W=W_{1} \mathrm{U}_{\phi} W_{2}$. This is the manifold which is of interest.

4. W is simply connected

It is obvious that $\pi_{1}\left(W_{1}\right) \approx \pi_{1}\left(S^{1} \times_{T} M\right)$ since the removal of int $\left(\Gamma \times D^{n}\right)$ from $S^{1} \times_{T} M$ does not affect the fundamental group as long as $n \geqq 3$. Adding W_{2} to W_{1} has the effect of trivializing ζ. Thus the injection $i: W_{1} \rightarrow W$ induces an epimorphism $i_{*}: \pi_{1}\left(W_{1}\right) \rightarrow \pi_{1}(W)$ where $i_{*}(\zeta)=1$. But then

$$
i_{*}\left(\zeta \alpha \zeta^{-1} \alpha^{-1}\right)=1 \quad \text { for all } \alpha \in \pi_{1}\left(W_{1}\right)
$$

and $i_{*}(N)=1$, where N is as in (ii c), taking into account the fact that

$$
\zeta \alpha \zeta^{-1}=\tau_{*} \alpha \quad \text { for } \alpha \in \pi_{1}(W)
$$

It follows from (ii c), formula (1), and the fact the i_{*} is onto, that

$$
\pi_{1}(W)=\{1\}
$$

It is easy to check that W is a homology $(n+1)$-sphere, and therefore it is a simple consequence of the Hurewicz theorem that W is of the homotopy type of S^{n+1}.

5. The "knotted" $(n-1)$-sphere Σ^{n-1} in W

Let Σ^{n-1} be the $(n-1)$-sphere

$$
O \times S^{n-1} \subset D^{2} \times S^{n-1}=W_{2} \subset W
$$

where $O \epsilon D^{2}$ is the center of the disc.
This Σ^{n-1} is knotted in W in the sense that its complement is homeomorphic with

$$
S^{1} \times_{\tau} M \subset \operatorname{int} W_{1}
$$

where M^{*} is M with a point removed. By formula (1),

$$
\pi_{1}\left(S^{1} \times_{\tau} M\right)
$$

is an extension of $\pi_{1}\left(S^{1}\right)$ by the group, $\pi_{1}(M)$.
If $\pi_{1}(M)$ is nontrivial, therefore, Σ^{n-1} is knotted (i.e., Σ^{n-1} does not bound a flat disc in W). Notice, however, that Σ^{n-1} does bound a one-parameter family of homology cells homeomorphic with M_{0}, which span W.

6. The action of R on W

Let $\Phi_{r}: W \rightarrow W$ for $r \in R$ be the automorphism obtained from the automorphism $\phi_{r}: S^{1} \times_{\tau} M \rightarrow S^{1} \times_{\tau} M$ defined as follows:

$$
\phi_{r}(t, \alpha)=\left(t+r-[r], \tau^{[r]} \alpha\right)
$$

where $[r]$ is the greatest integer in r. It is clear that ϕ_{r} determines a continuous action of R on $S^{1} \times_{\tau} M$.

Moreover, ϕ_{r} restricts to W_{1} and may be extended to an action Φ_{r} of

$$
W=W_{1} \mathbf{\cup} W_{2}
$$

by radial extension of ϕ_{r} to $D^{2} \times \theta \subset W_{2}$ for each fixed $\theta \epsilon S^{n-1}, \phi_{r}$ being already defined on $\partial D^{2} \times \theta \subset W_{1} \cap W_{2}$. Moreover, it is also clear that the set of points fixed for all $\Phi_{r}(r \in R)$ is Σ^{n-1}.

Since τ is periodic, of period λ, we have

$$
\Phi_{r+\lambda}=\Phi_{r}
$$

and so Φ determines actually an action of the circle

$$
S=R / \lambda Z
$$

on the manifold W. The circle group S has Σ^{n-1} as fixed-point set, and M_{0} as orbit space.

Proposition 1. The Poincaré manifold S^{3} / Δ is a symmetric homology three-sphere.

