THE RADIUS OF UNIVALENCE OF CERTAIN ENTIRE FUNCTIONS

BY
Herbert S. Wilf

It was shown in [1] (see also [5]) that the radius of univalence, $R_{U}(\nu)$, of the function $z^{1-\nu} J_{\nu}(z)$, where $J_{\nu}(z)$ is the usual Bessel function ($\nu>0$), is the smallest positive zero of its derivative, and two-sided inequalities were obtained for $R_{U}(\nu)$. In this note we give a short proof of a more general result, which delineates a rather broad class of entire functions for which the same conclusion holds. Further, we refine the inequalities mentioned above to sharper ones which give asymptotic equalities for $\nu \rightarrow \infty$. The basic idea is simply that whereas the radius of univalence is quite troublesome to deal with directly, the radius of starlikeness is obtainable almost immediately from Hadamard's factorization.

Let \mathfrak{F} be a Montel compact [2] family of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots, \tag{1}
\end{equation*}
$$

regular in $|z|<1$, and put $\gamma_{n}=\max _{f \epsilon \mathcal{F}}\left|a_{n}\right|(n=2,3, \cdots)$. If

$$
\begin{equation*}
g(z)=z+b_{2} z^{2}+\cdots \tag{2}
\end{equation*}
$$

is a given entire function, then the \mathfrak{F}-radius, $R_{\mathfrak{F}}$, of $g(z)$ is

$$
\begin{equation*}
R_{\mathfrak{F}}=\sup \left\{R \mid R^{-1} g(R z) \in \mathfrak{F}\right\} . \tag{3}
\end{equation*}
$$

The inequalities $\left|b_{n}\right| R^{n-1} \leqq \gamma_{n}(n=2,3, \cdots)$ which must hold for all $R \leqq R_{\mathfrak{F}}$, show first that either $R_{\mathfrak{F}}<\infty$ or $g(z) \equiv z$, and second that

$$
\begin{equation*}
R_{\mathfrak{F}} \leqq \min _{n \leqq 2}\left\{\gamma_{n} /\left|b_{n}\right|\right\}^{1 /(n-1)} \tag{4}
\end{equation*}
$$

We consider the families (T) of typically real functions, (U) of univalent functions, (S) of starlike univalent functions, and (C) of convex univalent functions. If $g(z)$ in (2) has real coefficients, then plainly

$$
\begin{equation*}
R_{C} \leqq R_{S} \leqq R_{U} \leqq R_{T} \tag{5}
\end{equation*}
$$

since a univalent function with real coefficients is typically real.
Now let G denote the class of entire functions of either of the following two forms:

$$
\begin{equation*}
g(z)=z e^{\beta z} \prod_{n=1}^{\infty}\left(1+z / a_{n}\right), \tag{a}
\end{equation*}
$$

(b) $\quad \beta \geqq 0 ; \quad 0<a_{1} \leqq a_{2} \leqq \cdots ; \quad \sum\left|a_{n}\right|^{-1}<\infty$,
or
(a)
(b)

$$
\begin{equation*}
0<a_{1} \leqq a_{2} \leqq \cdots ; \quad \sum\left|a_{n}\right|^{-2}<\infty . \tag{7}
\end{equation*}
$$

Received February 8, 1961.

Theorem 1. Let $g(z) \in G$, and let α denote the smallest of the moduli of the zeros of $g^{\prime}(z)$. Then

$$
\begin{equation*}
R_{C} \leqq R_{S}=R_{U}=\alpha \leqq R_{T} \leqq \min _{n \leqq 2}\left\{n /\left|b_{n}\right|\right\}^{1 /(n-1)} \tag{8}
\end{equation*}
$$

Proof. The rightmost inequality in (8) follows from (4) and Rogosinski's theorem [3] that $\gamma_{n}=n$ in (T). In view of (5) and the obvious fact that $R_{U} \leqq \alpha$ we need only show that $R_{s}=\alpha$. But R_{s} is the radius of the smallest circle on which

$$
\begin{equation*}
\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}>0 \tag{9}
\end{equation*}
$$

fails at some point. If, e.g., $g(z)$ is of the form (6), then for $|z|=r<a_{1}$ and $\arg z=\theta$ we have

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} & =1+\operatorname{Re}\left\{\beta z+\sum_{n=1}^{\infty} \frac{z}{z+a_{n}}\right\} \\
& =1+\beta r \cos \theta+r \sum_{n=1}^{\infty}\left\{\frac{r+a_{n} \cos \theta}{r^{2}+a_{n}^{2}+2 a_{n} r \cos \theta}\right\} \\
& \geqq 1-\beta r+r \sum_{n=1}^{\infty} \frac{r-a_{n}}{r^{2}+a_{n}^{2}-2 a_{n} r} \\
& =\frac{(-r) g^{\prime}(-r)}{g(-r)}
\end{aligned}
$$

The last quantity clearly remains positive until the first zero of $g^{\prime}(-r)$ is reached, i.e., as long as $r \leqq \alpha$. The proof in the case (7) is virtually identical.

Theorem 2. For the function $z^{1-\nu} J_{\nu}(z) \in G$ we have

$$
\begin{equation*}
R_{V}(\nu)=\sqrt{2 \nu}\left\{1+1 / 4 \nu+O\left(\nu^{-2}\right)\right\} \quad(\nu \rightarrow \infty) \tag{10}
\end{equation*}
$$

Proof. Let us define

$$
h_{\nu}(z)=2^{\nu} \Gamma(\nu+1) z^{1-\nu} J_{\nu}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m} z^{2 m+1}}{m!4^{m}(\nu+1) \cdots(\nu+m)}
$$

and then

$$
\begin{equation*}
\phi_{\nu}(z)=h_{\nu}^{\prime}(2 i \sqrt{\nu z})=\sum_{m=0}^{\infty} \frac{(2 m+1)(\nu z)^{m}}{m!(\nu+1) \cdots(\nu+m)} . \tag{11}
\end{equation*}
$$

Since $h_{\nu}(z)$ has only real zeros, so has $h_{\nu}^{\prime}(z)$, and thus $\phi_{\nu}(z)$ has only negative real zeros. Being of order $\frac{1}{2}$, it is of the form

$$
\phi_{\nu}(z)=\prod_{n=1}^{\infty}\left(1+z / a_{n}\right) \quad\left(a_{j}>0 ; j=1,2, \cdots\right) .
$$

Following the method of Euler ([4], p. 500), let us write

$$
\sigma_{j}=\sum_{n=1}^{\infty} a_{n}^{-j} \quad(j=1,2, \cdots)
$$

We then find that

$$
\begin{equation*}
\phi_{\nu}^{\prime}(z) / \phi_{\nu}(z)=\sum_{j=0}^{\infty}(-1)^{j} \sigma_{j+1} z^{j} \quad\left(|z|<a_{1}\right) \tag{12}
\end{equation*}
$$

By matching coefficients in (11) and (12) the first few σ_{j} are easily calculated (we omit the somewhat lengthy details), and then the relation

$$
\sigma_{3}^{-1 / 3} \leqq a_{1} \leqq \sigma_{3} / \sigma_{4}
$$

gives the result (10).

References

1. E. Kreyszig and J. Todd, The radius of univalence of Bessel functions I, Illinois J. Math., vol. 4 (1960), pp. 143-149.
2. Z. Nehari, Conformal mapping, New York, McGraw-Hill, 1952.
3. W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Zeitschrift, vol. 35 (1932), pp. 93-121.
4. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1958.
5. R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 278-283.

University of Illinois
Urbana, Illinois