Proof. There is a Heegard diagram of S^{3} / Δ on a five-holed torus T (see Figure 1). The torus T may be represented as a five-spoked wheel, the holes being arranged symmetrically in a regular pentagon about the center so that

Figure 1
the entire Heegard diagram is brought into itself by the rotation of T about its center through the angle $2 \pi / 5$. One-fifth of the Heegard diagram of S^{3} / Δ is shown in Figure 1. The curves on the five-holed torus are given by linking together, in the indicated way, the five strands, which form five disjoint simple closed curves on T. I am thankful to Arnold Shapiro for this representation of S^{3} / Δ. This rotation induces an automorphism

$$
\tau: S^{3} / \Delta \rightarrow S^{3} / \Delta
$$

which is of period five, orientation-preserving, clearly leaves a point p (in fact an entire circle) fixed. Since τ permutes the five holes of T, it permutes the five generators of the representation of

$$
\pi_{1}\left(S^{3} / \Delta\right)=\Delta
$$

which this Heegard diagram induces. Thus

$$
\tau_{*}: \pi_{1}\left(S^{3} / \Delta\right) \rightarrow \pi_{1}\left(S^{3} / \Delta\right)
$$

is not the identity isomorphism. Using the fact that Δ is a simple group, it is immediate that τ satisfies condition (ii c) of Definition 1.

Actually, this could also be proved rather easily without resorting to the simplicity of Δ. Therefore, S^{3} / Δ is symmetric. In fact, any homology manifold obtainable via such a cyclically permutable Heegard diagram would be symmetric.

In this case, the constructed manifold W is four-dimensional, and Σ is the "common" two-sphere boundary of a one-parameter family of Poincaré cells which sweep out W. The circle group S acts on W by revolving the family of Poincaré cells. It leaves Σ fixed. The orbit of a "general" point $p \epsilon W$ is a circle S_{p} which rotates "five times" about Σ. In connection with a remark made in the introduction, the commutator subgroup of $\pi_{\boldsymbol{s}}(W-\Sigma)$
is finite and nontrivial, whereas knot groups of one-spheres in three-space contain no nontrivial elements of finite order [4]. I might remark that in this case, $\pi_{1}(W-\Sigma)$ is isomorphic with the direct product of the integers and the icosahedral group. This may be seen as follows:

The isosahedral group is a subgroup of index 2 in its automorphism group, which is the symmetric group on five letters. Therefore, any automorphism of period 5 (in particular, τ) must be an inner automorphism. Let $\rho \epsilon \Delta$ be an element such that

$$
\rho \cdot x \cdot \rho^{-1}=\tau(x) \quad \text { for all } x \in \Delta
$$

Define, then, an isomorphism $\delta: Z \times \Delta \rightarrow \pi_{1}(W-\Sigma)$ by

$$
\delta(z, x)=\left(\rho^{-1} \zeta, x\right)
$$

where z is a generator of Z.
Let q be a point of Σ. Then the circle group acts on $W-\{q\}$. Extend this action to the space

$$
L=(W-\{q\}) \times R
$$

by letting the circle group act trivially on the R factor. This space is homeomorphic to R^{5}, according to Stallings. Taking the one-point compactification of L, L^{\prime}, one obtains a space homeomorphic to S^{5} on which the circle group acts with fixed-point set, Σ^{3}, a three-sphere, such that

$$
\pi_{1}\left(L^{\prime}-\Sigma^{3}\right) \approx \pi_{1}(W-\Sigma)
$$

This space L^{\prime} can be given a combinatorial structure of S^{5} which is almost the ordinary combinatorial structure of S^{5}, and with respect to which the circle group acts in a combinatorial manner. The combinatorial structure given to L^{\prime} is such that there is a point x for which $L^{\prime}-\{x\}$ is combinatorially equivalent to R^{5}.

References

1. R. H. Fox, On knots whose points are fixed under a periodic transformation of the 3sphere, Osaka Math. J., vol. 10 (1958), pp. 31-35.
2. P. A. Smith, Transformations of finite period. II, Ann. of Math. (2), vol. 40 (1939), pp. 690-711.
3. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann., vol. 69 (1910), pp. 137-168.
4. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U. S. A., vol. 43 (1957), pp. 169-172.

Harvard University
Cambridge, Massachusetts

